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Chapter 1 

Classical Control and Prediction Theory 

1. Introduction 

A theme that wil l recur throughout these pages is that there is an intimate connection 

between two superficially different classes of problems: the class of linear-quadratic opt imal 

control problems, and the class of linear least squares predicition and filtering problems. 

The classes of problems are connected in the sense that to solve each, essentially the same 

mathematics is used. This connection, which is often termed "duality," is present whether 

one uses "classical" or "recursive" solution procedures. 1 It is worthwhile to exhibit this 

interconnection early on. We do this here in the simple context of a pair of univariate 

examples. 

2. A n Infinite Horizon Control Problem 

Consider the discrete time control problem, to maximize 

(1.1) Jim £ 3* {am - \ hy2

t - \ [d(L)yt]2}, h > 0, 0 < 3 < 1 

where d(L) = do + diL +... + dmLm, L is the lag operator, {at, t = 0, 1,. ..} is a sequence of 

exponential order less than / J - 1 / 2 , and 0 is the discount factor. The maximization in (1.1) 

is subject to the ini t ial conditions for y_ i , j f -2 • • • ,V-m- The maximization is over infinite 

sequences for yt,t = 0 , 1 , . . .. Simple examples of this problem for factor demand, economic 

growth, and government policy problems are given in Sargent [ch. 9]. 

We first study a finite N version of the problem. Our approach wil l be to study the 

l imit of the solution of the finite N problem. This wil l require being careful, as indicated 

below, because the l imits as N approaches infinity of the necessary and sufficient conditions 

for maximizing finite TV versions of (1.1) are not sufficient for maximizing (1.1). 

We begin by fixing N > m, differentiating the finite version of (1.1) with respect to 

yo, J/i) - •) yw, a ° d then setting these derivatives to zero. For t = 0 , . . . , N — m these first 

1 By "classical" procedures, we mean solution of the control problem via discrete time variational methods, 
and solution of the prediction problem by the Wiener-Kolmogorov method. By "recursive" procedures, we 
mean solution of the control problem by iterating on the matrix Riccati difference equation, and solution of 
the prediction problem via the Kalman filter. 
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order necessary conditions are the Euler equations. For t = N — m+ 1 , . . . , N, the first order 

conditions are a set of terminal conditions. 

In carrying out this differentiation, the only problematic term is 

p- \a\ii)yt 
t=o 

Consider the term 

L = £ 3* [d(L)yt][d(L)yt} 
t-o 
N 

= ^2 3t(doyt + d\ yt-\ + • • • + dmyt-m){doyt + d\ t/t-i + • • • + dm yt-m). 
t=o 

Differentiating L with respect to yt for t = 0, 1, . . . , N - m gives 

~ = B*dod(L)yt + 3 t + 1 rf, d(L)yt+1 +••• + 3t+mdmd(L)yt+m 

oyt 

+ 3* do d(L)yt + 3 t + 1 d, d(L)yt+1 + ••• + 3 t + m dm d(L)yt+m 

= 23* {d0 + di 3L~l + d232 L~2 + ••• + <*« 3m L~m) d{L)yt. 

So we have 

(1.2) ^ • = 23td(3L-i)d(L)yt. 

Differentiating L with respect to yt for t = JV - m + 1 , . . . , N gives 

S^L = 2BN dod{L)yN 

oyN 

d L . =20N-1[do + 0dlL-1}d(L)yN-i 

(1.3) oyN-i 

d L = 20N~m+1 [d0 + 0L-1 <£, + ••• + 3m~x L~m+1 d m _ , ] d { L ) y N _ m + l . 
dyN-m+i 

The derivatives (1.2) and (1.3) are the keys to obtaining the Euler equations and the 

transversality conditions, respectively. 

Differentiating (1.1) with respect to yt for t = 0,. . . , N — m gives the Euler equations 

(1.4) [h 4- d(0L~l) d(L)]yt = at, t = 0, 1, . . . , N - m. 
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Differentiating (1.1) with respect to yt for t = N — m + 1 , . . . , N gives the terminal conditions 

(1.5) 

0N{aN-hyN -d0d(L)yN) = Q 

0N~l (aN_, - hyN_, -(do + 3d, L~x d(L)) i w - i ) = 0 

0N~m+1 (aN_m+1 - h y N . m + 1 -(d0 + 3L-ldl + ---+ 3m-xL-m+xdm.,)d{L)yN.m+x) = 0. 

In the finite N problem, we have to solve the Euler equation (14 ) , which is a 2 m t h order 

linear difference equation, subject to the m ini t ia l conditions y\,... ,ym and the m terminal 

conditions (1.5). These conditions uniquely determine the correct solution in the finite N 

problem. That is, for the finite N problem, conditions (1.4) and (1.5) are necessary and 

sufficient for a maximum. In Section 6 below, we shall briefly describe representations of the 

solution using matr ix methods. 

For the infinite horizon problem, we propose to discover first-order necessary conditions 

by taking the l imits of (1.4) and (1.5) as AT goes to infinity. This approach is valid, and 

the l imits of (1.4) and (1.5) as N approaches infinity are first-order necessary conditions for 

a maximum. However, for the infinite horizon problem with 0 < 1, the l imits of (1.4) and 

(1.5) are, in general, not sufficient conditions for a maximum. That is, the limits of (1.5) 

do not provide enough information uniquely to determine the solution of the Euler equation 

(1.4) that maximizes (1.1). As it turns out, and as we shall see below, a side condition on 

the path of yt that together with (1.4) is sufficient for an opt imum is 

(1.6) £ B'hyl < +oo. 
«=o 

A l l paths that satisfy the Euler equations, except the one that we shall select below, violate 

this condition and, therefore, evidently lead to (much) lower values of the criterion function 

(1.1) than does the optimal path selected by the solution procedure below. 

Consider the characteristic equation for the Euler equation 

(1.7) [h + d(0z-l)d{z)] = O. 

Notice that if z is a root of equation (17) , then so is Bz~x. Thus, the roots of (1.7) come 

in "/3-reciprocal" pairs. If 0 = 1, the roots come in reciprocal pairs. Assume that the 
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roots of (7; are distinct. Let the roots be, in descending order according to their modul i , 

Zi,Zi,,"t*m>*m+W"izim, so that \zx\ > \z2\ > ... \zm\ > | * m + l | > ••• > \zim\- From 

the pairs property and the assumption of distinct roots, it follows that \ZJ\ > y//3 for j < 

m and \zj\ < <Jfi for j > m. It also follows that z2m-j = 0*7+1, j = 0,1 m — 1. 

Therefore, the characteristic polynomial on the left side of (1.7) can be expressed as 3 

(1.8) 
[h + i(Bz-l)d{z)\ = z-mz0(z _„)...(*- zm)(z - z m + 1 ) • • • (z - z2m) 

= z-mz0(z - z,){z -z2).-.(z- zm)(z - 3z-*). ..(z- Bz?)(z - 3z^), 

where zn is a constant. In (18) , we substitute (z — ZJ) = — z ; ( l — ̂ z ) a r | d ( z — BzJ1) = 

z ( l - f-z'1) forj = 1 , . . . , m to get 

fft + d ^ z - 1 ) ^ ) ] H - l ) m ( * o * ^ 

1 1 2j Z m

 z l 2 m 

Now define c (z ) = Y,]l=ocj z' a s 

(1.9) c(z) = [(-irz0zl...zm]1/2(l - ~ ) (1 - - )•••( ! - ~ ) . 

Then notice that (1.8) can be written 

(1.10) h + d{3z-1) d{z) = c{3z-x)c{z). 

It is useful to write (1.9) as 

(1.11) c (z ) = c o ( l - A , z ) . . . ( l - A m * ) 

where 
CQ = [ ( - l ) m z 0 2 i • • • 2 m ] ; >>, = —, j = 1 m. 

1 We make this assumption mainly for convenience. The development below can readily be modified to 
accommodate repeated roots of (1.7), using Gabel and Roberts [ ], Churchill [ ], or Sargent [ , ch. 9). From 
a practical point of view, the assumption of distinct roots is not very restrictive since systems with repealed 
roots can be approximated arbitrarily well by systems with distinct roots. 

3 These expressions are correct evrn if there is a repeated root of (1.7) at zero, that is, even if z m = 
zm + i = \f(5. Most, but not all, of the subsequent results on prediction and control go through if zm = •*/&. 
The optimal feedback law (1.14) or (1.15) holds with z^,1 = A m = if we restrict the at sequence to 
be of exponential order less than ' . The Weiner-Kolmogorov formula (127) is not appropriate if z m = 1, 

v ^ 
because c ( L ) - 1 does not exist. However, a modified version of the Wiener-Kolmogorov formula, expressing 
the optimal prediction in terms of "innovations," does obtain. 

4 

file:///zim/-


Since \ZJ\ > <J~0 for j = 1 , . . . , m it follows that |A ;-| < \j\/0 for j = 1 , . . . , m . Using (1.11), 

we can express the factorization (110) as 

[h + d{0z~l)d{z)) = c2

0(l - A ,z ) • • • (1 - Xmz)(l - \if3z~1) - • • (1 - Xm0z~l). 

In sum, we have constructed a factorization (1.10) of the characteristic polynominal for 

the Euler equation in which the zeros of c(z) exceed in modulus, and the zeros of 

c(0z~1) are less than 0~1^2 in modulus. Using (1.10), we now write the Euler equation as 

(1.12) c(0L-1)c(L)yt = at. 

The unique solution of the Euler equation that satisfies condition (1.6) is given by 

(1.13) c(L)yt = c(0L-1)-1at. 

This can be established by using an argument paralleling that in Sargent [1987, chapter IX]. 

To exhibit the solution in a form paralleling that of Sargent [1987], we use (111) to write 

(1.13) as 

(1.14) (1 - A i L ) • • • (1 - \mL)yt = — - ff^^-l^" _ 0\ml~iy 

Using part ial fractions, 4 we can write the characteristic polynomial on the right side of (1.14) 

as 

y Aj 

(1 - A , 0 L - » ) . . . ( 1 - \m0L-x) £ 1 - A / /3L -1 

where 

3 n w ( i - i j ) . 

Then (114) can be written 

A 
(l-XiL)--(l-XmL)yt = Yt 

or 

m 
(1.15) (1 - A , L ) - . . ( 1 - XmL)yt = £ ( / ? A ; ) * a t + k . 

4 See Sargent [1987] or Gabel and Roberts [1973] 

5 
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Equation (1.15) expresses the opt imum sequence for yt in terms of m lagged y's, and m 

weighted infinite geometric sums of future at's. Furthermore, equation (115) is the unique 

solution of the Euler equation that satisfies the init ial conditions and condition (1.6). In 

effect, condition (1.6) compels us to solve the "unstable" roots of [h + d(0z~l)d(z)] forward 

(see Sargent [ ]). The step of factoring the polynomial [h + d(0z~1)d(z)] into c(0z~l)c(z), 

where the zeros of c(z) are outside the unit circle, is central to solving the problem. 

We note two features of the solution (1.15). First , since | A ; | < l/y/0 for all j, it follows 

that (Xj 0) < y/0. Therefore, the assumption that {a t} is of exponential order less than 

l/y/fi is sufficient to guarantee that the geometric sums of future o^'s on right side of (115) 

converge. We immediately see that those sums wil l converge under the weaker condition 

that {at} is of exponential order less than <£ _ 1 where <j> = max {0X{, i = 1 , . . . , m}. 

Second, note that with at identically zero, (115) implies that in general \yt\ eventually 

grows exponentially at a rate given by max; |A,|. The condit ion max; |A;| < \j\f0 guarantees 

that condit ion (16) is satisfied. In fact, max; |A;| < l/y/0 is a necessary condition for (16) 

to hold. Were (1.6) not satisfied, the objective function diverges to — oo, implying that the 

yt path could not be opt imal . For example, with at = 0, for all t, it is easy to describe a 

naive (nonoptimal) policy for {yt,t > 0} that gives a finite value of (1). We can simply let 

yt — 0 for t > 0. This policy involves at most m nonzero values of hy\ and [d(L)yt\2, and so 

yields a finite value of (1.1). Therefore it is easy to dominate a path that violates (1.6). 

3. Undiscounted Problems 

It is worthwhile focusing on a special case of the problem of Section 2, the undiscounted 

problem that emerges when 0=1. In this case, the Euler equation is 

(/i-f <£(£,-')<*(£)) yt = at. 

The factorization of the characteristic polynomial (1.10) becomes 

(1.19) (h + d(z-i)d(z))=c(z-i)c(z) 

where 
c(z) = c0(l-XlZ)...(l-Xmz) 

c0 = [ ( - l ) m z 0 * l . ••*«>] 

\Xj\ < 1 for j = 1 , . . . , m . 

6 
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The solution of the problem becomes 

(1 - A , L ) • • • (1 - XmL)yt = Jt,Aifl Xk,at+k-

;'=] K=0 

Discounted problems can always be converted into undiscounted problems via a simple 

transformation. Thus consider problem (1) with 0 < 0 < 1. Define the transformed variables 

(1.20) at = 0t,2*t, yt=0t/2yt. 

Then notice that Bl [d(L)yt]2 = [d(L)yt}2 with d{L) = E J L o dj V and dj = 0>/2dj. Then 

the original criterion function (1.1) is equivalent with 

(11 ' ) Jim Z{atyt-lhy2-\[d(L)yt)2} 

which is to be maximized over sequences {yt, t = 0,...} subject to y~\, • • •, y-m given and 

{dj, t = 1,...} a known bounded sequence. 

The Euler equation for this problem is [h + d(L~l)d(L)]yt = dj. The solution of this 

problem is 

(1 - A , L ) . - - ( 1 - \mL)yt = £ Aj;£ \k

} a t + k 

; = 1 *=0 
or 

m oo 

(121) yt = fi yt-i + • • • + / m y , - m + 53 Aj Y, Xj 

where c ( r - 1 ) c ( z ) = A + d ( 2 _ 1 ) d ( 2 ) , and where 

[ ( - l ) m i 0 5 l . . . 5 m j I / 2 ( l - A , z ) . . . ( l - A m « ) = c(«) , where |A, | < 1. 

We leave it to the reader to show that (1.21) implies the equivalent form of the solution 

(1 22) yt = fx y t _ , + •. • + fm yt.m + £ Aj £ (A,- 0)k a t + k 

where 

(123) fj = }jfir*l\ A, = Aj, \j = \j0~ll*. 

By making use of the transformations (1.20) and the inverse formulas (1.23), it is always 

possible to solve a discounted problem by first solving a related undiscounted problem. 
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4. Infinite Dimensional Prediction and Signal Extraction 

We now consider two related prediction and filtering problems. We let Yt be a univariate 

m t h order moving average, covariance stationary stochastic process, 

(1.24) Yt = d(L)ut 

where d(L) = J^j^&jV% and ut is a serially uncorrelated stationary random process satis­

fying 

Eut = 0 

(1.25) 

_ f l t = s 
E u ' U ' = \ 0 t * s 

We impose no conditions on the zeros of d(z). A second covariance stationary process is Xf 

given by 

(1.26) Xt = Yt + Ct 

Eete, = | 

where et's a serially uncorrelated stationary random process with Eet = 0 and 

h > 0 t = a 
0 t^s 

It is assumed that Eetu, = 0 for all t and s. 

The linear least squares prediction problem is to find the random variable Xt+j among 

linear combinations of {Xt, Xt-\,. ..} that minimizes £ { A " < + J } 2 . That is, the problem is to 

find a 7, (1) = J2T=otjk Lk such that Y.T=o \tjk\2 < ° ° and such that E { 7 j - (L)Xt - Xt+j}2 

is minimized. 

The linear least squares filtering problem is to find a b(L) — YlJLo bj L1 such that 

E y ^ o l f y l < co and such that E{b(L)Xt — i j } 2 is minimized. Interesting versions of these 

problems related to the permanent income theory were studied by Muth [ ]. 

These problems are solved as follows. The covariograms of Y and X and their cross 

covariogram are, respectively, defined as 

Cx(r) = EXtXt-T 

(1.27) Cy(r) = EYtYt.r r = ± l , + 2 , . . . 

Cy,x(r) = EYtXt-r 

8 



The covariance and cross covariance generations functions are defined as 

9x{z)= £ CX(r)zr 

r = — oo 
oo 

(1.28) 9Y(z)= L CY{T)ZT 

T=— OO 

9YX(Z)= £ C r j r ( r ) * r . 
r = — o o 

The generating functions can be computed by using the following facts. Let vu and v2t be 

two mutually and serially uncorrelated white noises with unit variances, i.e., Ev\t = Ev\t = 

1, Evu = Ev2t = 0, EvuV2i = 0 for all t and 3, Ev\tV\t-j = Ev2tV2t-j = 0 for all j ^ 0. Let 

Xt and yt be two random process given by 

yt = A(L)vn + B{L)v2t 

xt = C(L)vu + D(L)v2t. 

Then, as shown for example in Sargent ( , ch. 11], we have 

g9(z) = A{z)A(z~1) + B{z)B(z~1) 

(1-29) gt{z) = C{z)C{z-') + D{z)D{z-x) 

gyx(z) = A(z)C(z-1) + B(z)D(z-1). 

Apply ing these formulas to (1.24)-(1.27), we have 

gy(z) = d(z)d(z-X) 

(1-30) gx(z) = d(z)d(z-i) + h 

gYX(z) = d(z)d(z-i). 

The key step in obtaining solutions to our problems is to factor the covariance generating 

function of X, gx{z). The solutions of our problems are given by formulas due to Wiener 

and Kolmogorov. These formulas utilize the Wold moving average representation of the X\ 

process, 5 

(1.31) Xt = c(L)m 

5 The existence of which is assured by Wold's representation theorem. See, for example, Sargent [ , ch. 
XI]. 
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where c(L) = £ j l o ci L3, where 

(1.32) cor;, = Xt - E[Xt\Xt.u Xt-2,...], 

where E is the linear least squares projection operator. Equat ion (132) is the condition that 

CQTft can be the one-step ahead error in predicting X% from its own past values. Condit ion 

(1.32) requires that ijt lie in the closed linear space spanned by [Xt, Xt-i,...]. This wil l 

be true if and only if the zeros of c(z) do not lie inside the unit circle. It is an implication 

of (132) that Tjt is a serially uncorrelated random process, and that a normalization can 

be imposed so that En2 = 1. Consequently, an impl icat ion of (131) is that the covariance 

generating function of Xt can be expressed as 

(1.33) gx(z) = c(z)c(z-1) 

It remains to discuss how c(L) is to be computed. Combining (129) and (1.33) gives 

(1.34) d(z)d(z-1) + h = c(z)c(z-1). 

Now equation (134) is identical with (1.10). Further, the conditions that (131) imposes on 

c(z), that its zeros not lie inside the unit circle, are identical with those imposed in (1.9). 

Therefore, we have already showed constructively how to factor the covariance generating 

function gx (z) = d(z)d(z~l) + h. 

We now introduce the "annihi lat ion operator:" 

(1 35) [ £ / y ^ + a £ ^ . 

; = -oo )=0 

In words, ( ]+ means "ignore negative powers of L." We have defined the solution of the 

prediction problem as E[Xt+j\Xt, Xt-\,...] = ~fj (L)Xt- Assuming that the roots of c(z) = 0 

all lie outside the unit circle, the Wiener-Kolmogorov formula for fj(L) holds: 

(1.36) 7 , ( i ) = [ ^ ] + c ( I ) - 1 . 

We have defined the solution of the filtering problem as E[)\ \ Xt,Xt-i, • • •] = b(L)Xt- The 

Wiener-Kolomogorov formula for b(L) is 

(137) m ) . ( f f l ^ ) 
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or 
(d{L)d(L->)\ , 

+ 

Formulas (1.36) and (1.37) are discussed in detail in Whi t t le [ ] and Sargent [ j . The interested 

reader can there find several examples of the use of these formulas in economics. Some classic 

examples using these formulas are due to Mu th [ ]. 

As an example of the usefulness of formula (1.37), we let Xt be a stochastic process with 

Wold moving average representation 

Xt = c(L)T)t 

where Erf\ = 1, and coty = Xt - E[Xt\Xt-\, • • },c{L) = Y^QCJL. Suppose that at time t, 

we wish to predict a geometric sum of future A " s , namely 

given knowledge of Xt, Xt-i, — We shall use (37) to obtain the answer. Using the standard 

formulas (1.29), we have that 

9„{z) = (1 - \z-l)c(z)c{z-1) 

gz{z) = c{z)c{z-x). 

Then, (137) becomes 

(1 38) K L ) = [ f f ( ^ i ] + c ( i ) - i . 

In order to evaluate the term in the annihilation operator, we use the following result 

from Hansen and Sargent [ ]. 

Proposition: Let g(z) = Y.?=o9}ZJ where T.JL0\gj\2 < +oo. Let ^ ( z " 1 ) = (1 -

6iz~l).. .(1 - Snz~l), where \6f\ < 1, for j = 1, . . . , n . Then 

r i 3 9 ) [jilL] M f W ) ( 1 
(l-6"> lh{z-i)U-h(z-x) ^U]Vj(Sk-6j)\z-6j) 

and, alternatively, 
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where * i - l / I R ^ l - & ' ,)• 

Apply ing formula (1.40) of the proposition to evaluating (1.38) with g(z) = c(z) and 

h{z~l) = 1 - Sz~l gives 

v- l 

6 ( L ) = l 1 - ^ - 1 

Thus, we have 

(1.41, & [ E ^ , . „ . 1 . . M 1 - ^ , f » - ] „ . 
;=0 1 0 I y 

This formula is useful in solving stochastic versions of problem (11) in which the ran­

domness emerges because a% is a stochastic process. The problem is to maximize 

(1 42) E 0 # m J £ f i [ « Y , - \hy\ - \[d(L)yt\2] 

where E\ is mathematical expectation conditioned on information known at t, and where 

{at} is a covariance stationary stochastic process with Wold moving average representation 

where 

at = c(L)T]t 

c(L) = £ -CjL>\ 

and Jjt = at - E[at\at-i,.. .). 

The problem is to maximize (142) with respect to a contingency plan expressing yt as 

a function of information known at t, which is assumed to be ( y t - i , S/t-2. • • •. at> at-\, • • •)• 

The solution of this problem can be achieved in two steps. First , ignoring the uncertainty, 

we can solve the problem assuming that at is a known sequence. The solution is, from above, 

c{L)yt = c{L-l)-'at 

or 

(1.43) ( 1 - A, £ , ) . . . (l-\mL)yt=J2A,52(\0)kat+k. 
i=\ fe=o 
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Second, the solution of the problem under uncertainty is obtained by replacing the terms on 

the right-hand side of the above expressions with their linear least squares predictors. Using 

(1.41) and (1.43), we have the following solution 

•l-0\ic(0\j)L-1c(L)-1-
(1 - A , L ) . . . (1 - XmL)yt = £ Aj[- j _ 0 X _ L _ X 

5. Finite Dimensional Control 

We briefly study the finite horizon version of our optimization problem, using matrix 

methods. For simplicity, we shall focus on the special case in which m = 1, although it 

should be clear how things wil l generalize to the case in which m > 1. We want to solve 

the system of N + 1 linear equations. 

[h + d(0L-1)d(L)}yt = at, t = 0, 1, . . . , N - 1 

0N[aN-hyn-dod(L)yN) = O 

where d(L) = do + d\L. These equations are to be solved for yo, y i , • • • ,J /n- i and y/y as 

functions of an, a i , . . . , a^r_! and a/y. Let <f>{L) = <£n + (f>\L + 0<j>\L~1 = h +d{0L~1)d(L) = 

(h + d^ + d\) + d\doL + d\do0L~x. Then we can represent (1.44) as the matr ix equation 

(1.44) 

(1.45) 

{<po-d\) 0 i 0 0 
04>i 0o 01 o 

0 0<p\ 00 01 

0 
0 

or 

(1.46) 

0 
0 
0 

0<t>\ 00 01 
0 06l 00 

Wy = 1 

VN 1 aN 

a/v_i 
yN-2 

= 
&N-2 

yi a i 
. yo . .ao - 0 i y - i . 

Notice how we have chosen to arrange the y f ' s in reverse time order. The matr ix W on the 

left side of (145) is "almost" a toeplitz matrix, there being two sources of deviation from the 

toeplitz form. First , the (2,1) element differs from the remaining diagonal elements, reflecting 

the terminal condition. Second, the subdiagonal elements equal 0 time the superdiagonal 

elements. 

6 See exercise number 
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The solution of (1.46) can be expressed in the form 

(1.47) y = W-'d, 

which represents each element yt of y of a function of the entire vector a. That is, yt is a 

function of past, present, and future values of a's, as well as of the ini t ial condition y_j . 

A n alternative way to express the solution to (145) or (146) is in so called feedback— 

feedforward form. The idea here is to find a solution expressing yt as a function of past y's 

and current and future at's. To achieve this solution, one can use an "LU" decomposition 

of W. There always exists a decomposition of W of the form 

(1.48) W = LU 

where L is an (N + 1) X {N + 1) lower triangular matr ix, and U is an (N + 1) X (N + 1) 

upper trangular matr ix. The factorization can be normalized so that the diagonal elements 

of U are unity. Using representation (1.48) in equation (1.47) we obtain 

(1.49) Uy=L'xa. 

Since L~x is lower trangular, this representation expresses yt as a function of lagged y's 

(via the term Uy) and current and future a's (via the term L~xa). Because there are zeros 

everwhere in the matr ix on the left of (1.45) except in the diagonal, superdiagonal, and 

subdiagional, the LU decomposition takes L to be zero except in the diagional and the 

leading subdiagonal, while U is zero except on the diagonal and the superdiagional. Thus, 

(1.49) has the form 

yN 
y /v - i 
y/v-2 
yit-3 

yo 

aN 

aN_i 

I u12 
0 0 . . 0 0 

0 1 u23 0 . . 0 0 
0 0 1 ^34 • . . 0 0 
0 0 0 1 . . 0 0 

0 0 0 0 . . 1 
0 0 0 0 .. 0 1 

(1.50) 

r i f , 1 

i f , 1 

0 0 
0 

I~x I~x 

^ , 3 

^JV+1,3 

0 
0 
0 

T~x 

L'N + l N+l 

a, 
ao - 4>\y-\ 



where Ljj is the (t, j ) element of L~l and Uij is the (i , j) element of U. 

We briefly indicate how this approach extends to the problem with m > 1. Assume that 

8=1. Let D m + | be the (m + 1) x (m + 1) symmetric matr ix whose elements are determined 

from the following formula: 

Djk = dodk_j + didic-j + i + • • - + dj-idk-i, k > j. 

Let Im+i be the (m-f 1) x ( m + 1) identity matrix. Let <f>j be the coefficients in the expansion 

4>{L) = h + d(L~l)d(L). Then the first order conditions (1.4) and (1.5) can be expressed as: 

r VN apt 

{Dm+i +hlm+1) 
VN-\ = 

VN-m, aN-m, 

4>myN + tm-lVN-l + • • • + 4>oyN-m + 4>iyN-m-\ + • • • + 4>myN-2m = O-N-m-1 

<f>myN-\ + <Pm-\yN-2 + • • • + 4>oyN-m-\ + 4>\yN-m-2 + • • • + <f>myN-2m-l = aN-m-2 

<Pmym+\ + <t>m-iym + + . . . + 002/1 + 0l!/O + 0 m J / _ m + i = 0L\ 

4>mVm + 0 m - l V m - l + 0m-2 + • • • + 001/0 + <t>\V-\ + • • • + 0m!/-m = ̂ 0 

The matrix on the left of this equation is "almost" toeplitz, the exception being the leading 

m x m sub matrix in the upper left hand corner. As before, we can express equation as 

(1.51) Wy = d. 

We can represent the solution in feedback-feedforward form by obtaining a decomposition 

L U = W, and obtain 

Uy = L~ld. 

t N-t 

(i 52) £ isS+j «<+i 
7=0 ;=0 

where Lj, is the element in the t + m + 1 row and s + m + 1 column of L, with a similar 

convention of [/,,,. 

15 



The left side of equation (152) is the "feedback" part of the optimal control law for yt, 

while the right-hand side is the "feedforward" part. We note that there is a different control 

law for each t. Thus, in the finite horizon case, the optimal control law is time dependent. 

It is natural to suspect that as N —> oo, (1.52) becomes equivalent to the solution of our 

infinite horizon problem, which we have expressed as 

c(L)yt = c(0L-i)-1at, 

so that as N —* oo we expect that for each fixed t, LjJ_j —» CJ and C/*,t+j approaches 

the coefficient on L~3 in the expansion of c(0L~x). This suspicion is true under general 

conditions which we shall study later. For now, we note that by creating the matr ix W for 

large N and factoring it into the L U form, good approximations to c(L) and c(0L~l)~l can 

be obtained. 

6. Finite Dimensional Prediction 

Let ( i i , X 2 , . . • x t ) ' = x be a T x 1 vector of random variables with mean Ex = 0 and 

covariance matr ix Exx' = V. Here V is a T x T positive definite matrix. We shall regard 

the random variables as being ordered in t ime, so that xj is thought of as the value of some 

economic variable at time t. For example, xt could be generated by the random process 

described in Section 5. In this case, Vij is given by the coefficient on in the expansion 

of gx{z) = d(z)d{z~l) + h, which equals h + E tLo a'fcdfc+|i->|- We shall be interested in 

constructing j —step ahead linear least squares predictors of the form 

where E is the linear least squares projection operator. 

The solution of this problem is clearly exhibited by first constructing an orthonormal 

basis of random variables t for x. Since V is a positive definite and symmetric, we know 

that there exists a (Cholesky) decomposition of V such that 

V = L-X{L-1)' 

or 

LVV = 1 
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where L is lower-trangular, and therefore so is Z . - 1 . Form the random variable Lx = e. 

Then t is an orthonormal basis for x, since L is nonsingular, and Eee' = LExx'L' = I. 

It is convenient to write out the equations Lx = e and L - 1 e = x. 

L\\X\ = £\ 

Li\Xi + Z-22^2 = ^2 
(1.53) 

Z-Tl X l . • + LTTzt = CT 

or 

t - l 
(154) = e « , e = l , 2 , . . . T 

j=0 

We also have 

(1-55) « « = E i i y « H -
;=o 

Notice from (1.55) that x t is in the space spanned by et, f t - i . • • • »£i> and from (1.54) that 

e< is in the space spanned by x, , x t _ i , . . . , i j . 

Therefore, we have that for t — 1 > m > 1 

(1 56) E [x t | x t _ m , i ( _ m _ i , . . ,x i ) = £ [ x t | e t - m } £ t - m + \ , • • • , e i j . 

For £ — 1 > m > 1 rewrite (1.55) as 

( i 57) X t = £ K l - i + L ^ w - j 

Representation (1.50) is an orthogonal decomposition of it into a part £ j = l n ^Tt-j e*-i ' n a * 

lies in the space spanned by [ x f _ m , x t _ m + 1 , . . . and an orthogonal component not in 

this space. It immediately follows from the "orthogonality principle" of least squares (see 

Papoulis [ ] or Sargent [ ]) that 

t - l 
E\xt | r ( _ m , x ( _ m + 1 , . . . x i ] = J2 Lt,t-j£t-i 

11-56) J = m 

= [ L - 1

1 L - 2

, , . . . , L < - ; / _ m 0 0 . . . 0 ] L x . 
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This can be interpreted as a finite-dimensional version of the Wiener- Kolmogorov m-step 

ahead predict on formula. 

We can use (1.51) to represent the linear least squares projection of the vector x condi­

tioned on the first s observations [x,, x , _ i . . . , sci). We have 

E [ x | x „ x , _ 1 ) . . . , x 1 ] = L - 1 [ / ' ° }Lx. 

This formula wil l be convenient in representing the solution of control problems under un­

certainty. 

Equation (1.55) can be recognized as a finite dimensional version of a moving average 

representation. Equation (154) can be viewed as a finite dimension version of an autore-

gressive representation. Notice that even if the xj process is covariance stationary, so that V 

is such that Vij depends only on |t — j\, the coefficients in the moving average representation 

are time-dependent, there being a different moving average for each t. If x j is a covariance 

stationary process, the last row of L - 1 converges to the coefficients in the Wold moving 

average representation for {x r } as T —» oo. Further, if x< is covariance stationary, for fixed 

k and j > 0, LT}T-J converges to LjX_kT_k_j as T —» oo. That is, the "bottom" rows of 

L~x converge to each other and to the Wold moving average coefficients as T —» oo. 

This last observation gives one simple and widely-used practical way of forming a finite T 

approximation to a Wold moving average representation. First , form the covariance matr ix 

Exx' = V, then obtain the Cholesky decomposition L~x L~x of V, which can be accom­

plished quickly on a computer. The last row of L - 1 gives the approximate Wold moving 

average coefficients. This method can readily be generalized to multivariate systems. 

7. Combined Finite Dimensional Control and Prediction 

Consider the finite-dimensional control problem, maximize 

E £ {*tyt - \hy} - \[d(L)yt)2h h>0 
2' 

where d{L) = do + d\L + . . . + dmLm, L is the lag operator, d = [a/yr, a/y_i . . . , a\, an]' a 

random vector with mean zero and E ata't = V. The variables y _ i , . . J / - m are given. The 

maximizat ion is over choices of t/o,J/l • • • ,VN, where yt is required to be a linear function of 

a t _ , ; t - 1 > a > 0). 
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We saw in section 5 that the solution of this problem under certainty could be represented 

in feedback-feedforward form 

Uy = La. 

Using a version of formula 1.58, we can express E[a | a,, o , _ i , . . . , an] as 

E[a | a„ a , _ i , . . . ,a 0 ] = U 1 [ 
TO 0 

0 '(.+1) 
Ua 

where /(,+i) is the (j -I-1) x ( j + 1) identity matr ix, and V = U~1U~1 , where U is the upper 

triangular Cholesky factor of the covariance matrix V. (We have reversed the t ime axis in 

dating the a's relative to section 5. The time axis can be reversed in representation ( ) by 

replacing L with LT.) 

The optimal decision rule to use at time 0 < t < N is then given by the (N — t + l ) t h 

row of 

Uy = L - ' f J " 1 f|J 0 }ua. 
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Exercises 

1. Consider solving a discounted version (fl < 1) of problem (1.1), as follows. Use the 

transformations in footnote 2, to convert (1.1) to the undiscounted problem (1.1') of 

footnote 2. Let the solution of ( l . l ' ) in feedback form be 

oo 
(1 - A , L ) • • • (1 - \mL)yt = £ Aj; £ Xkat+k 

or 

00 
ik-(*) ft- flVt-1 + ••• + fmVt-m + £ A i £ AiS*+* 

;=1 fc=0 

where fc + ~d{z-*)d(z) = c{z-x)c{z) and c(z) = [ ( - l ) m 2 0 5 i • • • 5 m ] 1 / 2 ( l - A l Z ) • • • (1 -

\mz), where the ~ZJ are the zeros of h + d ( 2 _ 1 ) d ( z ) . Prove that (*) implies that the 

solution for yt in feedback form is 

m oo 

yt = fiyt-l + ••• + fmVt-m + £ Aj Y, 0k*kat+k 

where = fj0~j/2, Aj = Aj, and Xj = \j3~ll2. 

2. Solve the optimal control problem, maximize 

Y {atyt - h i - 2L)yt\2} 
t=o £ 

subject to y_i given, and {at} a known bounded sequence. Express the solution in the 

"feedback form" (1.15), giving numerical values for the coefficients. Make sure that the 

boundary conditions (1.5) are satisfied. (Note: this problem differs from the problem in 

the text in one important way: instead of h > 0 in (1.1), h = 0. This has an important 

influence on the solution.) 

3. Solve the infinite time optimal control problem to maximize 

Km £ ~ [ ( l - 2 L ) y t ) 2 , 
N-.cc t = Q 2 

subject to y_ i given. Prove that the solution is 

yt = 2y t _ i - 2 ' + 1 y _ ! t > 0. 
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4. Solve the infinite time problem, to maximize 

N I 
J i m £ ( . 0 0 0 0 0 0 1 ) y 2 - - [ ( l - 2 L ) y , ] 2  

N^°° t=o 1 

subject to y_i given. Prove that the solution y, = 2yj_i to problem (1.3) violates 

condition (1.6), and so is not optimal. Prove that the optimal solution is approximately 

yc = ^y« - i = ( ^ + 1 y - i , « > o. 

5. Consider a stochastic process with moving average representation 

xt = (l-2L)et 

where e< is a serially uncorrelated random process with mean zero and variance unity. 

Use the Wiener-Kolmogorov foumula (1.36) to compute the linear least squares forecasts 

E[xt+j | xuxt-i,.. •], for j = 1, 2. 

Hint: Let w(z) = £ J L 0 WjZ* . Let z\,... , zk be the zeros of n(z) that are inside the unit 

circle, k < m. Then define 

0 { z ) ~ *<*K (Trio'Hir^j-) • • • ((7^)-
The term mult iply ing TT(Z) is termed a "Blaschke factor." Then it can be proved directly 

that 

6(z-l)e(z) = n(z-X)n(z) 

and that the zeros of 6{z) are not inside the unit circle. 

6. Consider a stochastic process X\ with moving average representation 

Xt = {1 - V2L + L2)et 

where £t is a serially uncorrelated random process with mean zero and variance unity. 

a. F ind a Wold moving average representation for xt-

b. Use the Wiener-Kolomogorov formula (27) to compute the linear least squares fore­

casts E[Xt+j | Xt-u- -.} for j = 1, 2, 3. 

(The hint to the previous problem is again useful.) 
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7. Let Yt = (1 - 2L)ut where ut is a mean zero white noise with Eu\ = 1. Let 

Xt =Yt + et 

where et is a serially uncorrleated white noise with Et\ = 9, and Eetu, = 0 for all t and 

3. 

a. F ind the Wold moving average representation for Xt-

b. F ind a formula for the A\j'a in 

oo 

EXt+i | Xt,Xt-i,. ••=/„ MjXt-j 
;=0 

c. F ind a formula for the A%f* in 

EXt+2 I Xt, Xt-\,. • • = 52 MjXt-j. 

i=o 

8. (A mult iple variable control problem) 

Consider the problem, maximize 

l im jrg1 {A'tYt - l-YlHYt - \[D(L)Yt)2}, 0 < 0 < 1, 
/ v - 0 0 ,=o 1 1 

where Yt is an (n x 1) vector, {At,t = 0,1, . . . } an n x 1 vector of known sequences of 

exponential order less than 0 l l 2 , D(L) = D0 + DXL + ... + DmLm where the Dj are 

n x n matrices, and H is an n x n positive definite matrix. The maximizat ion is subject 

to Y-i,..., Y-m given, and is over infinite sequences for {Y't,t = 0 ,1 , . . . } . 

a. Prove that the Euler equations are 

[H + D(0L-1)'D(L))Yt = At 

b. Give a boundary condition that generalizes (1.6). 

c. Prove that if z is a zero of \H + D(0 z - 1 ) ' 'D(z) \ then so is 0z~l. 

To solve the Euler equations subject to the boundary conditions it is necessary to achieve 

the factorization 

\H + D(0z-l)'D(z)) = C(0z-1)'C(z) 
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where the zeros of exceed 3 in modulus, and those of \C{Bz~x)\ are less than 3 in 

modulus. Hansen and Sargent [ ] describe methods for achieving this factorization. The 

solution of the control problem can then be represented 

C(L)Yt = C(3L-1)'At. 

9. (Mult ivariable Predict ion) 

Let Yt be an (n x 1) vector stochastic process with moving average representation 

Yi = D{L)Ut 

where D(L) = Hj^rj DjLJ, Dj an n x n matr ix, Ut an (n x 1) vector white noise with 

EUt = 0 forall t 

Let et be an n x 1 vector white noise with Eet = 0 for all t, EetU'3 = 0 for all t and s and 

, _(H t = 3 

E e i C t - > " j 0 t*M 

where H is a positive definite matrix. Define the covariograms as C y ( r ) = EXt A'{_ 7 , Cy(r) = 

EYtYl_T, CYX{t) = EYtX[_T. Then define the matrix covariance generating function, as in 

(1.20), only interpret all the objects in (120) as matrices. 

a. Show that the covariance generating functions are given by 

• • gy(z) = D(z)D(z-])' 

gx(z) = D(z)D(z-1)' + H 

gYX(z) = D(z)D(z-ly 

b. A factorization of gX{z) can be found (see Rozanov [ ] or Whi t t le [ ]) of the form 

D(z)D(z-iy + H = c(z)c(z-ly, c(Z) = y ,c j Z ' 

where the zeros of |C (z ) | do not lie inside the unit circle. A vector Wold moving 

average representation of A'< is then 

Xt = C(L)m 
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where rjt is an (n x 1) vector white noise that is "fundamental" for Xt- That is 

Xt — E[Xt | Xt-\,Xt~2 • • •) = Co Tit-

c. The opt imum predictor of Xt+j, is 

E[Xt+j\Xt,Xt.1,...}=(^l)+m. 

If C(L) is invertible, i.e., if the zeros of det C(z) lie strictly outside the unit circle 

then this formula can be written 

EXt+j | Xt,Xt-i,... = ( ^ ^ C C L ) " 1

 V t . 
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Chapter 2 

Introduction to Recursive Control and Prediction Theory 

1. Introduction 

In the text and problems of the preceding chapter, we described a class of discrete time 

opi tmal control and filtering problems, described how to solve them by classical methods, 

and noted that the control and filtering problems had equivalent mathematical structures. 

Not surprisingly, the relationship between the two classes of problems again surfaces when 

recursive techniques are applied to these problems. By recursive techniques we mean the 

application of dynamic programming to the control problems, and of Ka lman filtering to the 

filtering problems. 

The purpose of this chapter is briefly to introduce the dynamic programming and the 

Ka lman filtering algorithms, and to point out their formal equivalence. By pointing out their 

equivalence early on, we hope to double the reader's interest in the subsequent sections on 

controllabil i ty and reconstructibil ity. These concepts are of interest because it is in terms 

of them that conditions for the convergence and other important properties of the recursive 

algorithms are developed. 

This chapter also contains a number of examples of control and filtering problems that 

have interested economists. We indicate how they fit into our framework. 

The appendix contains statements of a few facts about linear least squares projections. 

Famil iar i ty with Sargent [ , C h . 10] would also help the reader. 

2. The Optimal Linear Regulator Control Problem 

One problem that we shall study extensively is the optimal linear regulator problem. We 

consider a system with a (n x 1) state vector x< and a (fc x 1) control vector ut- The system 

is assumed to evolve according to the law of motion 

Xt+i = Atxt + Btut t - <o»*0 + 1, — ,*i - 1, 

where At is an (n x n) matrix and Bt is an (n x k) matr ix. Both At and Bt are known 

sequences of matrices. We define the return function at t ime t, rt{xt,ut), as the quadratic 
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form 

rt{xt,ut) = {xtut) t = *o , - . - ,« i - 1 
Rt Wt 

W[ Qt. 
where Rt is (n x n), Qt is (k x k) and Wt is (n x A:). We shall ini t ial ly assume that the matrices 

(.W' oil) a r e n e 8 a ^ v e semi-definite, though subsequently we shall see that the problem can 

stil l be well-posed even if this assumption is weakened. We are also given an (n x n) negative 

semi-definite matr ix Pt, which is a meteric for terminal values of the state x t l . 

The optimal linear regulator problem is to maximize 

(2.1) t=t„ 

Rt Wt 

W[ Qtllut 
+ t'PuXt 

t=t0 «• -« 
subject to xt+i = Atxt + Btut, x < n given. 

The maximizat ion is carried out over the sequence of controls ( u j ( ) , u t 0 + 1 , . . . l U i j . i ) . This is 

a recursive or serial problem, which it is appropriate to solve using the method of dynamic 

programming. In this case, the value functions are defined as the quadratic forms, s = 

h, to + 1 , . . . , ti - 1, 

>n f v^r i i \ \ Rt Wt] \ Xt] , f n v 1 
x,P.x, = max|2J* i« t ] w i Qt U ( +* t , *V*« iJ 

s.t. xt+i = Atxt + Btuu 

x3 given s = to, to + 1 , . . . ,t\ — 1. Bellman's equation becomes the following backward 

recursion in the quadratic forms XtPtXt. 

x'tPtxt = max | x ' t / 2 t x t + u'tQtut + 2x'(lV(U< + (Axt + But)'Pt+i(Axt + B u ( ) | , 

< = «! - 1 , * , - 2 , . . . , < o 

P t , given . 

Using the rules for differentiating quadratic forms (see appendix), the first-order necessary 

condition for the problem on the right side of (2.3) is found by differentiating with respect 

to the vector ut: 

{Qt + B'tPt+1Bt}ut = -(B'tPt+lAt + W't)xt. 

Solving for ut we obtain 

(2.4) ut = -(Qt + B'tPt+lBtyl(B'tPt+iAt + W't)xt. 
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The inverse (Qt + B\Pt+\Bt)~* is assumed to exist. Otherwise, it could be interpreted as a 

generalized inverse, and most of our results would go through. 

Equation (2.4) gives the optimal control in terms of a feedback rule upon the state vector 

xt, of the form 

(2.5) ut = -Ftxt 

where 

(2.6) Ft = (Qt + B'tPt+1Bt)-l{B'tPt+lAt + IV/). 

Substi tut ing (2.4) for u, into (2.3) and rearranging gives the following recursion for P*: 

Pt = Rt + A'tPt+1At - {AtPt+iBt + Wt)(Qt + BtPt+iBt)-\B'tPt+iAt + W[). 

Equation (2.7) is a version of the matrix Riccati difference equation. 

Equations (2.7) and (2.4) provide a recursive algorithm for computing the optimal con­

trols in feedback form. Starting at time (t\ — 1), and given P ( , , (2.4) is used to compute 

ttti_, = — Ffi_lxti_1. Then (2.7) is used to compute P i , , ] - Then (2.4) is used to compute 

tttl_i = P i j - i Z i , , ! , and so on. 

By substituting the optimal control ut = -Fiit into the state equation (2.1), we obtain 

the optimal closed loop system equations 

xt+i = (At - BtFt)xt. 

Eventually, we shall be concerned extensively with the properties of the optimal closed loop 

system, and how they are related to the properties of A, B, Q, and R. 

3. Converting a Problem with Cross-Products in States and Controls to One 

Wi th No Such Cross-Products 

For our future work it is useful to introduce a problem that is equivalent with (2.1) -

(2.2), and has a form in which no cross-products between states and controls appear in the 

objective function. This is useful because our theorems about the properties of the solutions 

(2.4) and (2.7) wil l be in terms of the special case in which W = 0. The equivalence between 

28 



the problems (2.1) - (2.2) and the following problem implies that no generality is lost by 

restricting ourselves to the case in which W = 0. 

The equivalent problem 

(2.8) max £ = {x\(Rt - WtQ7lW't)xt + u'tQ'yt} + x'tiPtlxtl 

subject to 

(2.9) x t + 1 = (At - BtQ7lW[)xt + Btu\ 

and it,,, Pjy are given. The new control variable u\ is related to the original control uj by 

(2.10) ttj =Q71Wlzt + ut. 

We can state the problem (2.8) - (2.9) in a more compact notation as being to maximize 

(2.11) £ {x'tRtXt-ru't'Qtu't} 

subject to 

(2.12) xt + i = Atxt + Btu't 

where 

(2.13) Rt = Rt - WtQ;lW't 

and 

(2.14) At = At - BtQTxW't. 

W i t h these specifications, the solution of the problem can be computed using the following 

versions of (2.4) and (2.7) 

(2.15) uj = -Fxt = -{Qt + B'tPt+1Bt)-lBtPt+1At 

(2.16) Pt = Rt + A'tPt+1At - A'tPt+lBt(Qt + B l A + i ^ ) " 1 B ' t P t + l A t 
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We ask the reader to verify the following facts: 

o. Problems (2.1) - (2.2) and (2.8) - (2.9) are equivalent. 

b. The feedback laws Ft and Ft for ut* and ut, respectively, are related by 

Ft = Ft + Q7*Wt. 

c. The "closed loop" transition matrices are related by 

At - BtFt = A t - Bth 

4. A n Example 

We now give an example of a problem for which the preceding transformation is useful. 

A consumer wants to maximize 

(2.17) £ 8* { u l C t - ^ c 2 } 0 <0l 
t=t0 ' 

subject to the intertemporal budget constraint 

(2.18) k t + l = ( 1 + r ) [ * » + 

the law of motion for labor income 

(2.19) y t + l = A 0 + A i y , , 

and a given level of ini t ial assets, ktn. Here 3 is a discount factor, Q is consumption, kt is 

"nonhuman" assets at the beginning of time t, r > —1 is the interest rate on nonhuman 

assets, and yt is income from labor at time t. 

We define the transformed variables 

kt = 

y = 3t/2yt 

ct = 0t/2ct. 

In terms of these transformed variables, the problem can be re-written as follows: maximize 

(2.20) £ { « , / * / » . * -
t=tn 1 
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subject to 

k t + 1 = (I + X)0^2['kt + yt - ct) and 
(2.21) 

Vt+i + W'-V + A , / ? 1 / 2 y , 

and kt0 given. We write this problem in the state-space form: 
oo 

max Y {*tR*t + 2i'tWut + utQut\ 
{*«> t=t„ ' 

s.t. it+i = Ait + But. 

We take 

R = 

yt 
0t/2 

0 0 0 
0 0 0 
0 0 0 

. ut = ct, 

• ^ ' = [00^ - ] , 

U2 

2 

[(1 + r) (1 + r ) (1 + r ) ' [ -0+4)1 
A = 0 An / 3 , / 2 , B = 0 

0 0 1 0 

To obtain the equivalent transformed problem in which there are no cross-product terms 

between states and controls in the return function, we take 

A = 

(2.22) 

A-BQ-XW' --

R= R-WQ-HV 

tr + t = ut + Q-lw'ii 

(1 + r) ( 1 + r ) 
0 A, 
0 0 

0 0 0 
0 0 0 

u 
A 0 

1 

\ U 2 gl/2 

c. = ct -
U2 

Thus, our original problem can be expressed as: 
oo 

max Y] {x'.Rit + u't'Qu't} 
(2.23) {»;) ttt0

X 1 t W '* 

a.t. x t + j = Ait + Bu't. 

For future reference, it wil l be useful to write problem (2.23) - (2.24) in the partitioned 

form: 

u i ' t=U\ 
max 
{ 

X\tX2t\ R\, R 
x\t 

12 ^22. \.X2t 

31 



f f l ( « + l ) l [*!(«) 1 4 
1*2(1+1) • 0 A22. *2(t). 

4 
. 0 . 

subject to 

Here the part i t ional vectors and matrices are given by 

» i (0 = h*) 

u t • 

A = 

R = 

B = 

V(t) 
Qt/2 

+ (1 + r) \\ ( 1 + r ) 
0 A, A 2 

0 0 1 
0 0 0 
0 0 0 
0 0 "2 

( £ ) -
( 1 + r ) 

0 
0 

Notice that the pattern of 0's in A and B, and in particular that A\2 = 0 and B2 = 0. 

Later on we shall be concerned extensively with properties of linear spaces generated by the 

certain functions of the pair of matrices [An, R\\) and the pair (An, B\). 

5. The Kalman Filter 

We consider the linear system 

(2.24) Xf+i = Atxt + Btut + GtU)\t+\ 

(2.25) yt = Ctxt + Etut + w2t 

where [tx;' l t + 1 • w2t] is a vector white noise with contemporaneous covariances matr ix 

[u»n+r f l ' i i Vu] 
v3t v2t 

> 0. 

The u;it+i, W2t, vector for t > to is assumed orthogonal to the init ial condit ion x t „ , which 

represents the analyst's ini t ial ideas about the state. Here, At is (n x n), Bt is (n x k), Gt 

is (n x n), Ct is (I x n) , Et is (£ x n) , u ' i l + i is (n x 1), u/21+1 is (I x 1); is an (n x 1) vector 

of state variables, u t is a (k x 1) vector of controls, and is an (I x 1) vector of output 
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or observed variables. The matrices At, Bt, Gt, Ct, and Et are known, though possibly time 

varying. The noise vector w\t+\ is the state-disturbance, while wu is the measurement error. 

The analyst does not directly observe the it process. So from his point of view, it is a 

"hidden state vector". The system is assumed to start up at time to, at which time the state 

vector xt0 is regarded as a random variable with mean Exto = i f 0 , and given covariance 

matrix £ t o = The P* * 1 (*<o>5To) c a n ^ e regarded as the mean and covariance of the 

analyst's Bayesian prior distr ibution on i ( 0 . 

It is assumed that for j > 0, the vector of random variables \w}*n+$*i 1 is orthogonal to the 
— > i u>3iQ+, ' ° 

random variable z l n and to the random variables [u ,""+' + 1 ] for r ^ s. It is also assumed that 

E[Vl£>*£*1] = 0 for 3 > 0. Thus, [ " ^J j , ] ' s a serially uncorrelated or white noise process. 

Further, from (2.24), (2.25) and the orthogonality properties posited for l"^*1] and i< 0 , it 

follows that ["^j*1] is orthogonal to {xa,ya-i} for s < t. This follows because yt and xt+\ 

are in the space spanned by current and lagged ut,w\t+i,W2t, and xt0. 

The analyst is assumed to observe at time t {y(s),u(s) : s = tn.^o + l> - * }> for 

t = to,to + 1,.. .t\. The object is then to compute the linear least squares projection of the 

state xt+i on this information, which we denote EtXt+\- We write this projection as 

(2.26) Etxt+i =E[zt+\ | l f e > f t + i f " » f h i * t » ] 

where i , 0 is the init ial estimate of the state. It is convenient to let Y\ denote the information 

on yt collected through time t: 

Y\ = {yuvt-u ,yt,,}-

The linear least squares projection of yt+i on Yt, and it,, is from (2.25) and (2.26) given by 

Etyt+i = E(yt+i) \ Yt,it+i 
(2.27) 

= CtEtxt+i + Et u t + j 

since u/2t+i is orthogonal to {w\a+\, u>2,}, s < t, Xt„ and is therefore orthogonal to {Yt, i ( „ } 

In the interests of conveniently constructing the projections Efit+i and Etyt+i, we 

now apply a Gram-Schmidt orthogonalization procedure to the set of random variables 

{xU),yt„,yt„+i,- • J/ti}- A n orthogonal basis for this set of random variables is formed by 
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the set {x t o , y t o y , 0 + , , . - -, y t , } where 

(2.28) Vt = yt - E[yt\ yt-\,yt-2,- •yto>*t0}-

For convenience, let us write Y't = {ytn,yt0+i,. • . , y«}. We note that the linear spaces spanned 

by (xt0, Yt) equals the linear space spanned by (x, 0 , Yt). This follows because: (a) yt is formed 

as indicated above as a linear function of Yt, and it,,, and (b) yt can be recovered from Yt by 

noting that yt = E[yt \ xto,Yt-i] + yt- It follows that E[yt | x t o , y j _ i ] = E[yt \ x t o , y i _ i ] = 

Et-Wt- In (2.28), we use (2.25) to write 

E[yt I *.0] = Ctoxu< + Etouto. 

To summarize developments up to this point, we have defined the innovation process 

yt = y t - E[yt \ i , „ , y « - i ] 

= Vt~ E[yt | xtn, Yt-i), t > t 0 + l 

yto ^ ytn - E[yt„ | it,,}. 

The innovations process is serially uncorrelated (yt is orthogonal to y, for t ^ s ) and spans 

the same linear space as the original Y process. 

We now use the innovations process to get a recursive procedure for evaluating EtXt+\-

Using theorem A3 about projections on orthogonal bases gives 

(2.29) 
= Ext+i | yt] + E\xt+\ | xt0,yt0,ytn+i,.. .,yt-\} - Ext+\ 

We have to evaluate the first two terms on the right-hand side of (2.29). 

From theorem A\, we have that 

(2-30) E[xt+i | y,| = Exl+i + cov ( x f + 1 , y t ) [cov ( y i , y ( ) ] _ 1 y ( . 

To evaluate the covariances that appear in (2.30), we shall use the covariance matrix of one-

step ahead errors, i/t\ = X( () - Et-\xt, in estimating xt. We define this covariance matr ix 

as Y.t = Extx't. It follows from (2.24) and (2.25) that 
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(2.31) 

cov(xt+\,yt) = cov(Atxt + Btut - Gtwu+i,yt - Et-\yt) 

= co\(Atxt + Btut + Gtwu+i, Ctxt + w2t - ctEt-\xt) 

= cov(Atxt + Btut + Gtwu+\,Ctxt + w2t) 

= E[{Atxt + Btut + Gtwu+i - E{Axt + But + Gtwu+i){Ctxt + w2t - E(Ctxt + w7t))) 

= E[(Atxt + Gtwu+1 - AtExt){x'tC[ + w'2t)} 

= E[Atxtx'tC[} + GtE[wu+\xtC't} - AtExtExtC't + AtE[xtw'2t} 

+ GtE[wit+iw'2t\ - AtExtEw2t 

= E\AtxtxtC[} + GtE[wu+iw'2t} 

= E[At(it - Et-ixt)xtC't} + GtE[wlt+iw'2t} 

= AtExtx\C[ + GtE(wu+iw'2t = AtT.tC\ + GtVZi 

The second equality was the fact that Et-\u>2t = 0 since W2t is orthogonal to {x,, y,-\}, a < 

t. To get the fifth equality, we use the fact that Eit = E[xt — Et-\Xt) = 0 by the unbiased 

property of linear projections. We also use the facts that Ut is known and w\t+\ and w2t 

have zero means. The seventh equality follows from the orthogonality of wu+i and W2t to 

variables dated t and earlier and the means of w'2t and i't being zero. Final ly, the eighth 

equation relies on the fact that xt is orthogonal to the subspace generated by yt-i,yt-2, • • • 

and Et-ixt is a function of these vectors. 

Next we evaluate 

cov(y ( , yt) = E(Ctxt + w2t)(ctxt + w2t)' 

= Ct^tC[ + v3t 

and since Eyt = 0 and Eitw'2t = 0. Therefore, (2.31) becomes 

(2.32) E[xt+i | yt) = E[xt+l) f (A^tC't + GtV3t)(CtXtC't + Vu)-Xyt. 

Using equation (2.24), we evaluate the second term on the right side of (2.29), 
£ ( x ( + i | V(_i ,xt 0 ] = AtE[xt | ?t_l»*«o] + 5 t " t 

or 

(2.33) £ \ - i x , + i = Et-ixt + Btut. 
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Using (2.32) and (2.33) in (2.29) gives 

(2.34) Etxt+i = AtEt-iti + Btut + Kt(yt - Et-\yt) 

where 

(2.35) Kt = (AtZtC't + GtV3t)(CtZtC't + 

Using Et-\Vt = CtEt-\Xt + Etut, equation (2.34) can also be written 

Etxt+i = [At - KtCt}Et-ixt + [Bt - KtEt]ut + Ktyt. 

We now aim to derive a recursive formula for the covariance matr ix Et . From equation 

(2.25) we have that Et-\yt = CtEt-\Xt + EfUt- Subtracting this from yt in (2.25) gives 

yt - Et-iyt = Ct[xt - Et-ixt} + w2t. 

Substitut ing this expression in (2.34) and subtracting the result from (2.24) gives 

(xt+i - Etxt+1) = (At - KtCt)(xt - Et-\xt) 

+ Gtwu+\ - Ktu)2t 

or 

(2.36) it+i = {At - KtCt)xt + Gtu>u+i - Ktw2t. 

From (2.36) and our specification of the covariance matrix 

E 

we have 

Extlx'tl = - KtCt}Extx\[At - KtCt]' 

+ GtVuG't + KtV2iKt 

- GtVztK't — KtV3\G't 

We have defined the covariance matrix of i , as = E£tx\ = E(it - Et-\Xt)(xt - Et-\Xt)'. 

So we can express the above equation as 

E t + , = \At-KtCt\Lt\At-KtCt\ 

(2-37) + GtVuG\ + KtV2tK't - GtV3tK't 

- KtYlGt. 
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Equation (2.37) can be rearranged to the equivalent form 

E t + i = A&tA't + GtVuG't 

- [AtXtC't + GtV3t] (CtStC't + V2t) 

x (AtK't + GtVn)' 

We repeat (2.35) here for your convenience 

- l 

(2.35) Kt = (AtVtC't + GtVSi) (CtWt + V2t) 
- l 

Starting from the given ini t ial condition for E j 0 = E(xt0 — Extn)(xt0 — Extn) , equations 

(2.37) and (2.35) give a recursive procedure for generating the "Ka lman gain" Kt, which is 

the crucial unknown ingredient of the recursive algorithm (2.34) for generating Etxt+\-

The Ka lman filter is used as follows. Start ing from time £n with E t ) l = En a " d i<„ = XQ 

given, (2.35) is used to form K^, and (2.34) is used to obtain Et„xtn+i wi th Et _ 1x< 0 = XQ. 

Then (2.37) or (2.38) is used to form E t ( ) + i , (2.35) is used to form Ktl}+i, (2.34) is used to 

obtain Etn+1xt0+2, and so on. 

The evolution of the state estimate obeys 

(2.39) xt+i = (At - KtCt)xt+i + Ktyt 

where 

(2.40) yt = Ctxt + w2t. 

We can represent yt as 

(2.41) yt = Ctxt + at 

where 

(2.42) at = w2t.+ Ct(xt - xt) 

Now from (2.40) it follows that 

(2.43) yt = Et-iyt - Ctit 
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Therefore from (2.41) and (2.43) we have 

yt - yt = Ct{xt - xt) + W2t 

or 

yt-yt = at-

We have that Eata't = Ct%tC't + V2t- The random process at is the "innovation" in yt, i.e. 

the part of yt that cannot be predicted linearly from past y's. 

Using (2.41) the system (2.39)-(2.40) can be presented as 

it+i = Atxt + Ktat 

(2.44) 

yt = Ctxt + at 

System (2.44) is called an "innovations representation." 

Another representation of the system which is useful is obtained by combining (2.39) 

with (2.41) to get 
xt+i = {At - KtCt)xt + Ktyt 

(2.45) 
at = yt - Ctxt 

This is called a "whitening filter." Start ing from a given i n , this system accepts as an " input" 

a history of yt and gives as an output the sequence of innovations at, which by construction 

are serially uncorrelated. 

We shall often study situations in which the system is time invariant, i.e. At = A,Ct = 

C,Vjt = Vj for all t. We shall later describe regulatory conditions on A,C,V\,V2,V$ which 

imply that (t) Kt —• K as t —* oo and —» II as t —• oo; and (it) | \,(A — KC) |< 1 

for all t, whose Aj is the tth eigesvalue of {A — KC). When these conditions are met, the 

l imit ing representation for (2.44) is time invariant and is an (infinite dimensional) innovations 

representation. Using the lag operator L where by Lxt = it, imposing time invariance in 

(2.44) and rearranging gives the representation 

(2.46) yt = [I + C{L-1I-A)-1K]ai 

which expresses yt as a function of [oj, o t_ i , . ..]. In order that [ye, yt-i, • • •) span the same 

linear space as [a t ,a t _ i , . ..], it is necessary that the following condition be met: 

det [I + C{z - A)~lK] = 0 =» | z \< 1. 
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Now by a theorem in linear algebra we have that 

The formula shows that the zeros of det[I + C(zl - A)~lK) equal that zeros of det(zl — 

(A — KC)), which are the eigenvalues of A — KC. Thus, if the eigenvalues of (A — KC) are 

all less than unity in modulus, then the spaces [a f , a<,...] and [yt,yt-\, . • •) in representation 

(2.46) are equal. 

6. Duality 

For purposes of highlighting their relationship, we now repeat the Ka lman filtering for­

mulas for Kt and Et and the optimal linear regulator formulas for Ft and Pt 

(2.35) Kt = (A&tC't + GtVM){CtHtC[ + V 2 1 ) _ 1 . 

E f + 1 = A&tA't + GtVu&t 

- (AtVtC't + GtVit)(CtZtC't + V 2 1 ) _ 1 

x (AtZtC't + GtV3t)' 

(2.6) Ft = (Qt + B{Pt+1Bt)-x{B[Pt+lAt + W\). 

Pt = Rt + A'tPt+iAt 

(2.7) - [AtPtyBt + Wt)(Qt + B[Pt+lBt)-1 

x (B'tPt+lBt + Wt) 

for t = to, to + 1 , . . . , t\. The equations in (2.35) are solved forwards from £ 0 with E j n given 

while those in (2.6) and (2.7) are solved backwards from t\ - 1 with P f l given. 
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Table 1 

Object in Opt imal Linear 

Regulator Problem 

Ato+„s = 0,...,<i -tt,- 1 

Qt0+. 

a , 

Object in 

Ka lman Fi l ter 

A'tl_1_„s = 0 , . . . , t l - t 0 - l 

•C?i 1 - i - fV« 1 _i_»G5 1 _ 1 _, 

• G t j - i - i V 3 t l _ i _ , 

• S i , - . 

>4' - r" ft"' 

The equations for /ft and Ft are intimately related, as are the equations for Pt and E*. 

In fact, upon properly re-interpreting the various matrices in (2.35), (2.6) and (2.7), the 

equations for the Ka lman filter and the optimal linear regulator can be seen to be identical. 

Thus, where A appears in the Ka lman filter, A' appears in the corresponding regulator 

equation, where C appears in the Ka lman filter, B1 appears in the corresponding regulator 

equation, and so on. The correspondences are listed in detail in Table 1. B y taking account 

of these correspondences, a single set of computer programs can be used to solve either an 

optimal linear regulator problem or a Kalman filtering problem. 

The concept of duality helps to clarify the relationship between the optimal regulator 

and the Ka lman filtering problem. 

Definition 2.1: Consider the time varying linear system. 
xt+i = Atxt + Btut 

(2.47) 
yt = Ctxt, i » t o , . . . , t | - l 

The dual of system (2.47) (sometimes called the "dual with respect to t\ - 1") is the system: 
xt+\ - ^ti-i-txt + C{ , - i - t u t 

yt = Bh_l_txt 
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with * = *o, t 0 + l , . . . , t i - 1 . 

W i th this definition, the correspondence exhibited in Tabic 1 can be summarized suc­

cinct ly in the following proposition: 

Proposition 2.1: Let the solution of the optimal linear regulator problem defined by 

the given matrices {At, Bt, Rt,Qt,Wtlt = t0,... ,t{ - 1; Ph} be given by {Pt,Ft, t = 

'n, . . . ,t\ — 1}. Then the solution of the Ka lman filtering problem definded by the ma­

trices {A'tl_1_t, C'tl_1_t, -Gtx-i-t V u j - i - t , Gtx-\-t - Viu-x-t, -Gtx-\-t Vzti-i-t; t = 

to,. . . t < i - 1; £«„} '« 8 i v e n b y {K'h-t-i = Ft, = P%\ ' • *o, h + 1, • • • ,<i - 1} 

This proposition describes the sense in which the Ka lman filtering problem and the 

optimal linear regulator problems are "dual" to one another. As we also saw in our discussion 

of classical control and filtering methods, the very same equations arise in solving the filtering 

problem as arise in solving the control problem. This fact implies that most everything that 

we learn about the control problem applies to the filtering problem, and vice versa. 

As an example of the use of duality, recall the transformations (2.13) and (2.14) that 

we used to convert the optimal linear regulator problem with cross-products between states 

and controls into an equivalent problem with no such cross-products. The preceding discus­

sion of duality and Table 1 suggest that the same transformation wil l convert the original 

dual filtering problem which has nonzero covariance matrix V3 between state noise and mea­

surement noise into an equivalent problem with covariances zero. This hunch is correct. 

The transformations, which can be obtained by duality directly from (2.13)-(2.14), are for 

~A' — A' — C' i / - 1 v' n' 

-VUl-l-t = -Vlti-l-t + ^ 3 « 1 - l - i V 2 7 1

1 _ 1 _ t V 3 ' t l _ i _ t 

The Ka lman filtering problem defined by the matrices {At, Ct, — GtVn — Vfet,0; t = to,..., t\ — 

1; En} ' 8 equivalent to the original problem in the sense that 

At - KtCt = At- KtCt 

where Kt is the solution of the transformed problem. We also have, by the results for the 

regulator problem and duality, that 

Kt = Kt-GtV3tV2-1. 
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7. Examples of Ka lman Filtering 

This section contains several examples which have been widely used by economists and 

that fit into the Ka lman filtering setting. After the reader has worked through our examaples, 

no doubt many other examples wil l recur to her or h im. 

a. Vector autoregression: We consider an (n x 1) stochastic process yt that obeys the linear 

stochastic difference equation 

yt = Aiyt-i + ... + Amyt-m + et 

where et is an (h x 1) vector white noise, with mean zero and Et%t\ = V\t, Etty', = 0, t > s. 

We define the state vector xt and shock vector u>t as 

xt -

yt-\ 
yt-2 

W2t 

yt-m. 

The law of motion of the system then becomes 

yt \Ai A2 Am 1 f yt-i \ r/i 
yt-i I 0 . . . 0 yt-2 0 
yt-2 = 0 / . . . 0 yts = 0 

yt-m+i. . 0 / 0 . \yt-m) .0 . 

The measurement equation is 

yt = [i4j A2 • • .Am]xt + e,. 

For the filtering equations, we have 

\Ay A2 ... Am-\ 

At = 
I 0 
0 J 

0 
0 , Gt = G -

L 0 . . . I 0 . 
Ct = [At,..., An] 

n 
0 
0 

LoJ 

V\t = Vzt — Vzt-

Start ing from E ( 0 = 0, which means that the system is imagined to start up with m lagged 

values of y having been observed, (5.35) imples 
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while (.16) implies that £ t 0 + i = 0. It follows recursively that K% = G for all t > to and that 

S« = 0 for all t > t0. Comput ing (A - KC), we find that 

0 0 . . . 01 
/ 0 . . . (J 
0 / . . . 0 

Lo . . . / o 

Et-ixt + yt, 

which is equivalent with 

Etzt+i = 

The equation Etyt+\ = CEtit+i becomes 

yt 

yt-i 

Ly«-m- i 

Etyt+i = Axyt + A2yt-i + ... Amyt-m+i. 

Evidently, the preceding equation for forecasting a vector autoregressive process can be 

obtained in a much less roundabout manner, with no need to use the Ka lman filter. 

b. Univariate moving average: We consider the model 

yt = wt + c i tu j . i + . . . + cnwt-n 

where wt is a univariate white noise with mean zero and variance V\t. We write the model 

in the state-space form 

yt = \c\ c 2 . . . cn]xt + wt. 

We assume that E t 0 = 0, so that the ini t ial state is known. In this setup, we have A,G and 

C as indicated above, and wu+\ = vJt,iv2t = u>t and V\ = V2 = V3. Iterating on the Ka lman 

filtering equations (2.38) and (2.35) with E(<0) = 0, we obtain E t = 0, t > t0, Kt = G, t> 

t0, and 

r u>t ' ro n . . . 01 H1 
Wt-l 1 n . . . 0 Wt-2 II 

— + 
• m-n+l • .0 1 0. . W t - n . .0. 

(A-KC) = 

(_C1 - c 2 • • • -Cn-1 - c „ \ 
1 0 0 0 
0 1 0 0 

\ 0 0 1 0 / 
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It follows that 

EtXt+i = Et 

/ .Wt \ / 

Wt-1 
= 

\wt-n+i / \ 

1 
0 

^ 0 

u 
1 

0 

- c „ _ i - c n \ 

0 0 
0 0 

1 0 J 

f u>t-l \ 
VJi-2 0 

-1 + yt 

Wi th E / 0 = 0, the above equation implies 

Etvjt - y t - ciwt-i - . . . - c n w t - n . 

Thus the innovation Wt is recoverable from knowledge of yt and n past innovations. 

c. Mixed moving average-autoregression: We consider the univariate, mixed second-order 

autoregression, first-order moving average process 

yt = Aiyt-i + A2yt-2 + vt + B\vt-\ 

where vt is a white noise with mean zero, Ev\ = V\ and Evty(s) = 0 for s < t. The trick 

is getting this system into the state-space form is to define the state variables x\t = yt — Vt, 

and x2t = A2yt-\- W i th these definitions the system and measurement equations become 

( M S ) w(kl)*M+(B'tA>h 
(2.49) yt = [1 0)xt + vt. 

Notice that using (2.48) and (2.49) repeatedly, we have 

yt = xu + vt = i4ia?i(_i + Z2t-i + [B\ + A\)vt-i + vt 

= Ai(xu-i + vt-i) + vt 4 #iu,_i + A2(xn-2 + Vt-2) 

= Aiyt-i + A2yt-2 + vt + Bivt-i 

as desired. W i t h the system and measurement equations (2.48) and (2.49), we have V\ = 

v2 = v3, 

A = (t j ) . o - ( * i A ) . c - u « « . 
We start the system off with E < 0 = 0, so that the init ial state is imagained to be known. 

W i t h E t 0 = 0, recursions on (2.35) and (2.38) imply that E j = 0 for t > t0 and Kt = G for 

t > to. Computing A - KC we find 

-Bx 1 
(A - KC) = 

0 0 
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and we have 

K = G = 

Therefore the recursive prediction equations become 

EtVt+i = [1 0]Et-ixt = Et-ixu-

Recall ing that x2t = A2yt-\, the preceding two equations imply that 

(2.50) Etyw = -BiEt-iyt + A2yt-\ + ( B j + Ax)yt. 

Consider the. special case in which A2 = 0, so that the yt obeys a first order moving average, 

first order autoregressive process. In this case (2.50) can be expressed 

Etyt+\ = B\(yt - Et-iyt) + A\yt, 

which is a version of the Cagan-Friedman "error-learning" model. The solution of the above 

difference equation for Etyt+i is given by the geometric distributed lag 

m- l 
Etyt+^iBi+AOYi-BiYvt-i 

+ (-Bl)mEt-m-1yt-m. 

For the more general case depicted in (c) with A2 ^ 0, Etyt+\ can be expressed as a convo­

lut ion of two geometric lag distributions in current and past yt's. 

d. Linear Regressions: Consider the standard linear regression model 

yt = z,0 + et, t = 1,2,.. , T 

where Zj is a 1 x n vector of independent variables, 0 is an n x 1 vector of parameters, and 

£ f is a random term with mean zero and variance Ee\ = a 2 , and satisfying EetZ, = 0 for 

t > s. The least squares estimator of 0 based on t observations, denoted 0t+\ is obtained as 

follows. Define the stacked vectors 

Zt = 
\Z1' [yi ] 

y2 

2t - • yt-
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Then the least squares estimator based on data through time t is given by 

(2.51) & + , =(Z'tZt)-1Z'tYt 

with covariance matrix 

(2.52) - £ A + i ) r A + i - £ & + i ) ' = <r2(Z'tZt)-\ 

For reference, we note that 

A = (Z't_1Zt-i) xZ\_xYt-\ 

E(0t - Ep\)0i - Eft)' = AK-iZt-i)'1-

If Qt has been computed via (e), it is computationally inefficient to compute 0t+\ v ia (2.51) 

when new data (yt, zt) arrive at time t. In particular, we can avoid inventing the matr ix 

(Z[Zt) directly, by employing a recursive procedure for inverting it. This approach can be 

veiwed as an application of the Ka lman filter. We explore this connection briefly. 

We begin by noting how least squares estimators can be computed recursively v ia the 

Kalman filter. We let yt in the Ka lman filter be yt in the regression model. We then set 

xt = 0 for all t, Vu = 0, V3t = 0, V 2 , = <r2, wu+i = 0, w2t = et, A = I, Ct = zt- Let 

0t+i = E [0 I y t , y , _ i , . • y i , 2 t , z , - i , . . . ,* i ,A>] , 

where 0O is i 0 . A lso, let E« = E(0t - E0t)(0t - E0t)'. We start things off with a "prior" 

covariance matr ix En- W i t h these definitions, the recursive formulas (2.35) and (2.38) become 

Kt = Etzjry + z&tz't)-1 

(2.53) 

Et-M = E , - £ t r , ( o - 2 + z<£t2,) ' z t E , 

Apply ing the formula xt+\ = (A — KtCt)it + Ktyt to the present problem with the above 

formula for Kt we have 

(2.54) 0t + i =(I - Ktzt)0t + Ktyt. 

We now show how (2.53) and (2.54) can be derived directly form (2.51) and (2.52). From 

a matrt ix inversion formula (see Noble and Daniel [ , p. 194]), we have that 

(2.55) (z'tzt)-1 = (z;_ 1 z t _ 1 ) - l - (z;_ 1 z < _ 1 ) - 1

2 ; ( i + ^ (2 ;_ ,z /_ 1 ) - l z ; ) - i

2 j (z ;_ 1 z t _ 1 ) - 1 
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Mul t ip ly ing both sides of (2.55) by a2 immediately gives (2.53). Use the right side of (2.55) 

to substitute for {Z[Zt)~l in (2.51) and write 

Z[Yt = Z[_xYt-i + z\yt 

to obtain 

{Z'T_XYT.X + z'tyt) 

^ S t Z ; _ 1 r t - 1 -2tz't(<r2 + ztT.tz\)-1 zt 

u v ' a 

+ ZtZ't(<r1 + ztZtZ't)-\yt 

Kt 

0 t + 1 ={A- KtCt)J3t + Ktyt. 

These formulas are evidently equivalent with those asserted above. 
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Computer Example: Using the Linear Regulator to Compute the 

Equil ibr ium of a Lucas-Prescott Mode l 

This section reports the results of running the M A T L A B program longluc4.m. This 

program computes the equi l ibr ium of a linear quadratic version of Lucas and Prescott's 

model of investment under uncertainty. The program uses Lucas and Prescott's device of 

exploit ing the fact that the rational expectations equil ibrium of their model solves a fictitious 

social planning problem. For the linear quadratic version of their model (see, e.g., Sargent 

[1987, chapter X IV ] ) , the social planning problem is a linear regulator problem. The program 

maps the social planning problem into a linear regulator. It uses a "doubl ing algorithm" to 

solve the problem. 

You can edit this file and rerun the program in M A T L A B to see how the equi l ibr ium 

is sensitive to the specification of various demand and cost parameters. Here follows the 

output that appears on the screen in response to the command " longluc4' \ 

longluc4 

echo on 

c la 

This demonstration computes the solution of the social planning problem associated with a 

linear-quadratic version of Lucas and Prescott 's 1971 model of investment under uncertainty. 

The model is altered to allow for a Romer externality. 

There is a linear demand curve for output 

p ( t )=A( l ) - A (2 ) *Y ( t ) + u(t) 

where p(t) is price, Y( t ) is output and u(t) is a random shock to demand with an autore-

gressive process 

u(t) = au( l ) *u( t - l ) + . . . + au(r)*u(t-r) + eu(t) 

where eu(t) is a white noise, and [au(l) . . . au(r)] is to be specified by the user. 

The rental rate on capital w(t) also follows an rth order autoregression, 

w(t) = aw( l ) *w( t - l ) + . . . + aw(r)*w(t-r) + ew(t) 
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where ew(t) is a white noise, and (aw(l) . . . aw(r)j is to be specified, 

pause '/.press a key t o con t i nue the demons t ra t i on 

c l a 

There are n identical firms. Each firm has production function 

y(t) = f ( l )*k( t ) + f (2)*K(t) 

where k(t) is capital of the representative firm and K( t )=n*k( t ) is aggregate capital. We 

have Y( t )=n*y( t ) . Notice that aggregate output obeys 

Y ( t ) = ff*K(t) 

where ff= f ( l ) + n*f(2). When f(2) is not zero, there is an externality, 

pause '/.press any key to con t i nue the demons t ra t i on 

c l a 

There is a fictitious social planner who chooses aggregate capital to maximize 

1 T 

l im — E V]{consumer surplus(t) - producer surplus(t)} 
T ^ ° ° T t=0 

where consumer surplus is given by 

A( l ) * f f *K( t ) - (A (2 ) /2 ) * ( fTK( t ) ) 2 + u(t)*f f*K(t) 

and where producer surplus is given by 

w(t)*K(t) - (d/2n)*(K(t)-K(t-l))a 

pause '/.press a key to con t i nue w i t h the demons t ra t i on 

c l a 

We' l l set parameter values and then compute the equi l ibr ium by mapping the social planning 

problem into a linear regulator. 

pause '/.press a key t o s t a r t s e t t i n g parameter v a l u e s 

c l a 
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A=[100 1] , f= [ l .1] ,n=l 

A = 

100 1 

f = 

1.0000 0.1000 

n = 

1 

d«25 

d = 

25 

pause '/.press a key t o se t r ema in ing parameters 

c l a 

au= [ l . 2 - . 3 ] 

au = 

1.2000 - 0 . 3 0 0 0 

aw=[.9 0] 

aw = 

0.9000 0 

pause '/.press a key t o con t i nue 

c l a 

We proceed to form the matrices (a,B>Q,R) for the linear regulator problem. The S T A T E 

vector is defined as x(t) = [K(t), l ,u(t),u(t- l) ,w(t),w(t- l) ] ' , and the C O N T R O L is defined as 

v( t )=(K( t ) -K( t - l ) ) . The transition matrix is called a and created as follows. 

pause y.press a key t o c r e a t e the t r a n s i t i o n m a t r i x a . 

c l a 

f f = i ( l ) + n * i ( 2 ) ; 

q= leng th (au ) ; 

m=2*q+2; 
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a=zeros(m,m); 

a ( l , l ) = l ; 

a (2 ,2 ) - l ; 

a(3:2+q,: ) = [zeros(q,2),compn(au),zeros(q,q)]; 

a(3+q:m,:) =[zeros(q,2),zeros(q,q),compn(aw)]; 

a 

a = 

1.0000 0 0 0 0 0 

0 1.0000 0 0 0 0 

0 0 1.2000 -0.3000 0 0 

0 0 1.0000 0 0 0 

0 0 0 0 0.9000 0 

0 0 0 0 1.0000 0 

pause '/.Press a key to create B of the regulator. 

B=zeros(m,l); 

B ( l . l )= l 

B = 

1 

0 

0 

0 

0 

0 

pause '/.press a key to continue 

c la 

Now create R and Q of the regulator, where the regulator has the form 

max l im E]- Y { x ' * Q * x + v ' * R * v } 
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subject to the law of motion 

x(t + l ) = a*x(t) + B*v( t ) + white noise(t + l ) 

s t a t e = ' [ K ( t - l ) , l , u ( t ) , u ( t - l ) , w ( t ) , w ( t - l ) ] ' 

s t a t e = 

C K ( t - l ) . 1 , u ( t ) , u ( t - l ) , w ( t ) , w ( t - l ) ] 

pause 

c l a 

R—d/(2*n); 

Q=zeroB(m,m); 

Q ( l , l ) » - ( f f 2 ) * A ( 2 ) / 2 

Q = 

0.6050 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Q( l , 2 ) -A ( l ) * f f / 2 ; 

Q(2, l )=A(l )* f f /2; 

Q(l ,4)=ff /2; 

Q(4,l)=ff /2; 

q(l,4+q)=-l/2; 

Q(4+q,l)—i/2; 

pause '/.press a key to g ive a and B 

a 

a = 

1.0000 0 0 0 0 0 

0 1.0000 0 0 0 0 
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0 0 1.2000 -0.3000 0 

0 0 1.0000 0 0 

0 0 0 0 0.9000 

0 0 0 0 1.0000 

B 

B = 

1 

0 

0 

0 

0 

0 

pause •/.pr ess a key to g i v e R and Q 

Q 

Q = 

-0.6050 55.0000 0 0.5500 0 -0.5000 

55.0000 0 0 0 0 0 

0 0 0 0 0 0 

0.5500 0 0 0 0 1) 

0 0 0 0 0 1) 

-0.5000 0 0 0 0 0 

R 

R = 

-12.5000 

pause '/.Now s o l v e the r e g u l a t o r p rob lem. 

F = d o u b l e ( a ' , B ' , Q . R ) ; '/.Working, p l e a s e w a i t . 

'/. DONE. 

pause '/.Press a key to con t i nue 
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The equil ibrium control law for v(t) = K(t) -K(t-1) is given 

K(t ) -K( t -1) = -F*x( t ) 

The state x(t) is given by state 

s t a t e = 

[ K ( t - l ) , 1 , u ( t ) , u ( t - l ) , w ( t ) , w ( t - l ) ] 

pause y.Press a key t o see the o p t i m a l v a l u e o f F 

F=F' 

F = 

0.1971 -17 .9206 -0 .1536 0.0370 0.1158 0 

The optimal "closed loop" system is given by 

x ( t+ l ) = (a -B*F ) * x(t) + white noise(t+l) 

pause '/.press a key t o see ABF = (a - B * F ) 

ABF=a-B*F 

ABF = 

0.8029 17.9206 0.1536 -0.0370 -0.1158 0 

(I 1.0000 0 n 0 0 

0 0 1.2000 -0.3000 0 0 

0 0 1.0000 0 0 0 

0 0 0 0 0.9000 0 

o 0 0 0 1.0000 0 

s t a t e 

s t a t e = 

C K ( t - l ) . 1 , u ( t ) , u ( t - l ) , w ( t ) , w ( t - l ) ] 

pause '/.press a key see e i genva lues of ABF 

c l a 

e ig (ABF) 

ans = 
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0.8029 

0.3551 

0.8449 

1.0000 

0 

0.9000 

pause '/.press a key t o r e t u r n t o menu 

This is the end of the output of "longluc4". 
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Computer Example: Using the Kalman Filter to Solve 

a Problem of M u t h 

This section reports the results of using the M A T L A B program muthdeml .m. The program 

maps a classic signal extraction problem of Mu th into the framework of the Kalman filter. 

The "doubling algori thm" is used to solve the matr ix Ricatt i equation that is associated 

with the Ka lman filter. 

The output response of the computer to the command "muthdem1" is now reproduced. 

muthdem1 

echo on 

c l a 

This demonstration solves a signal extraction problem studied by M u t h in order to rationalize 

"adaptive" expectations. 

There is a hidden state variable x(t) that evolves according to an autoregressive process 

x(t + l ) = A * x(t) + e ( t+ l ) 

where A is a scalar (which M u t h set equal to one) and e(t + l ) is a white noise that is 

orthogonal to x(t). A n agent observes a variable y(t), which is the sum of x(t) and a white 

noise: 

y(t) = x(t) + u(t) 

where E u(s)x(t)= 0 for all t and s. The variance of e ( t+ l ) is given by Q and the variance 

of u(t) is given by R. 

The problem is to find a (Wold) moving average representation for the observed variable 

y(t). We accomplish this by using the "Ka lman filter". 

pause '/.Press a key t o con t i nue demons t ra t i on 

c l a 

We use the Ka lman filter to obtain an "innovations representation" of the form 

xx(t + l ) = A*xx ( t ) + K*a(t) 
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y(t) = xx(t) + a(t) 

where xx(t) is E[x(t)—y(t),y(t- l ) , . . . , y(t(0)),xx(0)] a(t) is the one-step ahead prediction 

error in y(t), the so-called "innovation in y( t )" , and K is the Ka lman gain. From the 

innovations representation, which is a state space representation, we can obtain an a.r.m.a. 

representation for y(t) of the form 

den(L)y(t) = num(L)a(t) 

where den(L) and num(L) are scalar polynomials in the lag operator L. 

pause '/.press a key t o c o n t i n u e 

c l a 

You will be prompted for values of the parameters A , Q, and R. 

N O T E : To obtain Muth 's case, set A = l , so that the hidden signal follows a "random walk." 

A = i n p u t ( ' A = ') 

A= 

A = 

1 

C - l ; 

Q = i n p u t ( ' g i v e v a r i a n c e of s t a t e n o i s e Q ' ) 

g i v e v a r i a n c e of s t a t e n o i s e Q 

Q = 

l 

R = i n p u t ( ' g i v e v a r i a n c e of measurement n o i s e R ' ) 

g i v e v a r i a n c e of measurement n o i s e R 

R = 

1 

[ K , s ] = d o u b l e ( A , C . q , R ) ; 

pause '/.press a key t o con t i nue 

c l a 
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The value of the Ka lman gain is given by 

K 

K = 

0.6180 

The variance of the innovation a(t) in predicting y linearly from past values of y is given 

8 

S = 

1.6180 

pause '/.Press a key to continue 

c la 

Now we'l l give the a.r.m.a. representation for y(t) 

den(L)y(t) = num(L)a(t) 

Coefficients on L of power 0, 1, 2, . . . . [num,den]=ss2tf(A,K,C, l , l ) 

num = 

1.0000 -0.3820 

den = 

1 -1 

pause '/.press a key to continue demonstration 

c la 

Muth showed that for a process of the form 

(1 - L)y( t ) = (1 - b L)a(t) 

where a(t) is the innovation in y(t), the optimal one step ahead prediction of y(t-t-j) for j 

0 based on [y(t), y ( t - l ) , . . . j is given by a geometric distributed lag 

E (y ( t + j ) - y ( t ) , y( t - l ) , . . .]= (1-b)* £ { b * * y(t-k)} 
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We invite you to experiment with this demonstration by varying Q and R while keeping 

A fixed (say at Muth 's value of unity). In this way you can see the dependence of the 

parameters of the a.r.m.a. representation for y(t) on the ratio of Q to R. 

pause '/.press a key to return to menu 

This terminates the output of "mu thdeml " . You can edit this file to solve signal extraction 

problems of your creation. 
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Computer Example: Using the Kalman Filter to Extract a Signal 

From a Signal Plus a Seasonal Noise 

This section reports output from the M A T L A B program recurseas.m. Th is program maps 

into the Ka lman filter the problem of extracting the "signal" from the sum of a signal and 

a seasonal "noise". The doubling algorithm is used to solve the Ricat t i equation associated 

with the Ka lman filter. 

The response to issuing the command "recurseas" is as follows. 

recurseas 

echo on 

c la 

U S I N G T H E K A L M A N F I L T E R T O S E A S O N A L L Y A D J U S T 

N O T E : This demonstration takes several minutes, because relative to "classical" seasonal 

adjustment procedures, the ones used here substitute brute force and the Ka lman filter for 

thought. If you have a train to catch, ki l l this demo by hit t ing "Ct r l ,Break" and try another 

demo. 

A reference for the techniques used here is Sargent's "Linear Contro l , F i l ter ing, and Rational 

Expectations." 

pause '/.Press a key to proceed with demonstration, 

c la 

This program uses the Ka lman filter to solve a "seasonal adjustment" problem that comes 

in the form of a signal extraction problem. 

A n observed process y(t) is the sum of three components: 

a.) A "signal" f(t) that follows an autoregressive process 

f(t) = a l ( l ) * f ( t - l ) + ... + a l (m)*y( t -m) + e l ( t ) 
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where e l ( t ) is a white noise with variance s ig l . 

b. ) A "seasonal noise" s(t) that follows an a.r. process 

s(t) = a2( l ) *s( t - l ) + ... + a2(r)*s(t-r) + e2(t) 

where e2(t) is a white noise with variance sig2. 
c. ) A "measurement error" e3(t) which is a white noise with variance sig3. 

N O T E : To approximate the case in which y(t) = f(t) + s(t), set sig3 equal to a very small 

positive number. The goal is to compute the linear least squares estimate 

E ( f ( t ) - y ( t - l ) , y ( t - 2 ) , . . . ]. 

pause ' / .Press a key t o con t i nue 

c l a 

We solve the problem by mapping the system into state space notation, namely, 

x ( t+ l ) = A * x(t) + e(t) 

y(t) = C * x(t) + v(t) 

where x(t) is an (nx l ) state vector and y(t) is a (kx l ) vector of observations (in our example, 

k= l ) . The vector e(t) is an (nx l ) vector white noise with covariance matr ix Ee(t)e(t) ' = Q. 

The vector v(t) is a ( kx l ) vector white noise which is orthogonal to e(s) for all t and s, and 

which has covariance matr ix R. 

For our example, the state vector x(t) wi l l be given by 

x(t) = [f(t) f(t- l) ... f(t-m) s(t) s( t- l ) ... s(t-r)]' 

while y(t) is simply the scalar observed variable. 

pause '/.Press a key to set parameters of a . r . p r o c e s s e s 

c l a 

a l - C . 9 0 0 0 0] 

a l = 

61 



0.9000 0 0 0 0 

a2=[0 0 0 .9] 

a2 = 

0 0 0 0.9000 

pause '/.Press a key to form A matrix of state space representation 

c l a 

Al=compn(al); 

A2=compn(a2); 

[n.nl]=size(Al);[m.ml]=size(A2); 

gl=zeros(n,m); 

A=[Al ,gl ;gl ' .A2] 

A = 

Columns 1 through 7 

0.9000 0 0 0 0 0 0 

1.0000 0 0 0 0 0 0 

0 1.0000 0 0 0 0 0 

0 0 1.0000 0 0 0 0 

0 0 0 1.0000 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 1.0000 0 

0 0 0 0 0 0 1.0000 

0 0 0 0 0 0 0 

Columns 8 through 9 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0.9000 
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0 0 

0 0 

1.0000 0 

pause '/.Press a key to form C. 

c la 

C=zeros(l,n+m); 

C ( l . l ) = l ; 

C(l,n+l)=l 

C » 

1 0 0 0 0 1 0 0 0 

pause '/.Press a key to set variance parameters and form R and Q 

c la 

Q=zeros(n+m); 

Q ( i , l ) » i ; 

q(n+l.n+l)=l 

Q = 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 n 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

R=.0001; 

pause '/.Press a key to continue demonstration 

c la 
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Now we'll use the Kalman filter to achieve the "innovations representation" 

x(t + l ) = (A -K *C) *x ( t ) + K*a( t ) 

y(t) = C*x( t ) + a(t) 

where a(t) = E(y(t) — y( t - l ) , y(t-2), ... ], and K is the "Ka lman gain". The process a(t) is 

the is the "innovation" in the y(t) process and has variance given by v a r a = C * S * C , where S 

is the covariance matrix of x ( t+ l ) - x ( t+ l ) . The variable x ( t+ l ) is the linear least squares 

projection 

x ( t+ l ) = E [ x ( t + l ) - y ( t ) , y ( t - l ) , ... ]. 

pause '/.Press a key t o compute K and S u s i n g the Kalman f i l t e r , 

c l a 

[K ,S ]=doub le (A ,C ,Q ,R ) ; '/.Working, p l e a s e wa i t 

pause '/.Press a key t o see Kalman g a i n K 

K 

K = 

0.4630 

0.5144 

0.1785 

0.0422 

-0.0442 

0.0397 

0.4856 

-0.1785 

-0.0422 

pause '/.Press a key t o see s t a t e e s t i m a t e c o v a r i a n c e m a t r i x 

S 

S = 

Columns 1 through 7 

2.0743 1.1937 0.8407 0.7014 0.6891 -0.6202 -1.1936 
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1.1937 1.3263 0.9341 0.7794 0.7656 -0.6891 -1.3263 

0.8407 0.9341 1.2362 0.9128 0.8017 -0.7215 -0.9341 

0.7014 0.7794 0.9128 1.2312 0.9181 -0.8263 -0.7794 

0.6891 0.7656 0.8017 0.9181 1.2257 -1.1031 -0.7657 

-0.6202 -0.6891 -0.7215 -0.8263 -1.1031 1.9928 0.6891 

-1.1936 -1.3263 -0.9341 -0.7794 -0.7657 0.6891 1.3263 

-0.8407 -0.9341 -1.2362 -0.9128 -0.8016 0.7215 0.9341 

-0.7014 -0.7794 -0.9128 -1.2312 -0.9181 0.8263 0.7794 

Columns 8 through 9 

-0.8407 -0.7014 

-0.9341 -0.7794 

-1.2362 -0.9128 

-0.9128 -1.2312 

-0.8016 -0.9181 

0.7215 0.8263 

0.9341 0.7794 

1.2362 0.9128 

0.9128 1.2312 

pause '/.Press a key to see variance of innovation to y. 

vara=C*S*C 

vara = 

2.8268 

pause '/.Press a key to continue demonstration 

c l a 

Notice that the innovations representation can be written 

x(t + l ) = A*x ( t ) + K*a(t) 

y(t) = C*x(t) + a(t) 

This is equivalent with a Wold moving average representation for y(t), which we can represent 
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in the rational form 

denl (L)y( t ) = numl(L)a( t ) 

pause '/.Press a key t o c r e a t e numl and d e n l . 

[nural , den l ] =ss2 t f ( A , K , C , 1 , 1 ) ; pause '/.Press a key t o see numl 

numl 

numl = 

Columns 1 through 7 

1.0000 -0.3973 -0.0737 -0.1265 -0.3184 0.0000 0 

Columns 8 t h rough 10 

0 0 0 

pause ' / .Press a key t o see d e n l 

d e n l 

d e n l = 

Columns 1 t h rough 7 

1.0000 -0.9000 -0.0000 0.0000 -0.9000 0.8100 0 

Columns 8 th rough 10 

0 0 0 

pause ' / .Press a key t o con t i nue demons t ra t i on 

c l a 

We now calculate the spectrum of the filter num l (L ) / den l (L ) . 

pause ' / .Press a key to con t i nue 

s t ~ ' s p e c t r u m of y ( t ) w i t h u n i t v a r i a n c e of a ( t ) ' 

st = 

spectrum of y ( t ) w i t h u n i t v a r i a n c e of a ( t ) 

sp=show(numl ,den l , 256 ,s t ) ; 

See Figure 1 

66 



Spectrum of y(t) with unit variance of a(t) 

1 Q - i « . 1 1 

0 2 4 6 
Figure 1 

pause ' / .Press a key t o con t i nue 

c l a 

Now we shall obtain the impulse response of x(t + l ) to y(t). We rewrite the innovations 

representation as 
x(t + l ) = (A - K * C ) x(t) + Ky( t ) 

x(t) = eye*x(t) + zeros * y(t) 

We' l l form the appropriate matrices, then use ss2tf to get a vector representation for x(t + l ) 

of the form 

den(L)x(t + l ) = num(L) y(t) 

where den(L) is a scalar polynomial in the lag operator and num(L) is a vector polynomial 

in the lag operator, wi th as many rows as components of x ( t+ l ) . 

Notice that den(L) and num(L) contain all the information that we need to form each 

component of E[x(t-f l)—y(t),... j Note that the first several components of E[x(t +1)—y(t),...] 

are E[f(t + 1)—y(t),...], E[f(t)—y(t),...J, E[f(t-1)—y(t),...j, and so on. The lower rows of 

E[x(t+1)—y(t),...] thus correspond to finite two-sided seasonally adjusted series. 

pause '/.Press a key to form num and den 
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Cl= eye(n+m) ;Dl=zeros(n+m,1) ; 

Cnum,don] =ss2t f ( A - K * C , K , C 1 ,D1,1) ;'/, 

pause '/.Press a key t o see num 

num 

num = 

Columns 1 th rough 7 

0 0.4630 0.0000 0.0000 -0.0000 

0 0.5144 -0.0000 -0.0000 0 

0 0.1785 0.3537 -0.0000 0.0000 

0 0.0422 0.1405 0.3537 -0.0000 

0 -0.0442 0.0819 0.1405 0.3537 

0 0.0397 -0.0737 -0.1265 0.5816 

0 0.4856 -0.3973 -0.0737 -0.1265 

0 -0.1785 0.6462 -0.3973 -0.0737 

0 -0.0422 -0.1405 0.6462 -0.3973 

Columns 8 t h rough 10 

0 0 0 

0 0 0 

-0.0000 0 0 

-0.3184 0.0000 0 

-0.1265 -0.3184 -0.0000 

0 0 0 

0 0 0 

0 0 (1 

0 0 0 

pause '/.Press a key t o see den 

den 

Work ing , p l e a s e wa i t 

-0.4167 0 

-0.4630 -0.0000 

-0.1607 -0.3184 

-0.0380 -0.1265 

0.0397 -0.0737 

-0.3933 0 

0.1446 0 

0.0342 0 

-0.0358 0 
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den = 

Columns 1 th rough 7 

1.0000 -0.3973 -0.0737 -0.1265 -0.3184 0.0000 0 

Columns 8 th rough 10 

0 0 0 

pause XPress a key t o con t i nue 

c l a 

We now construct the impulse response of the first component of x(t + l ) to an innovation 

in y(t). This is a representation for E[f(t + 1)—y(t),...] in terms of a(t),a(t-l).... Notice from 

the innovations representation 

x(t + l ) = A*x( t ) + K*a( t ) 

that the spectrum of the first component of x ( t+ l ) is proportional to that of the first com­

ponent of x ( t - f l ) . This follows from the whiteness of a(t). 

pause '/.Press a key t o form the r e p r e s e n t a t i o n 

num2=conv(numl,num(1,:)) ; 

den2=conv(den l ,den) ; 

pause '/.Press a key t o see num2 

num2 

num2 = 

Columns 1 th rough 7 

0 0.4630 -0.1839 -0.0341 -0.0586 -0.5641 0.1656 

Columns 8 t h rough 14 

0.0307 0.0527 0.1327 -0.0000 0 0 0 

Columns 15 th rough 19 

0 0 0 0 0 

pause '/.Press a key t o see den2 

den2 

den2 = 
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Columns 1 th rough 7 

1.0000 -1.2973 0.2839 -0.0601 -1.1046 1.4542 -0.2555 

Columns 8 th rough 14 

0.0541 0.1841 -0.2579 0.0000 0 0 0 

Columns 15 through 19 

0 0 0 0 0 

pause '/.Press a key t o p l o t spect rum of f i l t e r 

s t = ' s p e c t r u m of E [ f ( t + 1 ) | y ( t ) , y ( t - l ) , . . . ] ' 

s t = 

spect rum o f E [ f ( t + 1 ) | y ( t ) , y ( t - l ) , . . . ] 

See Figure 2 

S p e c t r u m o f E [ f ( t + l ) | y ( t ) , y ( t - l ) , . . .] 

10 2
 F 

10 1 

10° = 

l O " 1 = 

10 -2 
8 

Figure 2 

sp l=show(num2,den2,256,s t ) ; 

pause '/.Press key to con t i nue 

c l a 

We now construct the impulse response of the nth component of x(t + l ) (i. 

70 



n+1)—y(t), y(t-l),...]) to innovations a(t) in y(t). Notice that this is a finitely two sided 

signal extraction of f ( t -n+l) based on past, present, and several future values of y(t). Because 

of the two-sidedness, there can occur "dips" in the spectral density of the seasonally adjusted 

process. 

num3=conv(numl,num(n,:)); 

pause '/.Press a key to plot spectrum 

st='spectrum of E [ f ( t -n+1 ) |y ( t ) , y ( t - l ) , . . . ] ' 

st = 

spectrum of E [ f ( t -n+1) |y ( t ) ,y ( t - l ) , . . . ] 

[sp3,ff]=show(num3,den2, 256,st); 

See Figure 3 

Spectrum of E [ f ( t - n + l ) | y ( t ) , y ( t - l ) , . . .] 

10 2 

10 1 

10° 

l O " 1 

i o - 2 

0 2 4 6 8 
Figure 3 

pause '/.Press a key to continue 

c la 

mm=[spl',sp3']; 

st='spectra of one-sided and two-sided estimators of f ( t ) ' 

71 



St » 

s p e c t r a of o n e - s i d e d and two-s ided es t imators of f ( t ) 

semilogy ( f f , m m ) , t i t l e ( s t ) . p a u s e 

See Figure 4 

Spectra of one-sided and two-sided estimators of f(t) 

Figure 4 

c la 

Now we calculate the zeros of the numerator polynomial in the representation 

den2(L)E[f(t-n + l)—y(t),...J = num3(L) a(t) 

r3 aroots(num3); '/, Working, please wait 

pause '/.Press a key to see the roots 

c la 

r3 

r3 = 

0 

0 
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0 

0 

3.4504 

-0.7977 + 1.2983i 

-0.7977 - 1.2983i 

0.9740 

0.9645 

-0.9740 

0.0000 + 0.9740i 

0.0000 - 0.9740i 

0.0350 + 0.7189i 

0.0350 - 0.7189i 

-0.6373 

0.0001 

-0.0000 

pause '/.Notice locat ion of roots re la t ive to one. Press key 

c l a 

N O T E : We have calculated the zeros of num3(z(- l)) , which are the reciprocals of the zeros 

of num3(z). The " invert ibi l i ty" condition is that the zeros of num3(z) be outside the unit 

circle,or that the zeros of num3(z(-l)) be inside the unit circle. 

It is possible for some of these zeros to be outside the unit circle, reflecting the signal 

extraction version of the "invertibil i ty problem" in rational expectations models discussed 

by Hansen and Sargent (1980) 

pause '/.Press a key to return to menu 

This concludes the output of "recurseas". You can edit this file to create and solve your own 

signal extraction problems. 
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A p p e n d i x to C h a p t e r 2 

For reference we state the following theorems about linear least squares projections. We 

let Y be an (n x 1) vector of random variables and A' be a (h x 1) vector of random variables. 

We assume that the following first and second moments exist: 

EY = ny, EX = EX = 

EXX' = S x x , EYY' = SYY, EYX' = SYX. 

Lett ing x = X — EX, y = Y — EY, we define the following covariance matrices 

Exx' = E Z Z ! E\ = E y y , Eyx' = E 

We are concerned with estimating Y as a linear function of A'. The estimator of Y 

which is a linear function of X and which minimizes the mean squared error between each 

component Y and its estimate is called the "linear projection of Y on X." 

D e f i n i t i o n A . l : The linear projection of Y on A ' is the affine function Y = AX + an which 

minimized E trace {(Y — Y){Y - Y)'} over all affine functions <zo + AX of A'. We denote 

this linear projection as E[Y \ X], or sometimes as E [Y \ x, 1] to emphasize that a constant 

is included in the "information set". 

The linear projection of Y on A", E[Y \ X\ is also sometimes called the "wide sense 

expectation of Y condit ional on A ' " . We have 

Theorem A . l : 

(-41) E[Y\X\=H + E v z E ^ A -

Proof: 

The theorem follows immediately by writ ing out E trace (Y — Y){Y — Y)', and completing 

the square, or else by writ ing out E trace (1 ' — Y)(Y - Y)' and obtaining first-order necessary 

conditions ("normal equations') and solving them. I 

Theorem A .2 : (Orthogonality Principle): 

E \{Y - EY{x)) | A " = 0 
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This states that the errors from the projection are orthogonal to each variable included in 

X. 

Proof: Immediate from the normal equations. | 

Theorem A .3 : 

(orthogonal regressions): Suppose that X' = (X\, X i , . . . , X n ) ' , f i ' = ( p x \ , . . . , f i x n ) ' and 

that E{xi - fixj) = 0 for t ^ j . Then 

(A2) E[Y\xu...,zn,l] = E[Y\z1] + E[Y\x2] + ... + E[Y\zn\-{n-l)lh 

Proof: Note that from the hypothesis of orthogonal regressors, the matr ix E t s is diagonal. 

App ly ing A l then gives (A2). I 
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C h a p t e r 3 

C o n t r o l l a b i l i t y a n d S t a b i l i z a b i l i t y 

1. I n t r o d u c t i o n 

We shall eventually end up devoting most of our attention to opt imal linear regulator 

problems that are time invariant, that is, problems for which the matrices R, Q, and W 

defining returns and the matrices A and B defining the transit ion law are all constant over 

time. For such time invariant problems, it wi l l be of interest to have conditions that are 

sufficient to assure the following two outcomes: First , that iterates Pt produced by the matrix 

R icat t i difference equation converge; and second, when the matr ix R ica t t i difference equation 

does converge, that the optimal time invariant closed loop system xt+i = (A — BF)xt is 

stable. 

In this chapter and the next, we introduce the concepts of control labil i ty and recon­

structibil i ty. It is in terms of these concepts that the desired convergence and stability 

theorems for the invariant linear regulator problem can be obtained. Roughly speaking, 

these concepts contribute to establishing stability of the optimal closed loop system in the 

following way. The optimal closed loop system Xt+i = (A — BP)xt wi l l evidently be stable 

if it is both desirable and feasible to stablize the system through the application of feedback 

control. The concept of controllabil i ty and its specialization, the concept of stabil izabil ity, 

tell whether or not A and B make it feasible to stabilize the system. The concepts of recon-

structabil i ty and detectability describe whether R,Q, and W are such that it is desirable to 

stabilize the system. As we wade through the technical discussion of these concepts, it is 

useful to keep in sight how concepts wil l eventually be used to determine the stability of the 

system under the optimal control. 

This chapter discusses the concepts of controllability and stabil izabil i ty. These concepts 

convey numerous insights into the structure of linear quadratic opt imal control problems, 

as do the "dual " concepts of reconstructibil ity and detectability that are described in the 

following chapter. 1 

1 T h e " A p p e n d i x to Chapters 3-4" lists a few theorems on linear algebra that will he used in the text. 
Applied Linear Algebra, second edit ion, by Ben Noble and James W . Daniel is one valuable reference on 
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2. C o n t r o l l a b i l i t y 

We consider the linear time invariant system 

(3.1) = Axt + But , t > t 0 

where xt is an (n x 1) vector of states, ut a (k x 1) vector of controls, A an (n x n) matrix 

and B an (n x fc) matrix. The matrices A and 5 are assumed to be independent of time. 

A solution of the first order difference equation (3.1) with a given in i t ia l vector xt = xtlt at 

t = t0 can be calculated recursively. In particular, notice that 

i ( + 2 = Axt+i + Bu,+ i = A(Axt + But) + But+i 

or 

xt+2 = A2xt + Bui+\ + ABut. 

Proceeding recursively to xt+j gives 

xt+j = AJxt + But+j-i + ABut+j-2 + • • • + A'~xBut , j > 1. 

This can be written 

j 

(3.2) = A'xt + X] 5 u < + l _ , j > 1 

or equivalently as 
t-1 

(3.3) x< = A * " 1 " r t n + X A t " ' 1 * = «o + 1, to + 2 , . . . 
3 = tn 

It is useful to express (3.2) in the matrix form 

(3.4) xt+j = A'xt + [B AB ••• A>-lB] 

Here the partit ioned matrix [B AB • • • A3'1 B] is of dimension n x jk while the column 

vector [uj +y_j u't+j_2 ••• u't]' is jk x 1. Equation (3.4) reveals how the solution Xt+j to the 

these and other theorems. 
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first order vector difference equation is the sum of AJxt, which represents the effects of the 

ini t ial condition, and a linear combination of the columns of the matr ix [B AB ••• A]~XB\, 

where the particular linear combination is determined by the vectors ut+j-i, Ut+j-2, 

To see this explicit ly, let (C)i be the ith column of a matr ix C. Let the itk element of the 

vector Uf be u«f<. Then (3.4) can be written 

xt+j = A3xt + (B ) j u t + ; _ i , i -I- (B)2ut+j-h2 + • • • + {B)k Ut+,-1.* 

(3.5) + {AB)iut+j-2li + (AB)2ut+j-2,2 + ••• + {AB)kut+j_2,k • • • 

+ (A3~1B)\ut,i + (A}-lB)2ut,2 + ••• + (A}~xB)kUt,k • 

We now define the important concept of complete controllability. 

D e f i n i t i o n 3.1: The linear system = Axt + But is said to be completely controllable if 

the state of the system can be transferred from the zero state at any ini t ial time to to any 

terminal state x ^ = x\ 6 Rn within finite time (t\ — to). 

In other words, the system is completely controllable if and only if for any i\ € Rn there 

exists a t\ > to and a sequence u f o , ut0+.\, • • •, utx-\ such that starting from x^ = 0, the 

system moves to i i at time t\. 

It is useful to remark that the definition implies that if the system is completely con­

trollable then it can be moved from any ini t ial state xo at to to any terminal state x i at t\ 

within finite time, t\ — to- To verify this, let i n and x i be arbitrary points in R n and suppose 

that it is desired to transfer the system from i n at (Q to i | at some t\ > to- If the system 

is completely controllable, it can be moved from the zero state to any state, in particular, 

to the state x i — A 1 _ i n within finite t ime, t\ — to- But from (3.1), the same sequence of 

inputs that moves the system from zero to X\ — All~tn i n at t = t\ wi l l also move the system 

from xo to x i at t = t\. 

At this point, we remind the reader of the Cayley-Hamil ton theorem, which states that 

every square matrix satisfies its characteristic equation. That is, write the characteristic 

equation 

\ A- XI \=0 

in the form 

78 



where the <pj's are scalar constants that depend on the elements of A. The Cayley-Hamil ton 

theorem states that 

<f>nAn + <fiH-lAn-1 + -- +4*1 = 0. 

Solving this equation for An gives 

(3.6) An = £ gJA* 
3=0 

where the gj's are constants that are functions of the <pj's. Next notice that mult iplying 

both sides of (3.6) by A gives 

Using (3.6) to eliminate An from the right side of the above equation gives 

>=0 

where the g"+1 are again scalars. Continuing in the same fashion, it is established that 

(3.7) A{ = £ 9)A> , i>n 

;=o 

where the gj are constants. Equation (3.7) expresses the it>l integer power of A,i > n, as 

a linear combination of the matrices [/, A, • • •, A " " 1 ] . Thus, the columns of the matrices 

A1, i > n, are linear combinations of the columns of [/ A • • • An ). 

Post mult iply ing each side of (3.7) by B gives 

(3.8) A * B - £ g)A>B , i > n, 
;=o 

which shows that for t > n, the columns of <4'F are linear combinations of the columns of 

the matr ix [B AB A2B ••• An~1B]. 

We are now in a position to state the following important theorem, which gives a char­

acterization of complete controllability. 

Theorem S.J: The n-dimensional time invariant linear system xt+i — Axt + But is completely 

controllable if and only if the column vectors of the "controllabil i ty matr ix" 

P = (B AB A2B ••• An~lB) 
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span the n dimensional space that is, if and only if the rank of P equals n. 

P r o o f : We first prove that complete controllabil ity implies that the rank of P equals n. 

Repeating equation (3.2), the solution of the difference equation can be written 

xi+i = A}xt + £ A'-1 But+i-u 3 > 1. 
t=i 

Suppose xt = 0, which as we saw was not restrictive when we discussed the definition 

of complete controllability. W i th xt equal zero, the terminal state Xt+j is in the space 

spanned by the column vectors of the sequence of matrices (B, AB, A2B, • • •). But it is an 

impl icat ion of (3.8) that this equals the space spanned by columns of the n x m • k matr ix 

P = (B AB A2B ... An~xB). 

Thus, for all j, xi+j is in the space spanned by the controllabil i ty matr ix. If the columns 

of the controllabil i ty matrix do not span the n-dimensional space, then only states in the 

linear subspace spanned by P can be reached, which implies that the system is not completely 

controllable. This proves that if the system is completely controllable, then the rank of P 

equals n. 

To prove the other direction of impl icat ion, suppose that the rank of P is n. Let us write 

the solution (3.4) with j = n and xt = 0, 

x t + n = [B AB An~] B] 

or 

Xt+n = P 

« l + n - l 

V-t + n-2 

"t+n-1 

We now set xt+n = x\, where x\ is an arbitrary point in Rn, and we inquire whether there 

exists a vector [u't+n_l, u ' t + n _ 2 , • • •, u't}' such that 

xi = P 

Uf+n- l 
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or 

x\ = Pu, 

where 

(3.9) * = K + « - i . - • • . « ' « ] ' • 

This question is equivalent with the question of whether the n x n • k matrix P possesses an 

nk x n right inverse R which satisfies PR = In. 

Notice that if PR = In, then (3.9) implies that Pu = X\t and {PR) xx = P{Rxx), so that 

u = Rx\ is a solution of (3.9). This proves that existence of a right inverse of P implies the 

existence (but not the uniqueness) of a solution u to (3.9) for every i i € R n . From a theorem 

in linear algebra (Noble and Daniel [ , p. 97]) P has a right inverse if and only if the rank of 

P equals n. Also, if the rank of P is n, then PP' is nonsingular (Noble and Daniel [ ]). From 

this fact, it can be directly verified that one right inverse of Pis R — PT(P PT)~*. Thus, if 

the rank of P equal n, there exists at least one sequence of controls [u ' t + n _ j , u't+n_2, ttj)' 

which drives the system from zero to x\ in n time periods. Given a right inverse R of P , 

such a sequence of controls can be computed from 

(3.10) 
"l t+n-2 

= (/?x,) 

This proves that if the rank of P is n, then the system is completely controllable. This 

completes the proof of the theorem. I 

We remark that more has been proved then was stated in the theorem. In particular, we 

have proved that if the system is completely controllable, then (3.9) or (3.10) implies that 

it is possible to move the system from any init ial state x$ at <n to any other state i\ within 

at most n periods. 

The following definition will prove useful: 

D e f i n i t i o n 3.2: The controllable subspace of the linear time invariant system xt + \ = Axt + 

But is the linear subspace consisting of the states that can be reached from the zero state 

in finite time. 
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We immediately have the following theorem: 

Theorem 3.2: The controllable subspace of the n-dimensional linear time invariant system 

x t + l = Axt + But is the linear subspace spanned by the columns of the controllabil ity matrix 

P = {B AB ••• An~1B). 

Proof: The proof of this theorem is contained in the proof of theorem 3.1. 

We shall use the following theorem. 

Theorem 3.3: The controllable subspace of the system Xt+\ = Axt + But is invariant under 

A; that is, if x is in the controllable subspace, Ax is also in the controllable subspace. 

Proof: Let the controllable subspace be denoted by C = R{B\AB\ • • • \An~lB) where R(D) 

denotes the range space of the matrix D. If i is an element of the space C, then x is in the 

space spanned by the column vectors of the controllabil i ty matrix P. Notice that if x belongs 

to C, then Ax is in the linear subspace spanned by column vectors of [AB A2B • • • AnB\. 

Equation (3.8) implies that the column vectors of AnB depend linearly on the column vectors 

of P. Therefore, Ax is an element of C. I 

Heuristically, notice that if x belongs to C, we can drive the state from zero to x in at 

most n periods. Having arrived at x at period t\, we can get to Ax in period ti + 1 by setting 

ut, = 0. However, we can get to Ax directly from zero faster, that is in at most n steps, as 

the proof indicates. 

We also have the following useful theorem. 

Theorem 3.4' An ini t ial state i n belonging to C at time t can be transferred to any terminal 

state x\ in C in at most n periods. 

Proof: Repeating the solution (3.2) for j = n gives 

x t + n = Anzt + Y.An~iB*t+i-i-
i=i 

Now if belongs to C then .4 n i< belongs to C by theorem 3.3. Further, the above equation 

shows that any input sequence [uj, Ut + \ , . . . , U j + n _ i ] that transfers the zero state to x\ — Anxo 

also transfers xn to x\. Such an input sequence exists since x\ — Anxo is in the controllable 

subspace C. I 
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3. T h e C o n t r o l l a b i l i t y C a n o n i c a l F o r m 

We now proceed to the construction of the controllability canonical form. This form will 

be especially important for the class of economic models that we shall consider, since many 

of them are naturally specified to be in controllabil ity canonical form. 

We consider the n dimensional linear time invariant system xt+i = Axt + But. Let the 

rank of the controllabil ity matrix P = \B, AB,..., An~x B] equal m < n. So the dimension 

of the controllable subspace C equals m < n. Choose any basis for C consisting of the n i l 

column vectors e\%tj,..., e m . Let e m + i , e m + 2 , . . . , e n be (n — m) linearly independent n x 1 

vectors which together with e\,... ,em span the entire n-dimensional space. Form 

T = (TU T2) 

where T\ = (e i , • • • , em) . 

T2 = ( e m + i , • • •, e„) 

Now introduce the transformed state vector 

(3.11) Tx\ = xt . 

Substitut ing (3.11) into the state difference equation gives 

T x ' t + 1 = ATx[ + But 

or 

(3.12) 

Now partit ion T - 1 as 

ar' l + 1 = T-xATxt + T-lBut . 

T~l = 

where U\ is m X n and U2 is an (n — m) x n matrix. Then we have 

T-lT = 

i'2 
(TiT2) = 

UiT2- \Im 0 1 
U2T, U2T2\ " i 0 In.m. 

This implies that U2T\ = 0. Recall that T\ is composed of vectors c j , . . . , e m that span the 

controllable subspace. Then the equality U2T\ = 0 implies that U2x = 0 for any vector x 

belonging to the controllable subspace C. That is, if x belongs to C then it can be written 
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as x = T\y for some m x 1 vector y. So we have U2x = U2T\y — 0, as an implication of 

U2T\ = 0. Thus we have 

(3.13) U2x = 0 

for any x belonging to C. 

W i t h the preceding partit ioning of T and U, we can write 

x W\AT\ U,AT2] 
" U2ATi U2AT2\ 

T~lB = 
[U2B 

By construction, all columns of T\ are in the controllable subspace C. Since the controllable 

subspace is invariant under A by theorem3.3, all columns of AT\ are also in C. It then 

follows from (3.13) that 

U2ATX = 0. 

The columns of B are obviously in the controllable subspace, since B belongs to P. Therefore, 

we also have 

U2B = 0. 

Thus, we have established that (3.12) assumes the form 

(3.14) 
A' A1 

0 A', 22 
It t 

or 

x't+i = A'x\ + B'ut 

where A'n = UiATu A\2 = UiAT2, A'22 = U2AT2, B[ = U\B, A' = T~lAT, B' -

T~iB,x\t is an (m x 1) vector and r'2< ' s a n ( n — m ) x 1 vector. 

Equat ion (3.14) is called the controllabil i ty canonical form of the linear system xt+\ = 

Axt + But. The importance of this canonical form is part ly due to the properties exhibited 

in the following theorem: 

Theorem 3.5: In the controllabil ity canonical form (3.14), the pair [A'n, 5 j j ) is controllable 
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P r o o f : It is sufficient to establish that the rank of the matr ix 

P'n = [B[, A'nB[, .... A\rlB\) 

equals m. We have 

P'n=\UxB, U.AT^B, {U,ATx)n-lUxB} 

= tf,[*. AB A*~lB\ 

= UlP. 

The (m x n) matr ix U\ has rank m by construction, and the (n x nfc) matr ix P has rank m 

by assumption. Since the columns of T\ form a basis for the range space of P , we have rank 

( P j i ) = rank{U\P) = rank{U\T\) = rank(Im) = m. This proves the theorem. | 

It is useful to note that the controllabil ity matrix for the pair (A', B1) of the controlla­

bil i ty canonical form is 

T - 1 = P* = [B', A'B\ A'n-lB') 

B\, A'UB\ A ' n _ 1 f l ' j 
0 0 0 

An alternative proof of theorem 3.5 notes that P has ranks m, and that T - 1 is nonsingular, 

which imply that the rank of P' is m. This in turn implies that the matrix P'u has rank m. 

A t the cost of being redundant, we find it useful to summarize the result of theorem 3.5 

and the discussion leading up to it in the following theorem. 

Theorem 3.6: Consider the linear time invariant system rj+i = Axt + But- There exists a 

nonsingular transformation matr ix T such that the transformed state x\ = T~lxt is in the 

controllability canonical form 

' l i + i 
:2<+l 

A' A' 
0 A', 22 

-II 
I'M 

+ 0 u, 

where A' = T~lAT and B' = T - 1 B , x\ is m x 1 and i ' 2 is (n - m) x 1, where m = 

rank\B, AB, An~lB], and A'n is m x m and B\ is (m x 1). The pair (A'n,B[ is 

controllable. 

From the method of constructing the controllability canonical form, it is evident that 

it is not unique. This is true because T\ can be chosen as any m (n x 1) column vectors 

85 



that form a basis for the controllable subspace C. It follows also that T2 is not unique. 

However, it can be proved that for any of the controllabil ity canonical forms (3.11) produced 

by selecting different admissible T\ and T2 matrices, the eigenvalues of A\x are the same 

regardless of the choice of Tx and T2, and that the eigenvalues of A'22

 a r e a ' s o independent 

of the choice of particular admissible Tx and T2. 

We state these facts in the form of the following theorem: 

Theorem 3.7: Let T be a nonsingular matrix (Ti T2) where the columns of T\ form a 

basis for the controllable subspace of a pair [A, B), and let (T\ 7a) form a basis for Rn. 

Let T = (7 i 7*a) be another nonsingular (n x n) matr ix whose first m columns span the 

controllable subspace of the same pair (A, B). Then consider 

and 

A' = 

A' = 

A' A' 

0 A\ 22 

A\\ An 

0 . 4 2 2 

= T~lAT 

= f~xAT . 

The eigenvalues of A'n equal those of A\\, and the eigenvalues of A'22 equal those of /I22. 

P r o o f : From ^4' = T~lAT and A = T~1AT, where T and T are nonsingular, we have 

(3.17) A' = {T~lT)A(T-lT) = {T-lT)A(T-!T) 1-1 - 1 / 

where (T ! T ) is a nonsingular matrix. 

Lett ing T 1 = K 1 , we have 

T - l f = 

u2\ 
(ti f 2 ) = 

C i 7 i U1T2 
U2tx U2t2 

Using the above established fact that 1 6 C implies U2x = 0, we have U2T\ = 0 because T\ 

is a basis for C. Therefore, we have 

(3.18) 

Similarly, we have 

T~lt = 
UXTX UXT2 

[ 0 U2t2 

f . - i T _\UlTi UXT2 

0 U2T2 
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Calculat ing A' using (3.17) and (3.18) gives 

A' A' 

0 l22 

[/iTMnI/iT! (V i rMnl / i r i + ^ i r M i a ^ r j + UiT2AnU2T2) 
0 U2T2A22U2T2 

Thus, we have 

-4'n = UiTiAnUft 

A'22 = U2t2A22U2T2 

Upon noting that {U\T\)~l = U\T\ and (WiTa) " ' = U2T2, the above equations imply that 

A'j i and A n are related by a similari ty transformation, and that AJJ and A22 are related by 

a similari ty transformation. Therefore, the eigenvalues of A ' n equal those of A\\% and the 

eigenvalues of A ' 2 2 equal those of A22 I 

The preceding discussion motivates the following definitions: 

Definition 3.3 The characteristic values of A'n are called the controllable poles of the system 

(A, B). 

Definition 3.4: The characteristic values of A'22 are called the uncontrollable poles of the 

system (A, B). 

4. S t a b i l i z a b i l i t y 

Now suppose that A has n distinct eigenvalues. Recall the eigenvalue decomposition of 

.4. 

A = 5 A 5 -1 

where A = diag(\\, . . . , A n ) is the diagonal matr ix whose entries are eigenvalues of A, and 

5 = . . . , sn) is the matrix whose columns are eigenvectors of A. Let us represent S 

as 
r/i 

h 

fnl 

where the /j are (1 x n) matrices. Consider the homogeneous linear t ime invariant difference 

equation 

xt+i = Axt 
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whose solution is 

Xti-j = AJxt. 

Using the eigenvalue decomposition of A, this solution can be represented 

xt+j — S A ; 5 ~ xt 

or 

n 

(3.19) xt+J = Y,*Jiaifixt-
i=l 

Equat ion (3.19) shows how the behavior of the homogeneous system depends on the eigen­

values of A. 

We now make the following definition: 

D e f i n i t i o n 3.5: The homogeneous time invariant linear system i j+ i = Axt is said to be 

stable if for any Xf0 belonging to R n , l i m ; _ 0 O Xt+j = 0. 

From equation (3.19), the following theorem is immediate: 

Theorem 3.8: The homogeneous time invariant linear system is stable if and only if the 

eigenvalues of A are strictly less than unity in modulus. 

If the eigenvalues of A are strictly less than unity in modulus, we also speak of A as a 

stable matrix. 

We now indicate that theorem 3.8 continues to hold in the case that the eigenvalues of 

A are not all distinct. If the eigenvalues of A are not distinct, equation (3.19) does not hold, 

but a suitable generalization of it does. We recall several facts from linear algebra. Let the 

(m x n) matr ix A have k < n distinct eigenvalues, X\, . . . , A^. Let m-i be the mult ipl ici ty 

of the eigenvalue A^. Associated with each eigenvalue Aj there can be anywhere between one 

and mi l inearly independent eigenvectors. 

Define the matrices 

Mi = (A- A , / ) m , 

and let 

Ni = jV{Mi) 
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be the null space of M{. Then it follows that (a) the dimension of the linear subspace 

Ni is m,-,i = l,...,ki and (6) each vector x in Rn can be expressed uniquely as a sum 

x = i i + X2 + • . . + Xfe where xt- belongs to N{. (See Kwakernaak and Sivan [ p. 19 ]). The x; 

can be expressed as linear combinations of the eigenvectors and "generalized eigenvectors" 

corresponding to A^, which we proceed to define and describe how to compute. 

We first define a Jordan block matr ix J{ as a square matrix whose elements are zero 

except for those on the principal diagonal, which are all equal to unity, and those in the first 

superdiagonal, which all equal unity. Thus, 

Ji = 

X{ 1 0 0 
0 Xi 1 0 

A,. 

The number A^ is taken to be an eigenvalue of A. 

We now state the following theorem. 

Theorem 3.9: Let A be a square matrix. Then there exists a nonsingular transformation 

matr ix T which can be partit ioned T = (T\, T 2 , . . . , 7fc), where T{ has mj columns, such 

that 

A = TJT~l 

where J is block diagonal and is composed of Jordan blocks along the diagonal. In particular, 

associated with each linearly independent eigenvector of A there is one Jordan block in J , 

with its associated eigenvalue. For each eigenvalue of A there are as many Jordan blocks 

as there are l inearly independent eigenvectors associated with it. The vectors in Ti form 

a basis for Ni and are either eigenvectors of "generalized eigenvectors." (If an eigenvalue 

Xi has mult ipl ic i ty mj > 1 and there is only one linearly independent eigenvalue associated 

with it, that eigenvector can be taken as the first column of Ti. In this case, the Jordan 

block corresponding to A, has dimension m, x m,). More generally, the matr ix J can be 

partit ioned as 

J = 

L o 

0 
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where each block Ji has dimension m; x rrij. Each (mi x mj) block Ji is of the form 

\Ji\ 0 1 

. 0 4 . 

where each Jij is a Jordan block associated with eigenvalue A,, and lx is the number of 

l inearly independent eigenvectors corresponding to X{. This completes the statement of the 

theorem. (See Kwakernaak and Sivan [ ] or Nobel and Daniel [ ]). 

From the equation AT = TJ, Noble and Daniel describe the following method of com­

puting the columns of T. Let these columns of T be v\,... ,vn. Then from the form of J 

and the equation AT = TJ if follows that 

Avi = Xvi + 7»t»i-] 

where X{ is either 0 or 1 depending on J and where A is a characteristic value of A. Part i t ion 

the block Ti of T corresponding to the subpartit ioning of J{ as (T\ j , . . . , Tut). Then ji is zero 

whenever the corresponding column v{ of T is the first column of a subblock. If 7,- = 0,u,- is 

an eigenvector of A corresponding to A. Thus the first column of each subblock 7\, can be 

taken as an eigenvector corresponding to A, while the remaining columns follow recursively 

from the above equation with 7, = 1. The remaining columns of Tij generated in this way 

are called "generalized eigenvectors" of A. 

It is useful to compute integer powers of an r x r Jordan block matrix Jk- Lett ing 

h = 

it is readily verified that 

Ji = 
0 

0 

A 1 0 ... 
0 A 1 0 

0 . . . 

-2 

0 

( ! ) A - ( J ) A ' 

U , ) * ' - ' + 1 

0 0 

From the representation A = TJT 1 we have that Af = TJlT 1. In the case where gener­

alized eigenvectors are included in T, it follows that the solution Xj = A ' x n has components 
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that behave as {^JX1. Since yT)Xl goes to zero as t goes to infinity if and only if | A |< 1, 

theorem 3.8 about stable matrices also holds for the case in which the eigenvalues are not 

distinct. 

In summary, associated with each eigenvalue A^ of mult ipl ic i ty of mi the n x n matrix A 

there is associated a set of mj linearly independent eigenvectors and generalized eigenvectors 

that span the null space M(A — Aj I)mi. 

In the text below, we shall on several occasions state and prove theorems about the 

spaces spanned by the eigenvectors corresponding to particular collections of eigenvalues. 

For simplicity, in our proofs we shall assume that the eigenvalues are dist inct, and so use the 

eigenvalue decomposition A = 5 A 5 - 1 . However, the argument in each of the proofs goes 

through in the case of repeated eigenvalues if we use the Jordan decomposition A = TJT~l 

and interpret the "space spanned by the eigenvectors corresponding to A^" to mean the 

"space spanned by the eigenvectors and generalized eigenvectors corresponding to Xi" 

The following definition will prove very useful: 

D e f i n i t i o n 3.6: Consider the n-dimensional linear time invariant system Xt+i = Axf. Sup­

pose that A has n distinct eigenvalues. We define the stable subspace of this system as the 

real linear subspace spanned by those eigenvectors of A that correspond to eigenvalues with 

moduli str ict ly less than unity. The unstable subspace of the system is the real subspace 

spanned by those characteristic vectors that correspond to eigenvalues with moduli greater 

than or equal to unity. 

We note that as a consequence of this definition and of the eigenvalue decomposition 

A = S A 5 - 1 , it follows that any vector it in Rn can be represented uniquely as 

xt = x,t + xut 

where xst is in the stable subspace of A and xut is in the unstable subspace of A. 

The following concept is very useful because it is instrumental in characterizing a set of 

conditions that are sufficient to guarantee both convergence of the matr ix Riccat i equation 

and stabil i ty of the closed loop system. 

D e f i n i t i o n 3.8: The linear time invariant system xt+\ = Axt + But is said to be stabilizable 

if its unstable subspace is contained in its controllable subspace. That is, the system (A, B) 
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is stabil izable if x the condition that belongs to the unstable subspace implies that x belongs 

to the controllable subspace. 

The following two theorems are immediate: 

Theorem 3.10: Any stable time invariant system is stabilizable. 

Proof: The unstable subspace is empty. | 

Theorem 3.11: Any controllable system is stabilizable. 

Proof: The controllable subspace is R n . I 

The property displayed in the following lemma is useful: 

Lemma 3.1: The controllable subspace of the pair [A,B') of the control labil i ty canonical 

form (3.14) is spanned by the eigenvectors corresponding to the controllable poles, i.e., the 

eigenvalues of A'u. 

Proof: Part i t ioning the eigenvalue decomposition of A' = S ' A ' 5 - 1 conformably with A 

gives 

(3.20) 4i 4ll_r*ll SjllKl 0 

0 '22 0 '22 0 A' 2 

SI — 1 c1 - 1 Ql C< 
11 : ' l l ^12^22 
o s' - 1 

1 c' c 

22 

Here the eigenvectors ( 5

(J 1) correspond to the eigenvalues \ \ of A\it and the eigenvectors 

(5") correspond to the eigenvalues A' 2 of A\2- From the argument leading to theorem 3.5, 

we know that any x' in the controllable subspace of (.4', B') must be of the form 1' = (r

0') 

where x\ is an (m x 1) vector. Since the (m x m) matrix S'n is nonsingular, there exists an 

(m x 1) vector z such that for any x\, 

S'n 
0 

Therefore (^Q 1 ) is a basis for the controllable subspace of (A1, B'). I 

The following lemma is a consequence of the preceding one. 

Lemma 3.2: Consider the system xt±\ = Alt + But, and a control labil i ty canonical form 

for it, x't+1 = A[ + B'ut where A' = T~lAT and B' = T~lB, where T is chosen as is 

described in theorem 3.6. Then the controllable subspace of the pair (^4,5) is spanned by 
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the eigenvectors corresponding to the controllable poles of A, which recall are defined as the 

eigenvalues of A'n. 

P r o o f : We have A = TA'T~X, where T is chosen as described in theorem 3.5. We also have 

the eigenvalue decomposition of A\ A' = S ' A S ' - 1 . Combining these, we have 

(3.21) A = ( T S ' ) A ' ( T S ' ) " 1 

so that (TS1) is the matr ix of eigenvectors of A. Using the partit ioning (3.20) in (3.21) we 

have 

A = ( T , T 2 ) °11 °12 
0 S i 22 

r A ' 

or 

A = (T1S'u,T1S[2-rT2S'22) 

0 
o' A ; 

A', 0 
0 A' 2 

(T,r2) . o S'22\\ 

(TiS'n,T\S[2 + T2S22) 1 \-i 

Here TiS'n are the eigenvectors of A corresponding to the controllable poles A j , which are 

the eigenvalues of A'n. The (n x m) matrix T\ is a basis for the controllable subspace of 

(A, B,) while the (m x m) matr ix S'n is nonsingular. Therefore, X i S j j is a basis for the 

controllable subspace of (A, B). I 

The following lemma establishes that the property of stabil izabil i ty is not disturbed by 

the appl icat ion of a nonsingular transformation of the state space. 

Lemma 3.3: Consider the system 

xt+i = Axt + But 

and let V be any nonsingular (n x n) matrix. Consider the transformed system 

»5+i = VAV-Xx\ + VBut 

or xt+\ = A xt + a ut 

where x\ = Vxt, where A' = VAV1 and = VB. Then the pair (A, B) is stabil izable if 

and only if the pair (A', B ' ) is stabilizable. 

P r o o f : Consider the eigenvalue decomposition of A = SAS~ . First partit ion >4 as 

(3 22) •4 = (5 , S2) 
A i 0 
0 A 2 

(Si S2) -1 
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where the diagonal matrix A i consists of the unstable poles of A and the columns of S i are 

the eigenvectors corresponding to A ] . Alternatively, partit ion the eigenvalue decomposition 

of A as 

(3.23) A = (SiS2) 
A i 0 
0 A 2 

(SiSt)-1 

where the diagonal matrix A i contains the controllable poles of A and S i is an (n x m) 

matr ix whose columns are the eigenvectors corresponding to Ai. Evident ly, the pair (A, B) 

is stabil izable if and only if each of the eigenvalues of A i also appears in A i , so that the linear 

subspace spanned by S i is included in the subspace spanned by S\. Using A' = VAV~ , we 

have corresponding to (3.22) and (3.23) 

(3.24) A' = (VS! VS2) 
A i 0 
0 A 2 

( V S , VS2) - l 

(3.25) ,4' = ( V S i VS2) 
A i 0 

L o A2 

[VSiV S z ) " 1 . 

Since V is nonsingular, the linear subspace spanned by V'Si is included in the linear subspace 

spanned by V S i if and only if the linear subspace spanned by S i is included in the linear 

subspace spanned by S i . This proves that (A, B) is stabilizable if and only if (A , B') is 

stabilizable. 

The following theorem provides a useful necessary and sufficient condit ion for a system 

(A, B) to be stabil izable. 

Theorem 3.12: Consider the linear system 

xt+i = Axt + But 

Transform it into the controllability canonical form 

A\ 1 .4 j 2 1 
0 A'22. 

x + 0 

where the pair (A'n,B'n) is completely controllable. Then the system (A, B) is stabilizable 

if and only if the matrix A'22 is stable. 
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P r o o f : From lemma 3.3, it suffices to prove that the pair (A1, B') is stabil izable if and only 

if A'22 is stable. Part i t ioning the eigenvalue decomposition of A' we have 

A' A' 
0 A\ 22 0 S 2 2 

Aj 0 
0 A' 2 

c ' - l c ' - l c ' c ' - l 
J l l J l l ° 1 2 ° 2 2 

0 S 2 2

J 

A basis for the controllable subspace of (A1, B') is formed by the eigenvectors ^ ^ ^ corre­

sponding to the controllable poles \ \ . If any eigenvalue A 2 in A 2 exceeds unity in modulus, 

then the system cannot be stabilizable, for then the eigenvector corresponding to A 2 would 

not belong to the stable subspace. Conversely, if all of the eigenvalues in A' 2 and less than 

unity in modulus, then the unstable subspace is contained in the controllable subspace, a 

basis for which is ^ ^ ^ . 

Therefore, (A, B) and its controllabil ity canonical representation (A', B') are stabilizable 

if and only if A ' 2 2 is a stable matrix. I 

5. A n E x a m p l e 

As an example to il lustrate these concepts, consider the following problem. A firm wants 

to maximize 

YP'latkt-fkl-Jtikt+i-kt)'] , / > O , O < 0 < 1 . 
t=o 1 

0 < 0 < l.fcn given, SQ,9-\ given, Jo,J-\ given, where kt is the stock of a factor at time 

t, Jt is the relative price of capital, and St is a shock to technology. We assume that Jt and 

st follow the laws of motion 
•5( = Pi&t-\ + P 2 - ' « - 2 

A = y-\Jt-i + M2>/t-2 

where we assume that the zeroes of the polynomials 

(3.26) 1 - piz - p2z = 0 

and 

(3.27) 1 - mz - p,2z = 0 

both lie outside the unit circle; i.e. if ZQ solves (3.26) then | z 0 |> 1. 
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We desire to describe a state-space representation of the linear system the firm is trying 

to control. We define the state vector Xt and control vector u< as 

xt+i — 
't+i 

Jt+l 
L Jt J 

= {kt+i - kt) 

The system can then be written 

(3.28) 

'1 0 0 0 0 " f k t 1 M1 
I) p\ P2 u 0 3t 0 

at = 0 1 0 0 0 9t-l + 0 
Jt+l 0 () 0 M l Jt 0 

. Jt . .0 0 0 1 0 J .Jt-l. .0, 

We claim that the system (3.28) is in controllability canonical form. Fi rs t , notice that 

the matrices corresponding to A and B have zeros in the proper places. 

Next , we calculate the controllabil i ty matr ix 

Pu = [B[,A'nB[,...,A'u-iB[} 

= (!]• 

which is evidently of rank 1. Therefore the pair (A'n,B\) = (1,1) is controllable. So we 

conclude that the system (3.28) is in controllabil i ty canonical form. 

We also claim that the system (3.28) is stabilizable. To establish this c la im, we must 

show that the eigenvalues of A\2 are less than unity, where 

(3.29) A-17 = 

Pi P2 0 0 
1 0 0 0 
0 0 // , H2 

0 0 1 0 

It can be established readily that the four eigenvalues of A'22 given by (3.29) equal the 

reciprocals of the four roots of (3.26) and (3.27). For the characteristic equation of y4'22 is 

\A'22 - A / | = 0 

which turns out to be 

(3.30) ( A 2 - ^ A - P 2 ) ( A 2 - M l A - / x 2 ) = 0 
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Setting z = A - 1 in (3.26) and (3.27) and mult iplying (3.26) and (3.27) together gives 

(1 - p\\~x - p2*-2)(l - / t i A - 1 - / x 2 A " 2 ) = 0 

or 

( A 2 - p 1 A - p 2 ) ( A 2 - / x 1 A - / x 2 ) = 0 

The last equation is equivalent with the characteristic equation (3.30) of i4' 2 2. Thus, the 

conditions that the zeros of (3.26) and (3.27) lie outside the unit circle are sufficient to 

assure that our system is stabilizable. 

The reader should convince himself that the system (3.28) is neither controllable nor 

stable. 
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Appendix to Chapters 3 & 4 

The following definitions and theorems are about the m x n matrix A and the equation 

system Ax = b where z is an n x i vector and b is an (m x I) vector. Let the rank of A be 

k < max(m, n). 

Theorem B l : There exists a solution to Ax = 6 if and only i f & = m. In this case, the 

columns of A span Rm. 

Theorem B2 : The (m x n) matrix A has a right inverse which is an n x m matrix R satisfying 

AR = Im, if and only if the rank of A = m. 

Notice that in the case in which the rank of A is m, one solution of the equation system 

is x = Rb. 

Theorem B3: The system Ax = b has at most one solution if and only if fc = n. In this 

case, the columns of A are linearly independent. 

Theorem B4: The (m x n) matrix A has a left inverse, which is an n x m matr ix L satisfying 

LA = In, if and only if the rank of A equals n. 

See Gi lbert Strang [p. 71] or Noble and Daniel [ pp. 96-97] for proofs of these theorems. 

Definition B l : The null space of the (m x n) matrix A, denoted N(A), is the set of all 

(n x 1) vectors x that satisfy Ax = 0. The null space is a linear subspace of Rn. 

Definition B2: The range space or column space of .4 is the set of al (m x 1) vectors y 

such that Ax = y for some x G Rn• The range space is a linear subspace of Rn. 

Definition B3: The range space of AT or the row space of .4 is the set of all (m x 1) vectors 

c that satisfy ATz — c for some z (E Rm. The range space of AT is a linear subspace of Rn. 

Definition B4: Given a subspace of V of Rn, the space of all vectors orthogonal to V is 

called the orthogonal complement of V. 

Theorem B5: The null space of A equals the orthogonal complement of the range space of 

AT. 

Note that the dimension of the range space of AT is k, while the dimension of the null 

space of A is n - k. 
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Elementary row operations on a matrix consist of: 

(a) Interchange of two rows 

(b) Mul t ip l icat ion of any row by a nonzero scalar. 

(c) Replacement of the t t h row by the sum of the i l h row and p times the j t h row, (j is not 

equal to i ) . 

Performing sequence of elementary row operations on A amount to premult iplying it 

by a non singular matrix. In particular, each elementary row operation on A amounts to 

premult iplying by the nonsingular matrix that is obtained by performing the same elementary 

row operation on the identity matrix. 

The following theorem is useful to forming a basis for the range space of A. 

Theorem B6: Let a series of elementary row operations transform an (m x n) matr ix A into 

a matr ix B. Then a given collection of columns of A is linearly independent (dependent) if 

and only if the corresponding columns of B are l inearly independent (dependent). 

P r o o f : See Noble and Daniel [p. 126). 

This theorem is useful in conjunction with the row echelon form in constructing a basis 

for the column space of A. The row echelon form (see Noble and Daniel) is obtained from 

A by a series of elementary row operations. In the row echelon form, there are k columns 

(where k = rank(A)) which are the unit vectors e , . . . , e*. These unit vectors appear in the 

columns number c j , c2, • • •, ck, with c\ < c2 < . . . < c*. The last (m — k) rows of the row 

echelon form are zero, while the first k rows are nonzero. (See Noble and Daniel , p. 88, for 

more details.) 

The preceding theorem implies that a basis for A can be found as follows. Reduce A 

to row echelon form B. Let the unit vectors in B appear in columns c\,... , c*. Then the 

columns number c\, c2, • • •, c* in A form a basis for the range space of A. 

A basis for the null space of A can be constructed as follows. First reduce A to row 

echelon form by a sequence of elementary row operations, representable by premultiplication 

of A by the nonsingular matrix E. Note that solutions of Ax = 0 are equivalent with 

solutions of EAx = 0. The row echelon form EA has k unit column vectors which can be 
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chosen to be the first k columns of EA by suitably renumbering the variables. Then the row 

echelon form EA can be written, 

0(m-fc)xfc Q{m-k)x(n-k). 

and EAx = 0 can be written: 

\h B l [Zll [01 
. 0 0 . X2. 0 

where » j , is k X 1 and 12 is (n — fc) x 1. Let 7n_fc be the (n — k) x (n — k) identity matr ix. 

Then a basis for the null space of A is given by the columns of the n x (n — k) matrix 

f -B 1 

Jn-k). 

See Noble and Daniel [pp. 159-160] for more details. 

A n alternative method of constructing a basis for the nul l space of A builds upon the 

fact that the range space of AT and the null space of A are orthogonal complements. We can 

construct an orthogonal basis for the range space of A simply by using the Gram-Schmidt 

orthogonalization procedure. Let a\,a2,... ,an be the n columns of the (m x n) matr ix A. 

Let the inner product of two vectors y and z in Rm be denned as (y, z) = Vizi- Let the 

norm of y be ||y|| = ( y , y ) J . Then we recursively form: 

v\ 
v\ = ai, x\ = -—-

INI 
v2 = a2 - (3/1,02) • x i , x 2 = T;—jT 

vr = aT - ( x r _ i , a r ) A r _ i - ( x r _ 2 , o r ) x r _ 2 - (11,0,) • x i , x r = - p 1 -

If at some step vr is identically zero, it indicates that ar is l inearly dependent on the preceding 

ai,... , o r _ i . When a nul l vector u ; is produced by the procedure, omit it and continue unti l 

k vectors have been obtained. These k vectors form an orthonormal basis for the range space 

of A. 

To construct a basis for the null space of .4, which has dimension (n — k), we first use the 

Gram-Schmidt orthogonalization procedure to construct an orthonormal basis for the range 

space of AT. This is a set of k vectors, v\,.. . which spans a k dimensional subspace 
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of Rn. Next take vectors from the m x n identity matrix. In = e\, e2,..., e n , and continue 

with the Gram-Schmidt orthogonalization procedure unti l an additional (n — k) orthogonal 

vector Ufc+i, . . . , v n are found. (This procedure wil l encounter k vectors that are indentically 

zero, and are to be omitted.) The vectors Vfc+ i , . - - ,V n form an orthonormal basis for the 

null space of A. 

For a discussion of the Gram-Schmidt procedure, see Noble and Daniel [pp. 138-139]. 
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Chapter 4 

Reconstructibility and Detectability 

1. Introduction 

This chapter describes the concepts of reconstructibility and detectability. As we shall 

see repeatedly, what the concept of controllabil ity is to the linear regulator problem, the 

concept of reconstructibi l i ty is to the filtering problem and vice versa. A lso, what the 

concept of stabi l izabi l i ty is to the control problem, the concept of detectability is to the 

filtering problem. Thus, the theorems stated in this chapter wil l closely resemble those 

stated in the previous chapter. 

2. Reconstructibility 

Consider the linear time invariant system 

(4.1) = Axt + But 

(4.2) yt = Cxt 

Here xt is an (n x 1) vector of state variables, ut is a (fc x 1) vector of inputs or controls, and 

yt is an (I x 1) vector of observed or output variables. The matrix A is dimensioned (n x n), 

B is (n x k), and C is (I x n). 

Given an ini t ial condition xt„, the solution of the state difference equation (4.1) is 

(4.3) xt = A ' - ' "x«„ + £ At~'~1Bu3, t > t0 

s = t„ 

Using (4.2) in conjunction with (4.3), we obtain the following expression for yt,t > to'. 

(4.4) yt = CA'-^xt,, + £ CA' — 'Bu, 
$=tn 

Let y(t; to, xn> ut) denote the response of the output variables of the system over t > to with 

ini t ial condition Xt0 and control vector ut = ut, t > to- That is, from (4.4), we define 

t-l 
(45) y(t; t0, r 0 l ut) = CA1'1"xt„ + £ CA'-'-'Bu,. 
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We are now in a position to define the important concept of reconstructibility. 

D e f i n i t i o n 4.1: The system (4.1 )-(4.2) is said to be reconstructtble or completely recon­

structive i f for all t\ there exists a t0 with - o o < to < t\, such that the condition of 

identical output variables, namely y(t; to, xto, ut) = y(t; to, x'to, it), to < t < t\, for all 

input sequences ut,to < i < t\t implies that xt0 = x't(). 

Thus, the system is completely reconstructible if, the ini t ial state of the system can be 

inferred from observations on the controls and the output vectors alone, given a long enough 

history of observations. If the system is reconstructible, there exists a finite to < t\ such that 

the in i t ia l state xto is uniquely determined given knowledge of the output yt and input ut 

sequences. Once x j 0 is known, equation (4.3) can then be used to compute i j for *H t > *o-

Theorem 4.1: The system is completely reconstructible if and only if for all t\ there exists 

a to wi th - o o < to < t\, such that y(t, to, »<„•, 0) = 0 for t0 < t < tx implies that xt„ = 0. 

The theorem asserts that the system is reconstructible if and only if, given an input path 

consisting entirely of zero controls, zero output implies that the ini t ial state is zero. 

We now state a theorem that is useful in developing necessary and sufficient conditions 

for reconstructibil ity. 

P r o o f : We first show that if the system is reconstructible, there exists a finite to < t\ such 

that y(t; to, xio, 0) = 0 implies that x f ( ) = 0. Suppose that the system is reconstructible. 

W i t h zero input vector ut we have from (4.4) that 

yt = CA^-^xt,,, to < t < tx 

Since the system is assumed to be reconstructible, and since an ini t ial condition of Xj„ = 0 

gives rise to a zero output yt, to < t < tx, the above equation implies that xtn = 0. This 

proves half of the theorem: if the system is reconstructible, there exists a finite to < *i such 

that y(t; to, 1^ ,0) = 0 for t0 < t < tx implies that x ( n = 0. 

To prove the other half, assume that there exists a to < t\ such that y(t; to, xtlt, 0) = 0 for 

all to < t < t\ implies that x,„ = 0. By (4.4), we have that y(t; t0, xtn, ut) = y{t; to, x'tit, ut) 

for all t0 < t < ti is equivalent with CAl-l"xtli = CA^^x'^ for all te[t0, ti). This is 
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equivalent with 

(4.6) C M * ' - * 0 * (xt0 - xlo) = 0 for all t0 < t < tx 

But, by hypothesis, there exists a t0 < t\ such that y(t; t0, xt(t,0) = 0 for all te [t0, ti] 

implies that xin = 0. But (4.6) asserts precisely that y(t, to, xtn - x[n, 0) = 0. Therefore 

x«o ~~ xt0

 = 0 o r xta = x't0- Therefore the system is completely reconstructible. I 

The following theorem states a necessary and sufficient condition for the system to be 

reconstructible. 

Theorem 4.2: The system defined by the pair of matrices (A,C), where A is n x n and 

C is I x n, is completely reconstructible if and only if the row vectors of the (nt x n) 

reconstructibil i ty matr ix 

Q = 

c 
CA 

CA2 

OA"-1 

span the n-dimensional space, i.e., i f and only if the rank of Q is n. 

P r o o f : By theorem 4.1, the condition that the system be reconstructible is equivalent with 

the condition that for each t, there exists a finite to < t\ such that y(t, to, xtn, 0) = 0 

implies that x<0 = 0. This is equivalent with the existence of a finite to < t\ such that 

CA^tl~'o^xt,y = 0 for to < t < t\ implies that xt„ = 0. Wri t ing this in matrix form gives the 

requirement that the quality 

r c - r n i 
CA 0 

xt„ = 

.CAll~to, .0 . 

for some to < ti implies xtn = 0. We shall show that it is sufficient to take t\ — to = n - 1 

or to — ti — n + 1. 

Thus, take t\ — to = n — 1, and consider the system of linear equations 

0 = 

r c ] 
yt„+i 

— 
CA 

.yt„+n-\. .CAn'1. 

104 



or 

0 = Qxt0. 

Suppose that the rank of Q is n. Then it follows from a theorem in l inear algebra that 

Qxto = 0 implies that xto = 0. (Recall that the (in x n) matr ix Q has a left inverse 

satisfying LQ = I i f and only if its rank if n. A lso , i f Q has a left inverse, the solution of 

Qxto = 0 is unique, if a solution exists. Since xto = 0 is a solution, it is the unique solution 

when Q has rank n.) Therefore, i f the rank of Q is n, the system is reconstructible. 

To show the converse, first note as an implication of the Cayley-Hami l ton theorem that 

the rows of CAh are linearly dependent on the rows of Q for h > n. Therefore, for any 

to < t, the rank of 

r c ] 

CA 

CAtl-t,\ 

is less than or equal to the rank of Q (equal for t\ — to > n — 1). Now if Q has rank less 

than n, there exists an i< 0 ^ 0 such that 
Q*t0 = o-

Further, by the preceding argument, if the rank of Q is less than n, there exists an i< 0 ^ 0 

which solves 
f C I 

CA 
xt„ = 0 

for any finite to < t\. Therefore, if the rank of Q is less than n, the pair (A,C) is not 

reconstructible. I 

3. Examples 

(a) Consider the system 

#t+i = P^t + £ l t + l 

yt = 0t + tit 

where (e\t+i,£2t) is a white noise vector satisfying 

\ e l t + l 1 \ £ l t + l ' [ V , V j l 
. *2t . . *2t . v3

T v 2 J 
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Here Bt is a hidden state variable, and yt is the observed output. For this system, we set 

xt = Bt, A = p, C = 1. So long as p ^ 1, (A , C ) is reconstructible 

(b) Consider the system 

0<+i = P\Bt + P20t-i + Cu+i 

yt = Bt + e2t 
where (et+\,£t) is again a vector white noise. The system can be written 

i °t 

yt = (1 0)xt + C2t-

, C = ( 10 ) . The observability matr ix Q is Q = 

. So long as p2 ^ 0, the pair (A, C) is reconstructible. 

[01+11 \p\ P2 1 

[ 9 * 1 [c i i+i 1 
Bt . 1 0 . Bt-i . 0 . 

For this system, we take A 

[ 1 0 
Pi P2 

(c) Consider the system 

Pi P2 
1 0 

Bt+i = pBt + ei i+i 

<f>t+i = <*<i>t+i + C2t+1 

!/t = c\Bt + c2<pt + £3t 

where (eu+i, £2t+l, £3t) is a vector white noise. For this system, define 

*t = [ ! ' ! > -4= in ! | , C - ( c i c » ) . 

We then have the observability matrix 

Cl C2 

The system is observable unless ci c 2 = 0 or p = a . 

(d) Consider the maximum problem: 

maximize ^ —xJCTCit + ujQt 

t=tn 

subject to xt+i = Ait + But- As we shall see in the next chapter, it is of interest to 

determine the reconstructibilt iy status of the pair (A,C). We invite the reader to check the 

reconstructibil i ty status of the (A,C) pairs for the following problems: 

(i) The "transformed" consumption problem given above on page 2-8, 2-9. 
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(ii) The capital accumulation problem given in pages 3: 25-28. 

4. The Reconstructibility Canonical Form 

We next define the concept of the unreconstructible subspace. 

Definition 4.2: The unreconstructible subspace of the system (4.1)-(4.2) is the linear sub-

space of states xtQ for which y(t; xt0, to, 0) = 0, t > to-

Theorem 4.3: The unreconstructible subspace of the n-dimensional system (4.1)-(4.2) is 

the null space of the reconstructibil i ty matr ix 

Q = 

c 
CA 

,CAn~l 

Proof: This follows directly from the machinery in the proof of the previous theorem, and 

from the definition of the null space of Q,M(Q), as the set of vectors x such that Qx = 0. 

Thus any ini t ial state vector i< 0 in the null space of Q produces an identically zero output in 

response to a zero input, while any init ial state vector xt„ not in the null space of Q produces 

a non-zero response. I 

The following lemma describes a characteristic of the unreconstructible subspace of 

{A,C) which we shall use. 

Lemma 4.1: The unreconstructible subspace of (A,C) is invariant under A. 

Proof: We must show that if xtl, belongs to M(Q), then Axt„ also belongs to M(Q). By 

the Cayley-Hami l ton theorem, we know that there exist scalars a\ such that 

n - l 

Ah = Y, <*kAk,h > n 

k = 0 

n - l 
It follows that 

CAk = Y. <*kCAk,h > n. 

Now let Xf0 be in the null space of Q, or 

c 
CA 

•tn = 0. 

CA n - l 
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Since CAnxtn = ZkZl akiC'^fc)««o = °- i l f o l , o w s t h a t 

r c i r CA i 
CA CA2 CA 

CAN-\ CAN. 

QAxt0 = 

Therefore Axtn is in the null space of Q. I 

The next theorem indicates that the state of the system can be determined only to within 

the addit ion of an arbitrary vector in the unreconstructible subspace. 

Theorem 4.4: Consider the system (4.1)-(4.2). Suppose y ( and ut are known over an 

interval to < t < t\, with ti — to > n — 1. 

(a) The in i t ia l state of the system at time *rj >s determined to within the addition of an 

arbitrary vector in M(Q). 

(b) The terminal state at time t\ is determined to within the addit ion of a vector of the form 

^(h- to) where itn is an arbitrary vector in M(Q). 

Proof of (a): We must show that if xin and x'to produce the same output yt,to < t < t\, for 

any input ut,t0 < t < t\, then *t0-x'U) belongs toAf(Q). Now, y(t, t0,xto,u) = y{t; t0, x'tl),u) 

for to < t < t\ is equivalent with CAl'-tn'xto = CA^-^x'^ for to <*<*!• T l l i s i s equivalent 

with C A ( - t o ( z t o - x'tl)) for all t 0 < t < t v This implies that i , „ - x'tl) belongs to Af(Q). 

Proof of (b): The addit ion of an arbitrary vector i " , in M{Q) to the in i t ia l state results 

in the addit ion to the output of CA^'^x"^. Since r", belongs to N(Q), the addition is zero 

for all t < t 0 . I 

The next theorem represents the structure of the system in a way that we shall find very 

useful. 

Theorem 4.5: Consider the n t h - order t ime invariant system 

x j + i = Axt + But 

yt = Cxt 

U2 

where the m rows of U\ form a basis Form a nonsingular transformation matrix U = 

for the m-dimensional (m < n) subspace spanned by the rows of Q. The (n - m) rows of 
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Ul are chosen so that, together with the m rows oiU\, they form a basis for Rn. Define a 

transformed state vector x[ by 

x\ = Uxt 

Then in terms of x\ the system is represented in reconstructibility canonical form 

A'n 0 (4.7) 

(4.8) 

xt+i = A' A' n 2 \ ^22 

yt = (C[ o)x[ 

BL y-t 

Here A'n is an (m x m) matr ix, C[ is (t x m) , A22 is (n - m) x (n - m), and B\ is (m x k). 

The pair ( j4 ' n ,C{ ) is completely reconstructible. 

P r o o f : Suppose that rank (Q) = m < n, so that Q possesses m linearly independent rows. 

This implies that the null space of Q has dimension (n — m). Let the row vectors f\,..., fm 

be a basis for the m-dimensional linear space spanned by the row vectors of Q, i.e., the range 

space of QT. Let / m + i> - . . , / n be (n — m) linearly independent row vectors that together 

with fi,..., fm span Rn. Now form 

u = u2 

\h 1 r/m+i 1 
h 

.fm. 

r/m+i 1 
Ui = 

h 

.fm. 

, u2 = 
. fn . 

Introduce the transformed state vector x't = ( / i t so that x< = U 1x[. Then the system 

(4.1)-(4.2) can be written 

U~lx\+X = AU~lx[ + But 

yt = CU-lx\ 
or 

(4.9) = UAU~lx\ + UBut 

(4.10) yt = CU~lx't 
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Part i t ion U 1 conformably with the part i t ion of U, so that 

where T\ has m columns and T2 has (n - m) columns. We have 

J, 
UU'1 = [u2 

(r,r2) = r / 2 r , c / 2 r 2 

m 
0 

0 

which implies that C/ iT 2 = 0. Now the rows of U\ form a basis for the range space of Q , 

so that any vector x that satisfies U\x = 0 also satisfies Q x = 0. (U\x = 0 states that x 

is orthogonal to the range space of QT and therefore is in the null space of Q. For recall 

from linear algebra that the null space of Q is the orthogonal complement of the range 

space of QT) Since U\T2 = 0, it follows that all columns of T 2 are in M{Q). Because T2 

has (n — m) l inearly independent column vectors, and the unreconstructible subspace has 

dimension (n — m) , the column vectors of T2 form a basis for M(Q). Therefore, U\x = 0 for 

any x belonging to M(Q). 

We can write 

UAU~l = 
UiATi UiATt 
U2ATX U2AT2 

A[TXT2\ = 

CU~X = [CTi,CT2] 

A l l of the column vectors of T2 are in N(Q). Because N(Q) is invariant under A (by lemma 

4.1), the columns of AT2 are in Af{Q)- Therefore, U\AT2 = 0. Since the rows of C are rows 

of Q, and since the columns of T2 are in N(Q), we also have CT2 = 0. Thus, the above 

equations become 

A' = UAU'1 = 
UiATx 0 

{U2ATi U2AT2 

A'u 0 
A' 21 l22 

c = cu'1 = (cr,,o) = (c;,o). 

Thus, the system can be written in the form of (4.7) and (4.8), 

(4.7) i 
21 A ' „ A\ 22 

X + 
b 2 

(4.8) y(t) = (C\ 0)x\ 

110 



It remains to verify that the pair (A'n,C[) is reconstructible. Recall that A'n is (m x m) 

and C[ is (I x m). First notice that the reconstructibility matrix Q' for the transformed 

system (4.7)-(4.8) is given by 

= QU~l 

Since U is nonsingular, it follows that the rank of Q' equals the rank of Q, which is m < n 

r c i r cu-1 ] 
Q' = 

CA' CAU~X 

Q' = — 

Q'A'n-l CAn-lU~l. 

A' 
by assumption. From the equations C' = (C[, 0), A' = J1 

A21 A22 

0 
, Q' is calculated to be 

Q' = 

c[ o 
C[An 0 

l An-l 0 
Since the rank of Q' is m, it follows from the above equation and the Cayley-Hamil ton 

theorem that the (lm x m) matr ix 

C\A\\ 

i» i m - l 

has rank m. Since Q\ is the reconstructibil ity matr ix for the pair (i4'jj, C | ) , it follows that 

the pair is completely reconstructible. I 

The characteristic values of A\ j and of A22 are independent of the particular choice of U\ 

and U2- The proof of this assertion uses the same logic that was earlier used to prove theorem 

4.5 and wil l be omitted. The characteristic values of A'u are called the reconstructible poles, 

while those of A'22 are called the unreconstructible poles. The unreconstructible subspace 

is spanned by the characteristic vectors corresponding to the unreconstructible poles, while 

the reconstructible subspace is spanned by the characteristic vectors corresponding to the 

reconstructible poles. The proof of this assertion uses the same logic that was used to prove 

the lemma 3.2 about controllable and uncontrollable subspaces. 

5. D e t e c t a b i l i t y 

Next we have an important definition. 
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D e f i n i t i o n 4.3 The linear time invariant system (4.1 )-(4.2) is said to be detectable if its 

unreconstructible subspace is contained in its stable subspace. 

We have the following theorems. 

Theorem 4.6: Any stable system is detectable. 

Proof: The unstable subspace is empty. I 

Theorem 4.7: Any completely reconstructible system is detectable. 

Proof: The unreconstructible subspace is empty. I 

Theorem 4.8: Consider the linear time invariant system X J + J = Axi,yt = Cx\. Transform 

it into the reconstructibi l i ty canonical form 

xt+\ — 
A'n 0 
A1 A' 21 1 22 

yt = (C[, 0)x[ 

where (-4'ji, C[) is completely reconstructible. Then the system is detectable if and only if 

A'22 ' 8 a stable matr ix. 

Proof: Detectabil i ty requires that if xtl) belongs to M(Q), then xt = A^'^xt,, —* 0 as 

t —* 0 0 . If X ( 0 is in JV(Q), then it has the representation xt{) = C / - 1 ̂  
'2t 0 

, where U 1 is 

the nonsingular transformation matrix defined in theorem 4.5, x'2tn is an (n — m) x 1 vector, 

and U~x = ( T i , T 2 ) where the columns of T\ form a basis for the reconstructible subspace 

and the columns of T2 form a basis for the unreconstructible subspace of (A, C). We have 

that 

x , = U~x 0 
, < ( t - t „ ) , 
"22 '2tn 

Since U~x is nonsingular, x< —» 0 as t —» 0 0 for all x'2tll if and only if A'22 X3 a stable 

matrix. I 

A n alternative proof of this theorem in terms of the eigenvectors of the reconstructible 

and stable subspaces, can be constructed paralleling the argument in the proof of theorem 

312 on stabil izabil i ty. 

We now describe the concept of duality, which is a very useful tool for clarifying the 

relationship between control and filtering problems. 
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D e f i n i t i o n 4.4: Consider the system 

xt+i = Axt + But 

(4.11) 

The dual system is defined as 

(n x l ) (n x n ) ( h 1) 

yt = C xt 

(1 x 1)(1 x n) (n x 1) 

x't+1 = ATx\ + CTu\ 

(n x l ) ( n x n)(n x 1)(1 x 1) 
(4.12) 

yl = BTx\ 

(k x 1)(1 x n) 

The following theorem is immediate: 

Theorem 4.9: The dual of the dual is the original system. 

The following theorem is also immediate: 

Theorem 4.10: Consider system (4.11) and its dual (4.12). The following statements are 

true: 

(a) The system (4.11) is completely controllable if and only if the dual (4.12) is com­

pletely reconstructible. 

(b) The system (4.11) is completely reconstructible if and only if the dual (4.12) is 

controllable. 

(c) System (4.11) is stabilizable if and only if the dual (4.12) is detectable. 

(d) System (4.11) is detectable if and only i f the dual (4.12) is stabil izable. 

P r o o f : (a) and (b): form the appropriate controllabil ity matr ix P and reconstructibility 

matr ix Q. 

(c) Transform (4.11) via x\ = T~1xt into a controllabil ity canonical form 

x't+l = 
A\t A\i1 i . \ B[ '11 ^12 

0 A'-22 

' /-»» \ » 

0 ut 

yt = (C[ CM. 

113 



where (C[ C 2 ) = CT. If the system (4.11) is stabil izable, then {A'n,B\) is controllable and 

A'22 i a stable. The dual of the transformed system is 

(4.13) 
t* 

xt+\ 
A'T 0 
/ i 1 2 / i 2 2 

1 

c? u, 

yt = (B[T, 0)x't' 

Since A'n,B[ is completely controllable, A'flt B'f is completely reconstructible, as can be 

verified by checking the ranks of the pertinent controllabil i ty and reconstructibil ity matrices. 

Since A'22 ' s stable, so is i4'2-2. Therefore, system (4.13) is detectable. By the nonsingular 

transformation TTx\ = x't* it can be verified that the system (4.13) is transformed into the 

dual of the system (4.11). Therefore, since the system (4.13) is also detectable, the dual of 

the system (4.11) is also detectable. The inverse is easily proved, as is (d). I 
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C h a p t e r 5 

C o n v e r g e n c e a n d S t a b i l i t y T h e o r e m s F o r 

T h e O p t i m a l L i n e a r R e g u l a t o r P r o b l e m 

1. I n t r o d u c t i o n 

This chapter collects the dividends we have earned by investing the last two chapters in 

the ideas of controllabil ity, stabil izabil i ty, reconstructibility, and detectability. We shall use 

these ideas repeatedly in order to establish convergence and stability theorem for the optimal 

linear regulator. Actual ly, we shall earn a double return on our investments, because by 

repeated appeals to duality, the theorems established in this chapter will be used in chapter 

6 to state theorems that apply to the Ka lman filter. 

2. T h e O p t i m a l L i n e a r R e g u l a t o r P r o b l e m A g a i n 

The following lemma wil l prove useful: 

Lemma 5.1: Consider the quantity 

(t = tn ' 

where the H^s are given n x n matrices, where G<, is a given n x n matrix, and where {x<} 

obeys the vector stochastic difference equation 

xt+i = Atxt + 6 + 1 

Assume that (t+i is an n x 1 vector white noise satisfying 

Eh = 0 V( 

E(t(J = 0 for t ^ s 

E(t(f = vt yt, 

Vt a positive definite matrix. Assume that is orthogonal to past xt, so that 

Extg - 0 for t < s. 

Then 

J(Xtn) = XJ„GtnXtn + 4 , 
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where Gt0 and dto are solutions for to of the difference equations 

(5.1) Gt-i = Aj^GtAt-i + Ht-i 

(5.2) dt-i = dt + trVtGt 

with terminal conditions G«, and dtl = 0 given. 

P r o o f : Wri t ing out J(xto) we have 

J(xto) = &to {xT0Hto

xt„ + I ^ + i ^ t 0 + i i < „ + i H 

(5-3) r 

+ I ^ . j / f t j - i l t , - ! + I ( l G t l I ( i } . 

Using the law of iterated expectations repeatedly, this can be wri t ten 

J(xto) ~ EioixtoHtoxio + Etn+i{xJll+1Ht„+ixto+i 

+ El_,{xl_xHu.xxh^ + EtlxlGtlxh}}}}. 

We shall "work backwards", starting by evaluating the terms conditioned on the most infor­

mation. Since Xt is assumed to be included in the conditioning set at t ime t, we have 

EtlxtxGtxxtl = xtiGtixtl. 

Next, we have 

Eti-l { • f t . | f r | I - l C | | - l + X ^ G ^ X f , } = X ^ , , / / , , - ! ! , , - ! 

+ E t l-i{(4t,-1**1-1 +6i)TG«i(i4«,-i**,-i +6,)} ' 

= * t , - I # t i - l * t i - l + S B t j - l ^ t j - l C l i ^ n - l * ' ! - ! + ^ l - l ( ^ l i ^ l 6 i ) 

= xH-l(Htl-l + ^ - i G ^ ^ - i K - , + trVtlGtl 

= * « 1 - i G ' t i - i * t i - i + ^t,-i 

Continuing to work backwards leads to the result that for 

(0 < t < t\ - 1 

Et{xJHtxt + Et+i{xT+lHtxt + \ + • • • + E ^ x ^ G ^ z , , } • • •}} 

= Xj G j i t + de 
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where Gt and dt are the solutions from (1) and (2). | 

Let R be a (n x n) negative semidefinite matr ix, Q a (k x k) negative definite matrix 

and Ptl a given (n x n) negative semidefinite matr ix. Consider the criterion 

(5-5) J(xt0) = Et0[Y(xjRxt 4- vfQvt) + xlPtlxtl] 
t=t0 

where the system obeys the stochastic difference equation 

(5.6) xt+i = Axt + Bvt + (t+i 

where ( t + \ is a vector white noise with E(t([ = Vt. Suppose that vt is set according to the 
control law 

(5.7) vt = -Ftxt 

where {Ft} is an arbitrary sequence of k x n matrices. Substituting (5.7) into (5.6) gives the 

"closed loop" system equation 

(5.8) zt+i = (A - BFt)xt + (t+i-

Substi tut ing (5.7) into the criterion function (5.5) gives the following expression: 

<i-i 

(5.9) H*to) = Eto[Z xJ{R+FlQFt}xt+xlPtlxtl 

We can now state the following useful theorem: 

Theorem 5.1: Consider the criterion function (5.5) and the system (5.6) operating under 

the prescribed feedback law (5.7). The criterion function takes the value 

where Ptl} and dt„ are the solutions of 

Pt-i = (A - BFt-i)TPt(A - BFt-x) + R + Ff-iQFt-i 

d. = dt + tr\\Pt 

with terminal conditions P(, and dtl — 0 given. 
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P r o o f : In lemma 5.1, set At-i = {A - BFt-i),Gh = Ptl,Ht = R + F?QFt. I 

We can now define an important problem. 

D e f i n i t i o n : Let R < 0,Q < 0, Ptt < 0 be given. Consider the criterion 

(5.10) Et0[J2{xjRxt + vfQvt} + xlPtlxh , 
t=t0 

where the system is governed by 

(5.11) x t + x = Axt + Bvt + 6+1, 

xtry given, 6+1 being a vector white noise with E£t£t = The problem of maximizing 

(5.10) subject to (5.11) with respect to choice of 

Ft0, ^ t o + l > " " ' » Ftx-\ 

where vt = —Ftxt is called the optimal linear regulator problem. 

From theorem 5.1, we know that for a given sequence F<„, Ft0+i, • • •, Ft,-i, the criterion 

(5.10) is given by 

(5-12) xlPtltxtlt + dtl, 

where Ptl) is the solution to 

(5.13) Pt-! = (A - BFt-\)TPt(A - BFt-\) f R + F ^ . Q F ^ j 

with Pt1 given and 

(5.14) dt-i = dt + trVtPt 

with dty — 0 given. Our object is to find a sequence of control laws {F°)t F°<)+1, • • •, Ffl_l} 

that maximizes i ^ P ( 0 i ( 0 + dt„ for all We make two observations that simplify the task 

of maximizat ion. First , from (5.14) it follows from the specifications Vt > 0 and Ptt < 0 that 

1 is a monotonically increasing function of dt and Pt. It immediately follows that dt-\ 

is a monotonically increasing function of Pt, Pt+x, • • • i Ptx-\- Second, from (5.13) it follows 

that given F J _ J , Pt-\ is a monotonically increasing function of Ft. From these observations, 
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it follows that in order to maximize xJ0Ptnxtt} + dto over {Ftl), Ftlt+i, • • • , F t , _ 1 } ) the Ft's 

should be chosen to maximize the matrices Pt,t = to,--,t\ — 1, subject to (12) with Ptl 

given. 1 We say that F°_x is the choice of Ft-\ that maximizes Pt-\ with P° given, yielding 

maximized value P°_ i , if for all other choices of Ft^i,(P°_1 - Pt-\) > 0. The statement 

(P°_i — Pt-i) > 0 means that P°_i — Pt-i is positive semidefinite, which is equivalent with 

the statement that xJ_1P°_lxt-i — xJ_1Pt-ixt-\ > 0 for all vectors 

The preceding observations imply that to maximize xJnPtoxto + dtl) (uniformly in xtl)), it 

is sufficient to proceed sequentially, working backwards to produce a sequence of maximal 

{ P ° , _ l , Pt,_2, • • • > ^ Q } - That is, given Ptl, choose Ftl_i to maximize 

(5.15) P t l _ ! = (A- BFtl-,)TPTI(A - BFtl-i) + R + F^QFt^. 

Then substitute the optimizing Ftl-\ = F^^i into (5.12) to calculate the maximized values 

for Pti-i = Pti-i- Next choose Ftl-2 to maximize 

P ( l - 2 = (A - B F t ^ f P t ^ A - BFh-2) + R + F^QF^-i, 

and so on. So at time t — 1 we have to choose Ft-\ to maximize 

P<_! = (A - BFt-i)TP?(A - BFt-i) + R + F?_xQFt-i 

or 

Pt-i = ATP°A - ATP°BFt-i - F?_XBTP?A 

+ F^_1BT P°BFt-\ + R + F^QFt-i 
or 

Pt-x = FT_X{BTP;B + Q)Ft-i - F?_XBTP;A 

- ATPt°Ft-i + R + ATP?A. 

Complete the square by adding and subtracting (ATP°B)(BTP°B + Q)'1 (BTPT°A) from 

the right side of the above equation to get 

pt-x = [FI, - {ATP?B){BTP;B + Q)-1} [BTP?B + o] 

(516) . [Fl, - (ATPt°B)(BTPt°B + Qy1]T 

- {ATP?B){BTP?B + Q)-\BTP?A) + R + ATP°A. 

1 Note that since Pt for t = tn, •• •, t\ - 1 obeying (5.12) are negative semidefinite, maximizing the P,'s 
results in minimizing the absolute value of the term d,„, which is necessarily nonpositive. 
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Recall that ^BT P°B + is a negative definite matr ix, and that Ft-\ appears only in the 

first quadratic form on the right side of the equation. Therefore, to maximize Pt-i given 

P°,Ft-i should be chosen so that 

F°J , = {A1 PfB^B1 P°B + Q) \T DO T no v-1 

or 

(5.17) F°_, = {BTP°B + Q)~lBx PfA. -1 D T D O 

Notice that this choice of F j _ i makes the first negative definite quadratic form on the right 

side of (5.16) vanish. Substituting the opt imal F°!_l from (5.17) into (5.16) then gives the 

following equation for Pf-i-

(5.18) F°_j = ATP°A + R - A1 P°B{Bl P°B + Q)~lBl P°A. T no Dl aT no i .-1 DT no 

This equation is known as the matrix Riccati difference equation. 

We summarize these results in a theorem. 

Theorem 5.2: Consider the optimal linear regulator problem, to maximize 

Y,{*TtRxt+viQvt} + xlPixxh 

t=u, 
(5.10) Et0 

subject to xtf) given, R < 0, Q < 0, Ptn < 0; where the system dynamics are given by 

(5.11) xt+i = Axt + Bvt + 6+i -

where 6+1 is a vector white noise with E(ttT — <̂ The maximization of (5.10) is carried 

out over the parameters of feedback rules Ft in 

vt = - F , x , , t = t0,t0 + I,-;- ,<i - 1. 

For an arbitrary {Ft} sequence, the value of the criterion (5.10) is x £ P J ( ) x ( o + dto where Ptl< 

and dt0 are the solutions to the difference equation 

P^i = (A-BFt-i)Pt{A-BFt.i) + R + F^1QFt.l 

dt-i = dt + trVtPt 
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with terminal conditions Ptl and dtl = 0 given. The optimal choice of Fj 's is given by 

(5.17) Fr = (BTP^lB + Q)-1BTPt°+1A t = t0,t0 + 1,• • • ,t, - 1 

where P° is the solution of the matr ix Riccat i difference equation 

(5.18) P°_, = ATP°A + R - ATP°B(BTP°B + Q)~1BTP°A 

with terminal condition Ptl given. The matrices {P°} are negative semidefinite. When the 

opt imal feedback rules are used, the criterion function attains the value 

The matr ix P°n maximizes Ptn with respect to {Ft,t = to,to + 1,•••,£] - 1} over the class 

of all matrices P°n that satisfy (5.16) with terminal condition P f , given. This concludes the 

statement of the theorem. 

Notice that the optimal feedback laws given by (5.17) depend on A, B, R, and Q (partly 

through dependence on the P° sequence) but are independent of the variance matr ix Vt of 

the white noises (f Indeed, exactly the same decision rule would be implied if we set Vt = 0 

for all t, so that there is no randomness in the system. Whi le the noise statistics Vt don't 

influence the optimal decision rules, they do influence the value of the maximized criterion 

function through the dependence of dt0 on l^. 

3. T h e B a s i c C o n v e r g e n c e a n d S t a b i l i t y T h e o r e m s , W h i c h R e q u i r e C o n t r o l l a b i l ­

i t y a n d R e c o n s t r u c t i b i l i t y 

We now proceed to study the behavior of the solution of our problem as we extend the 

horizon arbitrari ly far into the future, or what amounts to the same thing, as we drive the 

ini t ial period to toward —oo, holding t\, fixed. We would find the following two characteristics 

desirable. F i rs t , as we drive to —* — oo, we would like Ptn to converge to a constant matrix 

P which is independent of the given terminal matrix P | , . This is a desirable feature because 

it implies v ia (5.17) that the sequence of opt imal control laws {Ft,,} also converges to a 

constant as £n —• - o o . This has the practical implication that the feedback law {Ft} that 
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solves the infinite horizon problem is time invariant, so that Ft = F for all t, and that the 

resulting closed loop system 

xt+i = [A - BF)xt + 6+1 

is t ime invariant. Our second desideratum is, given that it is time invariant, that the closed 

loop system be stable. This requires that the matr ix (A — BF) be stable, that is, have 

eigenvalues with moduli less than unity. 

We shall state and prove several theorems that taken together give a set of conditions 

that are sufficient to guarantee these two desirable features. 

We first recall that as a result of theorem 5.2, the parameters of the optimal feedback 

laws {Ft} and of the value function matrices {Pj} are independent of the matrices Vt of the 

second moments of the noises 6- Thus for purposes of studying the behavior of F t° and Pt° 

as t —» —oo, we can just as well study the nonrandom problem that results when we set 

Vt = 0 for all t. The problem can be stated as follows: to maximize 

t i - l 

(5.19) * J > t „ x , 0 = £ (xjRxt + ujQut) + xlPt.xt 
t=tr> 

subject to xtn given and the law of motion 

xt+i = Axt + But. 

Here R is again a negative semidefinite (n x n) matrix, Q is a negative definite (k x k) 

matr ix, and P<, a given (n x n) negative semidefinite matrix. The maximizat ion is over 

F t i - l , F t , _ 2 , - - - ,Ftn where 

ut = -Ftxt. 

We shall study the behavior of the solution of this problem when we take the l imit as 

to —» - o o . 

We first state the following theorem. 

Theorem 5.3: Consider problem (5.19) with terminal value matr ix P*, = 0. Assume that 

the system (A, B) is controllable. Then the optimal Pt calculated from the matrix Riccati 

difference equation (5.19) converges as to —» —oo. 
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P r o o f : The value of problem (5.19) starting from xto = x 0 is x J P ^ x o , where P£ is the 

solution of the matrix Riccati difference equation (5.18) starting from Ptl = 0. Notice that 

since R and Q are negative semidefinite and negative definite matrices, respectively, we have 

xoPt0+lxo = max Y {xfRxt+ u[Qut} , given xtli+i = x0 

{"•l.L.o+i t=to+l 
h-2 

= m a x Y {xTRxt + ujQut} , given x«„ = x 0 

( lit —a 
"•}.!=«„ <=«0 

^ max X x f flxt + ujQut , given x« n = x 0 

= *o"P«0 lo­

in each case the maximization is subject to the law of motion x t + i = Axt + But. Thus we 

have that for all to < t\ — 1, 

(5-20) 4 ^ + 1 * 0 > xlPlxo 

for all x0eRn. According to (5.20), for any x0eRn, the sequence x?P?n_ixo i = to-t\ + l,to~ 

t\ + 2, ••• decreases monotonically with increases in the index t. Furthermore, since (A,B) 

is controllable, for every xoeRn, there exists a control sequence that drives x 0 to the origin 

in n steps. Consider using such a sequence of controls, followed by zero controls thereafter. 

This set of controls delivers a value of the criterion function 

U-i 

Y xTRxt + ujQut 

t=U) 

starting from i ( 0 = xo, that provides a lower bound for the values of the problem for any to < 

t\ - 1. It follows that for every x0£ Rn, XQ P«n-iXrj is monotonically decreasing as t increases, 

and is bounded below. Therefore, for every x0eRn, limj_oo x J P * n _ , x o = l i m ( o _ - 0 0 X? Ptllxo 

exists. Since this l imit exists for every xrje/? n, it follows that every element of the matrix 

P t | J converges as t0 -> - o o To see this, first set x 0 = (1 0 0 ••• 0 ) T , and notice that 

l i m ( 0 _ _ 0 O XQ P",xrj equals the l imit as t0 —» - o o of the (1, 1) element of P,°. Similarly, 

setting xo = e,-, where e{ is the t t h unit vector, shows that l imt , , . , - ^ X$P?XQ equals the t t h 

diagonal entry of P£. Next, choose x 0 = (1 1 0 0 0 • • • 0 ) R , to show that the (1 ,2 ) element 
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of P°0 converges as to —* - c o . Proceeding with this argument leads to the conclusion that 

all elements of PZ converge, to a l imit P 

l im P°(t0) = P° . I 
«o-»-oo 

We immediately have 

Corollary 5.1: Under the conditions of theorem 5.3, the l imit ing matr ix P of the value 

function is negative semidefinite and satisfies the algebraic matrix Riccati equation 

(5.21) P = ATPA + R - ATPB{BTPB + Q)~lBTPA. 

P r o o f : Negative semidefiniteness of P follows from the facts that the matr ix Riccat i dif­

ference equation (5.18) maps negative semidefinite P< into negative semidefinite Pt-i, that 

Pf, = 0 is negative semidefinite, and that l imits of sequences of negative semidefinite matri­

ces are negative semidefinite. Equation (5.21) follows by taking l imits of both sides of the 

matr ix Riccat i equation (5.18) as t —» - o o . I 

If iterations on the matrix Riccati difference equation (5.18) from terminal matr ix P t l = 0 

converge to a negative semidefinite matr ix P as to —» - o o , it follows from (5.17) that 

l i m t 0 _ _ o o F° exists and equals F°, say. 

We desire to study the stability characteristics of the optimal steady-state closed loop 

system 

x t + l =(A-BF°)xt. 

In part icular, we would like the steady-state optimal closed loop system matr ix (A — BF) 

to be a stable matr ix. The following theorem states one useful set of sufficient, though not 

necessary, conditions for (A - BF) to be stable. 

Theorem 5.4: Consider the optimal linear regulator problem with Ptl = 0. Let the (n x n) 

positive semidefinite matrix - R be expressed as GTG where G is (r x n) , r < n, and r is the 

rank of R (such a decomposition of R always exists by a theorem in linear algebra). Assume 

that the pair (A,B) is controllable, and that the pair {A,G) is reconstructible. Then the 

optimal closed loop system matrix (.4 — BF) is stable. 
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P r o o f : From (5.17) and (5.21), the algebraic matr ix Riccat i equation can be written as 

P = (.4 - BF)TP{A - BF) + R + FTQF. 

Let D = (A — BF), and write the above equation as 

(5.22) P = DTPD + R + FTQF. 

The closed loop system whose stability we desire to establish is 

x m = (A-BF)xt. 

To establish stabil i ty it suffices to show that for any x t ( ) = xo,limt_oo xt = 0. To this end, 

notice that 

xJ+lPxt+1 - xJPxt = xjDTPDxt - xJPxt 

= xJ(DTPD - P)xt. 

By (5.22), this equation can be written as 

x f + 1 P x t + 1 - xJPxt = -xJ(R + FTQF)xt. 

This implies that 
T T 

xt„+j+lPxt„+} + l = xut

Pxu, 

- E xl+t(R+FTQF)xtl,+l. 
i=0 

Since the left-hand side is less than or equal to zero because P is negative semidefinite, and 

since (R + FTQF) is negative semidefinite, it follows that 

xl+l(R + FTQF)xtll+, 

approaches zero as i —» oo. Since Q is negative definite and R = —GTG, it follows that 

l im Gxtn+i =0 
l — OO 
l im Fxtn+i =0. 
1 —»oo 

Notice that 

" G ( * 1 + „ - i + E.V,1 A^BFxt+n-i-i)} 

< 7 ( * i + - j + L:=? A l - l B F x l + n _ i _ 2 ) 

G(xt+1 + BFxt) 
Git 
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(5.23) 

GAn-^ 
GAn~2 

GA 
. G 

Xt = 



From our previous results, since lim^—ao Gxt = 0 and limt_oo Fit = 0, the right side of 

(5.23) has a l imi t of a zero vector as t —» oo. Therefore, the l imit of the left hand side is also 

zero. But by the assumption that the pair (A,G) is reconstructible, the (n-r x n) matrix on 

the left side has rank n and therefore has a left inverse. Therefore, the system of equations 

TGA—1"1 

GAN~2 

GA 
G 

i = 0 

has the unique solution x = 0. It follows from the fact that the l imit of the right side of 

(5.23) is zero that the l imit of xt as t —• oo is zero. This proves that (A — BF) is stable. I 

4. Convergence and Stability Theorems That Only Require Controllability and 

Detectability 

The following theorem shows how the condition that the pair (A,G) is reconstructible 

can be relaxed and replaced by the assumption that (A,G) is detectable. 

Theorem 5.5: Consider the optimal linear regulator problem, to maximize 

(5.24) £ {xjRxt + ujQut) 

t=ta 

subject to xtn given, and x^+i = Ait + But. Here it is (n x 1) and is (k x 1), while R is 

a negative semidefinite matr ix of rank r < n, and Q is negative definite. Assume that the 

pair (A,B) is controllable. Further, let R be represented as — R = GTG where the matrix 

G is r x n. Assume that the pair (A,G) is detectable. Then the closed loop system matrix 

(A — BF) is stable. Further, the feedback law assumes the form 

F = {F[ 0)U 

where F[ is (k x m) and where U is any nonsingular (n x n) matrix in which the first m rows 

of U form a basis for the reconstructible subspace of (A,G). This means that the optimal 

setting for Ut is a linear combination of basis vectors for the reconstructible subspace. 

Proof: Select a nonsingular matrix U whose first m rows form a basis for the reconstructible 

subspace of the pair (A,G), where m is the dimension of the reconstructible subspace. 
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Construct the reconstructibility canonical form by defining x\ = Uxt,A' = UAU 1 ,G' = 

GU-\B' = UB, so that 

xt+i = A xt + a ut 

yt = Gxt 

or 

(5 25) 
xu+i 
x2t+l 

11 0 
4 ' 4 ' 

22 

-If 
-2( 

B'ut 

(5.26) *i = [Gi o] u 
J2t 

Here x'u is (m x 1), i ' 2 t is (n - m) x 1, G\ is (m x m), j4 ' n is (m x m) . In terms of the 

transformed variables x't, the term xjRxt in the criterion function (5.24) is 

xfRxt = x'tTU~l RU~lx 

= -x'tTU-lTGTGU-lx't. 

In constructing the reconstructibil ity canonical form, it was proved that GU'1 = (G\ 0) 

where G\ is the (m x m) matrix in (5.26). Thus, the term in the criterion function can be 

written as 
x[Rxt = - X'IJGJGIX'U 

#11 o 
0 0. 

where -R'n = G [ G , is an (m x m) matrix. Thus, the opt imum problem posed in the 

statement of the theorem is equivalent with the following problem: to maximize 

r - l J 

- xit n n x u — xt 

ti-\ 

(=(„ 
'T R'u 0 

0 0 
t't + ufQut} 

subject to 

•lr + l 
i l i (1 

A' A' + A ; u,. 

Since (A', 5 ' ) is controllable, it follows from theorem 5.4 that the matrix Riccati equation for 

this problem starting from P'tt = 0 converges. Let us partit ion the matrix Riccati equation 

for this problem conformably with the partit ioning of x\. The result is, where we omit primes 
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from variables for convenience, 

(5.27) 
Pll(t- 1) Pn(t - 1)1 ' f i n 0] 
Pn(t- 1) Pn(t - 1) o 0. 

\AuPu(t)An + AnPn{t)An + A7iP»i(t)Au + AlxP22{t)Al2 , AnPX2{t)A22 + Aj2P22{t)A22 

[ AT

2P21(t)AU + Aj2P22(t)A2i , Aj2P22{t)A22 

-1 _ [Aj^^Bx + A l P ^ B . + A j ^ ^ B , + ^ 2 ( 0 * 1 ( B T p ( t ) B Q ) 

[ Aj2P21(t)B1 + A22P22(t)B2 J V Q) 

tA&PuMBi + A&PnWBi + AnPl2{t)B2 + A$xP22{t)B2-f 

A&PnWBi + A22P22(t)B2 J 

Inspection of (5.27) immediately shows that starting from Pt1 = 0, the solution is 

P12(t) = 0 

fti(0 = o 

ftj(i)»o 

for all i < i{. Substi tut ing these solutions into the difference equation for P\\{t) gives 

P „ ( « - 1) = fl„ + AT

xxPxx{t)Axx - AT

xPxx{t)Bx{BjPxxBx + Q ) " 1 

This is just the matr ix Riccat i equation for the subsystem defined by the matrices {An, B\ ,Q, R J J ) 

Since this system is controllable, this equation is known to converge. The opt imum steady 

state control law is given by (restoring the primes), 

{F[, F'2) = [(Bf'p'nB[ + Q)-lB?P[lBniA', 0] 

where F[ is k x m, and F2 is a k x (n - m) vector. The closed loop system is then 

(5.28) r 1 
r U + l r 2 l + l -

- 4 ' „ - B ; F { 0 At 
4 A'21-B'2F{ A'22. 

The subsystem (A'xx, B\) is controllable, since (A',B') is controllable. Further, by the 

construction of the reconstructibil ity canonical form, the pair [A'n,G\) is reconstructible. 
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Therefore, by theorem 5.4, the closed loop system matrix (A'n — B[F[) is stable. The eigen­

values of the closed loop system (A' — B'F') on the right side of (5.28) are the eigenvalues of 

(A'n — B[F[) and the eigenvalues of A 2 2 - The eigenvalues of AJJ are less than unity in mod­

ulus by virtue of the detectability of (A, G) and by the construction of the reconstructibility 

canonical form. Therefore the closed loop system matr ix (A' — B'F') is stable. Recall that 

A' = UAU-\B' = UB,x\ = Uxt. 

From the optimal control law u(t) = -F'x'(t), we can calculate the control law in terms of 

feedback on the original state variables, namely, ut = — Fit = —(F'U)xt, so that (F'U) = F 

or (F[ 0)U = F. Notice that (A' - B'F') = U{A - BF)U~\ where U is nonsingular. Thus, 

since the eigenvalues of (A' - B'F') are all less than unity in modulus, the eigenvalues of 

(A - BF), which equal those of (A' - B'F'), are also all less than unity in modulus. I 

We can now prove the following theorem, which shows that under general conditions, the 

matr ix Riccat i equation converges to a l imit matrix P that is independent of the terminal 

matrix Ptl. 

Theorem 5.6: Consider the optimal linear regulator problem starting from Pe, = 0. Assume 

that sufficient conditions are satisfied so that iterations on the matrix Riccat i equation start­

ing from terminal matr ix Ptl = 0 converge, and that the associated stationary closed loop 

system matrix (A — BF) is stable. Then for any negative semidefinite terminal value matrix 

P t , , iterations on the matrix Riccati equation converge to the same negative semidefinite 

matr ix P , i.e., the l imit point described in theorem 5.3. 

P r o o f : The value of the optimal linear regulator problem with terminal value matrix Pf, is 

* 2 > P ( ' 0 i Pti)*to = m a X , E \ x J R x t + "f<?"t} 

{"•}.'=70 <=<" 
+ xI1Pt1Xtl 

where P ^ n i F ^ ) is the solution of the matr ix Riccat i equation, (5.18) at to with terminal 

condition Ptx. Because the matrix P*, is negative semidefinite, it is true that 

(5-29) xlP(t0>0)xto>xlP(to,Ptl)xU) 
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for every x t 0 belonging to Rn. Notice that if u< = -Fxt, then 

*i — i 
£ [xjRzt + ujQut] = £ [*tR*t + xjFTQFzt] 
t = t0 1=1(1 

t=to 

Now consider applying to the problem with terminal value matrix P<, the steady state control 

law ut = —Fit, where F = l im < 0 __oo Ftn is derived from the problem with zero terminal 

value matrix. Then we have xt+i = (A - BF)xt = Dxt where D = (A — BF). Let 

W = (R + FTQF). Then since xt = D^'^xt,,, we have that under this control the criterion 

function attains the value 

a .J[pr(! , - to)p ( e i ) I ) ( t i - to) + D T ^ W D ^ } x t n 

t = tn 

for any Xt[}eRn. Since uj — —Fxt is not necessarily the optimal control law, this together 

with (5.29) implies the inequalities, 

*2>(*0,0)x<J > xTP{t0, Ptl)x0 

( 5 ' 3 0 ) > x^[DT^'l^PtlD^-^ + Y D^-^HVD^]x0 

t=t,} 

for every xn.eRn. By assumption, we know that 

(5.31) l im P(t0, 0) = P. 
l<|—• - O O 

Further, since the eigenvalues of D = A — BF are less than unity in modulus, we have that 

l i m t o ^ _ o o £ , T ( t " t o ) P t , £ , ( ' , " ' n ) = 0 for every PH. Therefore, the l imit of the right side of 

(5.30) is 

(5.32) l im xT\DT^Ph£><'-'"> + DT^HvD^Axo 
1 = 111 

l im i f f V D^-^WD^-'-Axo = i J P x o 
>—> —oo t = tn 

.(,-1 

for every xoeRn. Together with the inequality (5.30), the limits (5.31) and (5.32) establish 

that l imta—oo P(to, Ptt) = P for every Ptj. I 
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We can now state: 

Theorem 5.7: Under the conditions of theorem 5.6, the algebraic matr ix Riccat i equation 

(5.33) P = A1 PA + R- A' PB(B' PB + Q)~1BTPA 

has a unique negative semidefinite solution P°. 

Proof: We know from theorem that P° = l imt_._oo P{t, 0) is a negative semidefinite 

solution of (5.33). If P were another negative semidefinite solution of (5.33), we would have 

from the previous theorem that 

l im P(t0,P) = P°. 
<l>—»-oo 

But P solves (5.33), imply ing that 

P(t0,P) = P. 

Therefore P = P°. | 

5. Convergence and Stability Theorems That Only Require Stabilizability and 

Detectability 

We now provide theorems that relax the assumption that (A, B) is controllable, and 

replace it wi th the assumption that (A, B) is stabil izable. We consider the optimal linear 

regulator problem, and assume that [A, B) is stabil izable. Without loss of generality, assume 

that the system is in controllabil ity canonical form, so that 

(5.34) [ * " + » ] = f ' 4 ' 1 A 

L*2i+i J I 0 A 
12 

22 J 
*1( 

X2t + 0 
«(0 

where i n is (m x 1), x2t is (n - m) x I, An is (m x m) and A22 is (n - m) x (n - m) , where 

m is the dimension of the controllable subspace. The eigenvalues of A22 are in modulus less 

than unity, and the pair (An, B\) is controllable by virtue of the stabi l izabi l i ty of (A, B). 

Part i t ion R conformably with x so that 

R = Rn R12 
R21 R22 i 
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where Rn is (m x m), and R22 is (n - m) x (n - m) , and #21 = #12- Part i t ion the value 

matrices Pt-i conformably with the partit ioning of xt, so that 

Pt = 
Pn(t) Pn(t) 

[p2i(t) P22(t) 

where P\\ is (m x m ) , P22 is (n - m) x (n - m). Then writ ing out the matr ix Riccati 

difference equation (5.27) in partit ioned form gives 

Pn(t - 1) = AnPn(t)An + Rn 

- A\xPn(t)Bx(Q + BTPn{t)B)-lB^Pn(t)An 
(5.35) 

Pl2(t - 1) = AT

nPn(t)Al2 + Aj1P12(t)A22 + R12 

(5.36) - AuPn{t)Bx{Q + Bj Pn(t)Bx)-\BTPn(t)Al2 

+ BfP12(t)A22) 

(5.37) 

P22{t - 1) = AT

2Pn(t)Ai2 + AT

2Pl2(t)A22 + Aj2P21{t)A12 

+ A\2P22(t)A22 + R22 

- (AT

2Pu(t)B, + ^ 2P 1 2(05i)(Q + BTPn{t)Bx)~l 

(BTPn(t)A12 + BTPn(t)A22) 

Equation (5.35) is itself the matrix Riccati equation for the optimal l inear regulator problem, 

to maximize 

£ {xJtRnxH + ujQut} + x{tlPn{ti)xtl 

t=t„ 

subject to 

xit+i = A\\x\t + B\Ut 

*U0 given. 

Since the pair (An, B\) is controllable, we know from theorems 5.5 and 5.6 that l imt ( l _-oo Pi 1 

(to) exists and is independent of the negative semidefinite terminal matr ix P\i(t\). Now 

represent the negative semidefinite matrix Rn as -Rn = GTG where G is (r x m) and r 

is the rank of Rn, with r < m. Assume that the pair (An,G) is detectable. Then from 

theorem 5.5, we know that the stationary closed loop system matrix (An - B\F\) is a stable 

matrix. 
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From the recursive structure of the partitioned matr ix Riccati equations (5.35), (5.36), 

(5.37), it follows that the l imit ing behavior of P\2{t) and Pn(t) as t —» - o o is equivalent with 

the behavior of the pair of equations derived by replacing Pu(t) in (5.36) with its l imit ing 

value Pn, and then, P\i(t) and P\2(t) in (5.37) with their l imit ing values in (5.37), if P\i(t) 

has a l imit . Making this replacement for (5.36) gives 

P12(t - 1) = AjtPuAn + AnPX2[t)A22 + Rn 
(5.38) 

- AnPnBx(Q + Bf Pi\Bi)~l(B\P\\A\2 + BfPu(t)An). 

Upon noting that 

[A„ - AnPnBx(Q + B 1

T P n B , ) - 1 B , r ] = (Au - B , F , ) T 

equation (5.38) can be written as 

(5.39) Pn(t - 1) = [An - Fj' BT)Pn{t)A22 + Rl2 + (Au - FjBT)PnAx2 

Since ( i4n - B\F\) and A22 are both stable matrices, it follows from (5.39) that P\2(t) 

converges as t —* — 0 0 , and that this l imit is independent of the terminal matr ix P\2{t\). 

Aga in , the l imit ing behavior of P 2 2 ( 0 a s ' ~* — 00 is governed by the equation derived by 

substi tut ing the l imi t ing values of the"forcing function" P\\(t) and P\2(t) in (5.38). Letting 

P n and P i 2 be the l imit ing values of P\\{t) and P i 2 (£ ) , these substitutions give 

P22(t - 1) = Aj2PnAl2 + Aj2Pl2A22 + Aj2P2lAx2 

(5.40) - ( A [ 2 P n S i + Aj.PnB^Q + BjPnBxy\BjPnAX2 + BTP12A22) 

+ R22 + Aj2P22{t)A22. 

Since all the terms on the right side of (5.40) are constants except the last, and since A 2 2 

is a stable matr ix, it follows that as t —» - 0 0 , P22(t) converges to a matr ix P 2 2 that is 

independent of the negative semidefinite P 2 2 (<i) chosen. 

By partit ioning the optimal steady state feedback matrix F conformably with the par­

t i t ioning of 1 , we obtain 

F = (FXF2), 

where F\ is k x m and F2 is k < (n - m). From formula (5.17) in partit ioned form, we obtain 

(5.41) F\ =(Q + BlPnBi)-1BiPnAn 

133 



(5.42) F2 = (Q + BfPnB1)-lBl

TP12A22. 

The optimal closed loop system matr ix is 

(5.43) (A-BF) = 
Au-BxFx A12-BxF2 

0 A22 

The closed loop system matr ix is stable, since (An — B\Fi) and A22 have both been shown to 

be stable under our assumptions, and since the eigenvalues of (A — BF) are the eigenvalues 

of (An ~ B\Fi) and the eigenvalues of ^.22-

We collect these results in the form of the following theorem: 

Theorem 5.8: Consider the linear opt imal regulator problem where (A,B) is stabilizable. 

Wi thout loss of generality let (A, B) be in controllabil ity canonical form, so that 

I l t + i An A12 
x2t *2t+l. . 0 ^ 2 2 . 

where (An,Bi) is controllable and A22 is a stable matrix. Write the criterion function in 

the form 

E { ( * M ] 
t=t»1 

[ f i l l Ru 
\Xlt] 

R21 R22. X2t. 
+ v-TQut} 

+ 
T 

fB" l l 
* 2 t i . . * 2 t i . 

Here P j , and R are negative semidefinite and Q is negative definite. Let the rank of the 

negative semidefinite matr ix Rn be r < m, where m is the dimension of the controllable 

subspace. Let —Rn = GTG where G is r x m. Assume that the pair (An,G) is detectable. 

Then 

(t) Iterations on the matr ix Riccat i equation (5.18) converge to a unique negative semidefi­

nite matr ix that is independent of the terminal matr ix Pt1. 

(it) The opt imal closed loop system matr ix 

(A-BF) = 
An-BiFi A12-B1F2 

0 A22 

is stable. 

It should be remarked that under the conditions of theorem X X X X X , the conclusions of 

theorems X X X X and X X X X both hold. In particular, so long as (A,B).'\s stabilizable and 
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(A\i,G) is detectable (where GTG = -Rn), the algebraic matr ix Riccat i equation (5.33) 

has a unique negative semidefinite solution. 

The argument leading up to theorem 5 8 actually establishes more than is stated there. 

In particular, for the convergence results on Pt and the stability of (.4 - BF), all that is used 

is that Rn and Pn(t\) are negative semidefinite. The above arguments establish convergence 

of Pt a s * -» - o o a n d stabil i ty of [A - BF) for arbitrary P i 2 ( * i ) , ^22(̂ 1), #12 and R22. Thus, 

it is not required to assume that R is negative semidefinite. This result is useful, so we 

summarize it in a theorem. 

Theorem 5.9: Consider the optimal linear regulator problem described in theorem 5.8. 

Assume that (A, B) is stabil izable, Pn(ti) and Rn negative semidefinite, and (An,G) is 

detectable where GTG = -Rn. Otherwise Ri2, R22, PMh) and P 22(* i) are arbitrary ma­

trixes. Then 

(i) Iterations on the matrix Riccati equation converge to a unique matr ix independent of 

Pt , . (The l imi t matrix l i m « _ _ 0 O Pt is not necessarily negative semidefinite, although 

l im t__ o t ) P\\(t) is negative semidefinite.) 

(ti) The optimal stationary closed loop system matrix (A — BF) is stable. 

(Hi) Part i t ioning F = (F\ F 2 ) conformably with the partit ioning of x,F\ is independent of 

R\2 and #22 , while F2 is independent of R22. 

P r o o f : Parts (i) and ( i i ) follow from our preceding remarks and the argument leading to 

theorem 5.8. Part (Hi) follows directly from inspection of equations (5.41) and (5.42), along 

with recollection of the recursive structure of (5.35), (5.36), and (5.37). I 

It is useful to collect the results of the previous theorems in the form of the following 

summary theorem: 

Theorem 5.10: Consider an optimal linear regulator problem of the form, maximize, 

(5.44) 

subject to 

(5.45) 

t=t„ 

*0t 
x3t 

*0(4-l 
x3t±l 

RQO RO3 
[ R30 R33 

•4 00 AQ3 

0 . 4 3 3 

*0 t 
x3t J 

+ ujQut 

x0t 
x3t + 

Bo 
0 
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here x% = 
xot 
13* 

is an (n x 1) vector, partitioned into an (m x 1) component z 0 t and an 

(n — m) x 1 component 13^ , where 1 < m < n. Assume that the pair (Ann, Bo) is control­

lable, so that (5.45) is a controllability canonical form. Assume that (A, B) is stabilizable, so 

that the eigenvalues of A 3 3 are bounded in modulus by unity. Assume that Roo is negative 

semidefinite, that Q is negative definite, but that R03, R30, R33 are unrestricted as to defi-

niteness. Let Roo be factored according to Roo — — GTG where G is an r x m matr ix, where 

r is the rank of Roo. Assume that the pair (Ano.G) is detectable but not reconstructible. 

Under these conditions, the problem can be transformed to one of the form, maximize 

(5.46) 

subject to 

t , - i 

£ 
. t=l<> 

•It 
4 

. * 3 i . .n3l 

0 R\ 
0 R'7 

AjM /T'32 R'i 
0 

33. .*3t 

'It 

x'u+i n 
(5.47) x 2 t + l = ^23 + * 2 

. x 8 t + l . 0 0 4 s . _ 0 

Lett ing fl'u = -G'TG', the pair (A 'n = G') is reconstructible. To achieve this reformulation 

of the problem, the vector rot is partit ioned into lot = lxjjj> where x\t is a p x 1 vector , 

where 0 < p < m is the dimension of the reconstructible subspace of (A\\,G) and X2t is 

(m — p) x 1. Form an m x m nonsingular matr ix U, whose first p rows U\ form a basis for the 

row space of the reconstructibil i ty matr ix for the pair (A\\,G). Then define x\ according to 

the transformation 

(5.48) f xot 1 W 
,» 

ru 0] [ lo t ] 
At. 

x2t 
_l 

. 0 / . * 3 t . At. 
X3t. 

where here / is the (n—m) x (n —m) identity matrix. Then in (5.46), 
R', 

13 

23 

R30U - 1 

= U-lTRoi,(#3iR 
• pi •] 

j = C / B o , A j 3 = f / iAo3 .A ' 2 3 = U2A03, and fl'u is a (p x p) matrix. Starting 

from a terminal value matrix P/ = 0, iterations on the Riccat i matrix difference equations 

converge as to —* — 0 0 . The stationary opt imal feedback rule is of the form ut = — F[x\t, 

while the stationary optimal closed loop system is of the form 

(5.49) 

xlt+i 
x2t+\ 
-i 
x3t+l . 

= x2t+\ 
-i 
x3t+l . 

A'n -B\F[ 0 A'n-B\F'Z 

A\2 -B'2F\ A'22 -A'23-B'2F', 

0 .4', 33 

x2t 
j L * « j 
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We note that the eigenvalues of the optimal closed loop system are the uncontrollable poles 

(i.e. the eigenvalues of A'33), the unreconstructible poles (i.e. the eigenvalues of A'22), and the 

opt imal ly controlled controllable poles (i.e. the eigenvalues of A'n — B[F[)). The eigenvalues 

of A'33 are less than unity in modulus by assumption. The eigenvalues of (A'n — B\F[) are 

less than unity in modulus because it is both possible and optimal to set them this way. The 

eigenvalues of (A22 - B'2F2) can be located arbitrari ly in the complex plane, subject to the 

condit ion that complex eigenvalues appear in conjugate pairs. It is possible to locate the 

eigenvalues of (A'22 — B'2F2) arbitrari ly in the complex plane, because (/loo, Bo) is controllable. 

However, because eigenvalues of A'22 are all unreconstructible, it is desirable and optimal to 

set F2 = 0, and so not to tamper with the unreconstructible eigenvalues. 

P r o o f : We ask the reader to prove this theorem, which involves only a repackaging of our 

earlier results. The reader should use the state transformation (5.48) and trace through its 

implications. 

6. Examples 

The following three examples have structures that illustrate aspects of theorem 5.10. 

Example 1. A firm chooses its capital stock to maximize 

'^[/o + Z i f c t - W + i - f c , ) 2 - ^ ! 
t=Ui 

fo,fi,d> 0 

subject to kto given and Jt obeying the law of motion 

Jt+i = \Jt, | A |< 1. 

Here kt is the stock of capital, and Jt its rental rate at time t. Define the state vector and 

control vector as 

Jt 
1 

, u ( = [kt+1 - kt) 

Then we have that A, B, R, and Q are given by 

[ 1 (l 0' [11 
.4 = 0 A 0 ,B = 0 

0 I) 1 j u 
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R = 
0 - I fi/2 

0 0 ,Q = -d/2 
Ji/2 0 /o . 

Lett ing Aoo = 1, Bo = 1, we see immediately that (AQQ, Bo) is controllable, and that G — 0 

where —GTG = RQO = 0. Thus the pair (/loo, G) = (0,0) is not reconstructible. Further, 

the pair (>4oo, G) = (0,0) is already in the reconstructibil ity canonical form indicated by the 

theorem, there simply being no part of the state that is both controllable and reconstructible. 

Theorem (5.10) then implies that the eigenvalues of the opt imal stationary closed loop system 

equal those of A, namely (1,A, 1). (To see how these results can be achieved by classical 

methods, see Sargent [1987, Chapters I X and X IV ] ) . 

Example 2. We now consider a rational expectations equi l ibr ium model of an industry 

consisting of m identical firms that face demand schedule 

(5.50) Pt = A 0 - AxQt, AQAi > 0 

where Pt is price at t, and Qt = mqt, where qt is output of the representative firm. Let 

output be given by the production function 

(5.51) qt = fikt + h > 0 , / 2 > 0 

where kt and nj are capital and employment of the representative firm, respectively. The 

firm maximizes 

(5.52) {Ptlt - c(nt+i,nt,kt+l,kt,Jt,wt)} 

(5.53) 

subject to the cost schedule 

c(nt+i,nt,kt+i,kt,Jt,Wt) = Jtkt+wtnt + [d/2)(kt+i - kt)2 + 

(e/2)(nt + i - nt)2,d> 0, e > 0 

with kt and nt given at t, and subject to the laws of motion for the rentals on capital Jt and 

labor u>t, 

Jt = (iJt-u I M |< 1 

wt = Xwt-i, | A |< 1 
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We define market wide stocks of capital and labor as Kt = mkt and Nt = mnt. 

A rational expectations competitive equi l ibr ium is reproduced by a social planning prob­

lem which is to maximize 

(5.55) Y \ [ A o - ^ Qt]Qt-Tnc{nt+unt,kt+nkt,Jt,vJt)} 
t=t{) I • > 

subject to Qt = mqt and (5.53) and (5.54) (see e.g., Sargent [1987, C h . XIV] ) . We shall 

proceed to analyze the equi l ibr ium as follows. We shall apply the results of theorem (5.10) 

to show that the eigenvalue of A22 is 1, this being a controllable but unreconstructible pole 

of the system. We shall argue that KT and Nt are "borderline unstable" being governed by 

the unit pole, and shall explore what this means for their behavior. We shall also show that 

Qt is asympototically stable. 

Substi tut ing (5.51) and (5.53) into (5.55) gives 

£ \AO - ^-{hKt 4- f2Nt)(fLKT 4- f2Nt) - ^-(Kt+i - KT)2 

t=to 1 1 2 m 

- ^(Nt+i - Nt)2 - JTKT - wtNt} 

Writ ing out this objective function gives 

E {{AofiKt + AofiNt}- ''' 
(5.56) 

£ (Mo / i t f < + Aof2Nt\ - ^-{f2K2 + f2N2 + 2fj2KtNt) 
t=t„ K 1 

-wtN^ - / (Kt+1 - Kt)2 - -€ (Nt+\ - Nt)2 - JtKt Zm Lm 

Define the state vector and control vector as 

Kt 

Nt 

J, xt = 
w, 
1 

ut = 
^ t + i - Kt 

N t + i - N t \ 

The transit ion equation is 

r 1 0 0 (1 01 \Kt] 
Nt+i 1 n 0 0 Nt 

Jt+i = o 0 /' 0 0 Jt + 
0 0 0 A 0 wt 

1 . .0 0 0 0 1. . 1 . 

n o i 
0 1 
0 0 
0 0 
0 0 

L0 0J 

Kt+i - Kt 

Nt+i - Nt 
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or 

(5.57) xt+i = Axt + But 

The objective function can be written as 
t i - l 

where 

R = 

J2{x{Rxt + ujQut) 
t=t„ 

_ 4 i / 2 - ^ h h - \ o 

- - 2

J / l / 2 
_ 1 

2 
0 

2 h 
0 

_ l 

t / 2 

0 

o 
0 

0 

0 
0 
0 

Q = 
A 
2m 
0 

0 
g 

2m 

f / l 
f / 2 
0 

0 

0 

which is to be maximized subject to (5.57). 

We can partit ion the matrices A, B, R, Q and the vector it to deliver a controllability 

canonical form of the type called for in (5.44) and (5.45) of theorem (5.10). Thus, in terms 

of theorem (5.10), we set 

A no = 
I 0 
0 1 B0 = 

1 0 
0 1 

Roo = 

It is straightforward to verify that the pair (/loo, So) ' s controllable, since the rank of Bo 

itself is two. Next we need to "factor" R0o- Let GT = \f\l {f\ f2). Then we have that 

—G^G — Roo-

Examining the reconstructibil i ty structure of the pair (AQO,G), we must calculate the 

rank of 

/V Q = 
r G i 

C.4oo. 
H i ' 

4i 

2 

2 which is evidently unity. Therefore, the pair (Aoo,G) fails to be reconstructible. 

To produce a reconstructibil i ty canonical form for (Aoo,G), we set U\ = [f\ f2),U2 = 

(1 0), lett ing U = [y1) be our nonsingular transformation matrix. Evidently, U is a nonsin­

gular matr ix whose first row is a basis for the row space of Q. We find that 

u-1 = 0 1 
1 / /2 / l / / 2 
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Following the construction of theorem (5.10) we form 

= UAooU~l = Au An 

An An 

1 0 
0 1 

- i f 

4 

GU~l = {Ai/2 0),RU = -GTG = -Ax/2 

= Uxot = fi h 
1 0 

, UB0 = h 
1 

h 
0 

We note that x\t is output, while x2t is capital stock. Thus, output is in the reconstructible 

subspace, but the capital stock is not (neither is the stock of labor). 

The transformed system corresponding to (5.47) of theorem (5.10) assumes the form 

Qf+l 1 '1 n 0 0 01 [Qt] 
Kt+\ 0 l 0 0 0 

Jt+i = 0 0 fj. 0 0 Jt 
u>t+i 0 0 0 A 0 

1 .0 0 0 0 1. . 1 . 

! h\ \Kt+l - 1 
T 1 0 j , J V l + i - Nt 

Lett ing F j be the (2 x 1) vector 

represented as 

1 n 
r 21 

, we have that the optimal closed loop system can be 

[•<?e+il r i H / 2 F 2 1 ) 0 \Qt] 
^f+1 -F'n 1 -B2n Kt 

•̂ t+1 = 0 (1 M 0 0 Jt 
u>t+\ 0 0 0 A 0 wt 

1 0 0 Q 0 1. . 1 . 

or 

[ Q i + i ] 
^t+i = 
X3t + l . 

-B'2F[ 
0 

1 
0 

-B[ F i \Qt 
~B'2F'3 Kt 

X3t 

where xjt = (Jt,wt,l), and where F 3 ' is a (2 x 3) matrix giving the optimal feedforward 

part of the controls on the uncontrollable states (Jt,wt, 1). Theorem (5.10) implies that the 

controls feedback on output, but not on capital and labor separately. It also implies that 

the eigenvalue 1 - {f\F'u + f2F'2x) — A'u - B[F[ is strictly less than unity in modulus. 

The above closed loop system implies a law of motion for Qt that can be represented as 

(5.58) QM ~Qt = -UxF'n + hF2l)Qt - ( / i F J , + / 2 F 2 3 ) x 3 t 
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where F3 = 
F' 23 

, where F[3 and F23 are each ( 1 x 3 ) vectors, and where —(fiF'n + f2F2i) 

is less than zero by theorem (5.10) . 

To i l lustrate the behavior of this system, suppose that 13^ is constant over time. Then 

(5.58) implies that Qt converges to the stationary value 

(5-59) Q = 
-(/1F13 + /2F23) 

fiF'n+f2F21 

The laws of motion for capital and labor can be represented as 

Kt+i — Kt = —F'nQt — F[3x3t 

Nt+i-Nt = -F!nQt-F'2ix3t 

Substi tut ing the steady state value of Q given by (5.59) into these equations and rearranging 

gives 

K u h{F'2\F[z ~ ^ 11^23 )_ A < 4 1 - Kt = , x3 

Uirn + / 2 ^ 2 l ) 

N N f2(F[1F^3 - F21F[3) 
Nt+i - N t - , , x 3 

l / i ^ i i + / 2 ^ 2 1 ) 

Only in the singular case in which F'nF'23 — F21F[3 = 0 do capital and employment converge. 

In general, each diverges in opposite directions at equal rates, governed by the unit eigenvalue 

that corresponds to the controllable but unreconstuctible pole. 

We now use classical methods to show that the sign of {F'nF23 — i ^ i ^ n ) e q u a l s that of 

(JIf\ — w/f2), where J is the constant value of Jt and wt the constant value of u>t that is 

assumed in this experiment. Notice that in this experiment, in general either capital or labor 

becomes negative in finite time even though the parameters can be selected to guarantee that 

output Qt converges to a positive value. We shall use classical methods to help us interpret 

this outcome. We shall study an infinite time, discounted version of the problem. The social 

planning problem is to maximize with respect to sequences for (Kt, Nt) 

t=o K 

- D- (KT+L - KT)2 - S- (Nt+i - Nt)2 - JTKT - wtNt}, 

given NQKO, and given sequences {Jt,wt}. 
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The Euler equations for K and N are 

BAo - f x - 0Jt - Ax3fx[fxKt + f2Nt] + dBKt+l 

(5.60) 

- d(0 + l)Kt + dKt-x = 0 

0Aof2 - 0wt - Ax0f2[fxKt + f2Nt] + e0Nt+1 

(5.61) 

- e(0 + l)Nt + eNt-i = 0 

Th is system is a matr ix Euler equation in (Kt,Nt) that can be solved using the matrix 

polynomial factorization methods of chapter 1 or Hansen and Sargent [1981]. However, in 

effect because of the existence of a nonreconstructible uncontrollable state, the following 

alternative approach is available for this special problem. Mu l t ip ly the Euler equation (5.60) 

for K by e / i , mult ip ly the Euler equation (5.61) for N by df2 and add them. After rearranging 

one obtains 
de0Qt+i - (Ax0fx2e + Ax0fld + ed(0 + \)Qt - deQt-x 

(5.62) 
= e / i Jt + df2wt - {0Aof\e 4- 0Aof}d), 

which is a univariate Euler equation in Qt — (f\Kt + f2^t) only. 

Let [de0-(Ax0fie + A10fi}d+ed{0-r \)L + deL2} = de0{l - {X0)-1L){1 - XL), where A 

is less than unity in absolute value. That a unique A less than unity in absolute value exists 

that satisfies this operator equation follows from Sargent (ch. IX , figure 4]. The solution the 

the difference equation (5.62) that maximizes social welfare can be represented as 

(5-63) Qt+x = XQt + co + - Zjgjp] (ehJ< + df^} 

where Co and C\ are constants. Evidently, from (5.63) output Q is asymptotical ly stable. In 

part icular, let us assume that Jt = J for all t and that wt = w for all t. Then output Q 

converges eventually, since A < 1. In the undiscounted (0=1) version of this problem, A 

precisely equals the pole corresponding to the reconstructible, controllable part of the state 

in the transformed version of example 2. 

To investigate how capital and labor are behaving in the vicinity of a steady state for 

output, return to the Euler equation for capital, which can be represented as 

[d0L~l -d(l+0) + dL\Kt = 0Jt + AtffiQt - 0Aofx. 
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Factoring the polynomial in L on the left side and solving as in Sargent, (1987, ch. X I ; 

Interpreting], we find 

(5-64) (1 - L)Kt+1 = fj YZJE=i ^° " £ " A i Q l ] 

Following a similar procedure for N, we find that 

(5.65) (1 - L)Nt+1 = fj [Ao - y - AM 
e l — pL J2 

Now suppose that wt = w and Jt = J, which we know implies that Qt converges, say to Q. 

Then except for the singular case in which w/f2 = J/fi, capital and labor are both diverging, 

one toward -foo, the other toward —oo. If J/f\ > w/f2 then Kt —* -oo,Nt —* +oo, while 

i f Jjfi < w/f2, then Kt —* +<x,Nt —* —oo. The economic interpretation of this situation 

is straightforward. The firm can hire or sell all of the labor and capital that it wants at the 

rentals w and J, respectively. The linear technology Qt = fiKt + f2Nt permits firms to use 

one factor to produce the other. It is only the costs of adjusting capital and labor which 

prevent the firms from immediately exploit ing this opportunity without l imit . 

Example 3. We now consider a variant of the model of example 2. The model is identical 

wi th the previous one, except that the supply of labor to the industry is less than perfectly 

elastic. In part icular, we now assume that 

wt = CQ + C\Nt, co, c\ > 0. 

A l l other aspects of technology, preferences, and competitiveness remain the same. The 

rational expectations competit ive equil ibrium now impl ic i t ly maximizes social planning cri­

terion 

(5.66) *=*o 

(Nt+1 - Nt)2 - JtKt - C0Nt - ^ N2}, 

where the term (CoNt + ^-N?) is the area under the supply curve for labor to the industry. 

This social planning criterion is the intertemporal sum of consumer surplus minus net social 

costs of production. 
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For this problem, we define the state vector xt and control ut as 

xt = 
Nt 

Jt 
1 

,ut = 
Kt+i - Kt 

[Nt+i - Nt 

The transition equation is now 

xt+i = Axt + But 

w here 

A = 

1 0 0 0 
0 1 0 0 
0 0 / i 0 
0 0 0 1 

,B = 

1 0 
0 1 
0 0 
0 0 

The R and Q matrices for the linear regulator problem corresponding to the social planning 

problem are 

R = 
0 

0 
0 

_Aj>fi [Anh-C2) Q 

2 ' ' 

2 
0 
0 

Here the partitions are again designed to match the partit ion required by (5.44) and (5.45) 

of theorem (5.10). 

Notice that RQQ is now of full rank, since cx / 0. A factorization of R0o is -GTG where 

G = J ± fi h 
0 Cl/Al 

The reader is invited to verify that (Ano, G) is now reconstructible. Thus, our optimization 

problem is automatically in the form of (5.46)-(5.47) of theorem 5.10 with the understanding 

that X2t is empty. 

Appl icat ion of theorem 5.10 now implies that the optimal closed loop system has all of 

its controllable poles placed at values less than unity in modulus, while the uncontrollable 

eigenvalue /x is less than unity in modulus. Only the uncontrollable unit eigenvalue corre­

sponding to the constant state 1 lies on or outside the unit circle. These facts imply that 

both capital and labor are asymptotically stable, as is output. If we performed a version of 

the experiment studied in the last example, setting Jt = J for all t, we would find that both 

Kt and Nt converge, and that it is possible to select the parameters of the model so that the 

stationary values of K and N are both positive. 
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This example exhibits the important technical role played by a positive C\ in elemi-

nating the unreconstructible, uncontrollable, and unstable pole whose presence causes the 

divergence of capital and labor in (the constant J and w version of) example 2. 
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Computer Example: Interrelated Factor Demands 

Wi th Adjustment Costs 

This section reports the output from issuing the M A T L A B command "dynfac". The program 

dynfac.m computes the equil ibrium of a linear quadratic industry model with interrelated 

costs of adjustment for capital and labor. The equi l ibr ium is computed by mapping a 

fictitious social planning problem into a linear regulator problem. The output from issuing 

the command "dynfac" follows. 

dynfac 

echo on 

c l a 

This program calculates the equil ibrium of a two-factor version of Lucas and Prescott's 1971 

model of investment under uncertainty. The model is linear quadratic, and constant terms 

are omit ted. The model is a version of one described by Hansen and Sargent in 1981 and 

Sargent in Macroeconomic Theory, 1987. 

The model illustrates a way of modeling dynamically interrelated demands for factors of 

production, and also illustrates some technical aspects governing the "stabi l i ty" of solutions 

of l inear opt imal control problems. In particular, the first model analyzed below is one in 

which imposing the "transverality conditions" does not imply stabil izing the system. See 

Sargent, "Linear Contro l , Fi l ter ing, and Rational Expectations," U. of M inn , manusc , for 

technical details. 

pause ' / .Press a key t o con t i nue demons t ra t i on 

c l a 

There is a single representative firm producing one good with two factors of production, 

capital k(t) and labor n(t). Demand for output in the industry is given by 

p(t) = -AI * Y( t ) + u(t) 

where p(t) is output price at t and Y( t ) is industry output,and where A l I 0 and u(t) is a 

random shock to demand with autoregressive representation 

u(t) = lam * u(t- l ) + eu(t) 
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where eu(t) is a white noise. 

Output of the representative f irm, y(t), is given by 

y(t) = f l * k(t) 4- f2 * n(t) 

where k(t) is capital of the representative firm and n(t) is employment. 

pause '/.Press a key to continue demonstration 

c l a 

The firm rents capital and labor at exogenous rental rates of J( t) and w(t), respectively. 

These rental rates follow the autoregressive processes 

w(t) = rho * w( t - l ) 4 ew(t) 

J( t) = rho l * J ( t - l ) + rho2 * J(t-2) 4 eJ(t) 

where ew(t) and eJ(t) are white noises. 

pause '/.Press a key to continue demonstration 

c l a The rational expectations equil ibrium of the industry is a pair of contingency plans 

for k(t),n(t) that maximize the social welfare function 

1 0 0 

l im — { Consumer surplus at t - C(t)} 
T ^ ° ° 1 1=0 

where 

consumer surplus = -.5 * A I * Y ( t ) 2 + Y(t)*u(t) 

C(t) = J( t )*k( t ) 4 n(t)*w(t) 4- v( t ) ' *Q*v( t ) 

where v(t) = ( k ( t4 l ) - k(t), n ( t 4 l ) - n(t)]' and Q is a (2x2) positive definite matr ix of 

"adjustment" costs. 

pause '/.Press a key to continue demonstration 

c l a 

We shall proceed by mapping the optimum problem into the undiscounted linear regulator 

problem. The state vector is jk(t),n(t),w(t),u(t),J(t),J(t- l)] \ which we denote x(t). The 
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control vector is the (2x1) vector v(t) = (k(t + l ) - k(t), n ( t+ l ) - n(t)]'. The linear regulator 

problem is to maximize 

J i m i £ { x ( t ) ' *R*x( t ) + v(t) '*Q*v(t)} 

subject to x(t + l ) = A * x(t) + B * v(t) + e(t) 

where e(t) is a vector white noise. 

We proceed to set some sample parameters for our problem and to map our problem into 

the linear regulator by filling out the matrices A , B , Q , R . 

pause XPress a key to see the matrix B for our problem, 

c l a 

B » [ 1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 0 0] 

B = 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

pause '/.Press key to set parameters of the a . r . processes, 

c l a 

rho=.9 

rho = 

0.9000 

lam=.8 

lam = 

0.8000 

rhol=1.3; rho2=-.4; 

pause '/.Press a key to set parameters governing costs, 

c l a 
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f1=1; f2=3 

f 2 = 

3 

Q=[25 5 ; 5 10] 

Q = 

25 5 

5 10 

pause ' / .Press key t o se t demand curve parameter 

c l a 

Al=4; 

N O T E : You can edit this final to set the parameters of the model at whatever values you 

want. 

Now we move on to create the matr ix A of the linear regulator. 

pause '/.Press a key t o see A. 

c l a 

A=[ l 0 0 0 0 0 ; 0 1 0 0 0 0 ; 0 0 rho 0 0 0 ; 0 0 

0 0 0 0 r h o l r h o 2 ; 0 0 0 0 1 0] 

A = 

1.0000 0 0 0 0 0 

0 1.0000 0 0 0 0 

0 0 0.9000 0 0 0 

0 0 0 0.8000 0 0 

0 0 0 0 1.3000 -0.4000 

0 0 0 0 1.0000 0 

pause ' / .Press a key t o c r e a t e R. 

c l a 

R = [ - . 5 * A l * f 2 2 - . 5 * f l * f 2 * A l 0 . 5 * f 2 - . 5 0 ; . . . 

- . 5 * A l * f l * f 2 - . 5 * A l * f l 2 - . 5 . 5 * f l 0 0 ;0 - . 5 0 0 0 0 ; . . . 
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. 5 * f 2 . 5 * f l 0 0 0 0 ; - . 5 0 0 0 0 0 ; 0 0 0 0 0 0] 

R • 

-18.0000 -6.0000 0 1.5000 -0.5000 0 

-6.0000 -2.0000 -0.5000 0.5000 0 0 

0 -0.5000 0 0 0 0 

1.5000 0.5000 0 0 0 0 

-0.5000 0 0 0 0 0 

0 0 0 0 0 0 

pause '/.Press a key t o s o l v e the s o c i a l p l a n n i n g p rob lem 

c l a 

[ k ,S ]=doub le (A ' , B ' , R ' , Q ' ) ; '/.Working, p l e a s e w a i t . 

Warn ing : M a t r i x i s c l o s e t o s i n g u l a r o r b a d l y s c a l e d . 

R e s u l t s may be i n a c c u r a t e . RC0ND = 6.062365e-017 

(The warning is related to a unit endogenous eigenvalue that is present in the system. The 

warning wil l disappear when we reformulate the system to "cure" the unit eigenvalue below.) 

The optimal value function for our problem is given by 

x( t ) ' *S '*x( t ) 

where S is given by 

S 

S = 

-31.5793 

-10.5264 

1.4768 

2.2866 

-1.4450 

0.3827 

s t a t e = ' [ k ( t ) , n ( t ) , w ( t ) , u ( t ) , J ( t ) , J ( t - l ) ] ' 
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-3.5088 -4.5077 0.7622 1.1850 -0.5391 

-4.5077 11.2912 -0.0306 -2.7646 1.3113 

0.7622 -0.0306 0.1678 -0.1058 0.0452 

1.1850 -2.7646 -0.1058 0.8342 -0.3898 

-0.5391 1.3113 0.0452 -0.3898 0.1827 



pause '/.Press a key to see optimal decision rule 

c la 

The optimal decision rule for the social planning problem (i.e., the rational expectations 

competit ive equi l ibr ium decision rules for [k(t-t-l) - k(t), n ( t - f l ) - n(t)] are 

v(t) = -F*x( t ) 

where F is given by 

F*k' 

F -

0.5029 0.1676 -0.1547 -0.0291 0.0683 -0.0290 

0.2012 0.0671 0.4781 -0.0117 -0.1527 0.0684 

state 

state = 

[k ( t ) ,n ( t ) ,w( t ) ,u ( t ) ,J ( t ) ,J ( t - l ) ] 

pause '/.Press a key to see optimal ' ' c l o s e d l o o p ' ' , 

c la 

The opt imal "closed loop" system is 

x(t + l ) = (A - B * F ) * x(t) + e(t + l ) 

where A - B * F = A B F is given by 

ABK=A-B*k* 

ABK = 

0.4971 -0.1676 0.1547 0.0291 -0.0683 0.0290 

-0.2012 0.9329 -0.4781 0.0117 0.1527 -0.0684 

0 0 0.9000 0 0 0 

0 0 0 0.8000 0 0 

0 0 0 0 1.3000 -0.4000 

0 0 0 0 1.0000 0 
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s t a t e 

s t a t e 3 

[ k ( t ) , n ( t ) , w ( t ) , u ( t ) , J ( t ) , J ( t - l ) ] 

pause '/.Press a key t o con t i nue 

c l a 

Let 's look at the eigenvalues of the "feedback part" of A B K , namely, the (2x2) upper left 

submatr ix. First we form this matr ix, call it A B K l l : 

A B K 1 1 - A B K ( 1 : 2 , 1 : 2 ) 

A B K l l * 

0.4971 -0.1676 

-0.2012 0.9329 

pause ' / .Press a key t o c o n t i n u e demons t ra t i on 

c l a 

Now calculate the eigenvalues of A B K l l : 

e i g ( A B K l l ) 

an s = 

0.4300 

1.0000 

Notice that there is a unit eigenvalue, so that the closed loop system fails to be "stable". 

This wi l l be so regardless of how you set the parameters - you can convince yourself of 

this by edit ing this file and setting alternative parameter values. Can you figure out why 

the optimal closed loop system is always unstable for this model? What is the economic 

interpretation? 

pause ' / .Press a key to con t i nue demons t ra t i on 

c l a 

We now alter the problem by changing the specification of the wage for labor. Instead of 

assuming that it is exogenous to the industry, we now assume that the industry faces an 
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upward sloping supply curve for labor 

w(t) = SO + SI * N( t ) 

where N(t) is total labor supplied to the industry, and S i > 0. (Since we are ignoring 

constants in this problem, i.e., working in deviations from means, we set SO = 0). 

The rational expectations competitive equi l ibr ium under this altered specification can be 

computed by altering the social planning problem so that costs properly account account for 

producer surplus. In particular, we should add to our previous definition of C(t) the term 

.5 *S l *n ( t ) 2 . (Remember that there is a single representative firm, so that we can equate 

n(t) to N(t ) in the social planning problem.) So C(t) becomes 

C(t) = J(t)*k(t) + w(t)*n(t) + v( t ) ' *Q*v( t ) 

+ . 5 *S l *n ( t ) 2 . 

pause '/.Press a key to continue demonstration 

c la 

We now proceed to alter the linear regulator to accommodate the upward sloping supply 

curve for labor. 

The state space must be altered by dropping w(t) as a state variable, and S i * . 5 must be 

substracted from the (2,2) element of the old R matr ix, and the A , R, and B matrices must 

be made conformable with the new state vector. The new state vector is equal to 

x(t) = [k(t),n(t),u(t),J(t),J(t- l)]\ 

pause '/.Press a key to set value of SI 

c la 

Sl=l 

SI = 

1 

Now we alter the R , A , and B matrices to accommodate the altered social planning problem, 

pause '/.Press a key to see R 
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R-[R(: ,1:2) ,R(: .4:6)] ; 

R=[R(1:2,:);R(4:6,:)]; 

R(2,2)=R(2,2)-.5*S1 

R = 

-18.0000 -6.0000 1.5000 -0.5000 0 

-6.0000 -2.5000 0.5000 0 0 

1.5000 0.5000 0 0 0 

-0.5000 0 0 0 0 

0 0 0 0 0 

s ta te= ' [k ( t ) ,n ( t ) ,u ( t ) , J ( t ) , J ( t - l ) ] ' 

state = 

[k ( t ) ,n ( t ) ,u ( t ) , J ( t ) , J ( t - l ) ] 

pause '/.Press a key to see A 

A=[A(: .1:2) .A(: ,4:6)]; 

A-[A(1:2, : ) ;A(4:6, : ) ] 

A = 

1.0000 0 0 0 0 

0 1.0000 0 0 0 

0 0 0.8000 0 0 

0 0 0 1.3000 -0.4000 

0 0 0 1.0000 0 

pause '/.Press a key to see B 

B=B(1:5,:) 

B = 

1 0 

0 1 

0 0 

0 0 

0 0 
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pause '/.Press a key t o compute the e q u i l i b r i u m , 

c l a 

[ k , s ] = d o u b l e ( A \ B \ R ' , q ' ) ; '/.Working, p l e a s e wa i t 

The new state vector is 

s t a t e 

s t a t e * 

[ k ( t ) , n ( t ) , u ( t ) . J ( t ) , J ( t - l ) ] 

The new optimal control law is 

F=k' 

F = 

0.5231 0.1095 -0.0298 0.0372 -0.0143 

0.1383 0.2523 -0.0096 -0.0578 0.0239 

pause ' / .Press key t o see new c l o s e d loop system m a t r i x 

c l a 

The optimal closed loop system matrix A B F = A - B * F is 

ABF=A-B*F 

ABF = 

0.4769 -0.1095 0.0298 

-0.1383 0.7477 0.0096 

0 0 0.8000 

0 0 0 

0 0 0 

The "feedback part" of A B F is 

ABF11=ABF(1:2,1:2) 

ABF11 = 

0.4769 -0.1095 

-0.1383 0.7477 
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pause '/.Press a key t o see the e i g e n v a l u e s of ABF11 

c l a 

e i g ( A B F l l ) 

ans = 

0.4294 

0.7952 

Can you explain why the eigenvalues are less than 1 now? 

H I N T : The answer has something to do with the linearity of the production function in n(t) 

and k(t). 

To learn more about the algebraic and economic structure of this example, see Chapter V of 

Sargent's "Linear Contro l , Fi l ter ing, and Rational Expectat ions," Unpubl ished U. of M inn , 

manuscript. 

pause '/.Press a key t o r e t u r n t o menu. 

This ends the output from the program "dynfac". 
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7. T h e Stochastic Optimal Linear Regulator Problem 

Suppose now that we return to the optimal linear regulator problem under uncertainty. 

The following theorem is useful and immediate: 

Theorem 5.11: Consider the optimal linear regulator problem, to maximize 

t=t0 

subject to: 

x,+i = Axt + But + 6+1 

where 6+1 is an (n x 1) vector white noise with E^tiJ = Vt a n c * where Vt is a positive 

semidefinite matrix. Assume that (A, B) is stabilizable, and without loss of generality that 

the system is in controllabil ity canonical form. Let R be partit ioned conformably with the 

part i t ioning of x for the controllabil i ty canonical form, and let — Rn = GTG where G is 

(r x m ) , r < m. Assume that (A,G) is detectable. Assume that R\\ is negative semidefinite 

and Q negative definite. Consider the criterion, 

The optimal steady state control law u« = —Fxt maximizes the criterion (5.67), subject to 

the law of motion xt+\ = Axt + But + 6+1- When Vt = V for all t, the maximal value of the 

equation starting from a negative semidefinite terminal matr ix P; , . This completes the 

statement of the theorem. 

8. T h e Transofrmation Between Discounted and Undiscounted Problems 

We now consider a simple transformation that permits the preceding body of results to 

apply to discounted problems. Consider the problem to maximize 

( , - i 

(5.67) 

criterion (5.67) is <r[PV] where P is the stationary solution of the matrix Riccati difference 

1,-1 
(5.68) 

subject to X Q given and 

(5.69) = Axt + Bvt + 6+i 
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where E£t = 0 for all t and E(t£T = Vt. Here 6 is a discount factor which is strictly less 

than unity in absolute value. For convenience, we have set init ial time to = 0. 

Now define the transformed state variables 

i t - * " * 

vt = bl'2vt 

so that 

zt = b-t'7xt,vt = & - ' / 2 i V 

Subst i tut ing these expressions for xt into the criterion function (5.45), and transition law 

(5.46) gives the alternative representation of the criterion function 

i i - i 
(5.70) l im E0 T (ij Rit + vTQvt) 

(=0 

with the alternative representation of the transition law 

(5.71) = biAit + b*Bvt + b'V (t+1 

or 

= Ait + Bvt + b^h+l, where .4 = 6^.4, B = b* B. 

Now let the eigenvalues of -4 be A], A 2 ) . . . , A n . Further, suppose that the original system 

(5.68) is in controllabil i ty canonical form and that the dimension of the controllable subspace 

is m. So we have that 

4 _ Au A , 2 | 

0 A 2 2 . ' 

where An is an m x m matr ix. Let the eigenvalues of A n be A ] A m , and those of A 2 2 

be A m + i , • • •, A n . 

At this point, the following lemma is handy. 

Lemma 5.2: The eigenvalue of 6? A are f ) J A i , 6 J A 2 , - - - , 6 5 A a . 

P r o o f : From the definitions of the eigenvalues of A and .4. I 

Now consider the undiscounted problem of maximizing (5.70) subject to (5.71). For 

convenience, let the rank of Rn be m. Suppose that the transformed system (5.70) is 
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stabil izable. Theorem 5.8 guarantees convergence of the matr ix Riccat i difference equation, 

the existence of a steady state feedback law F, and the stabil i ty of the closed loop system. 

The optimal control law of it is 

vt = - F i t 

where 

F ={BTPB + Q)-1BTPA 

or 

F = b2{bBTPB + Q)~iBTPA 

and where P is the solution of the algebraic Riccati equation associated with the transformed 

system (5.70) and (5.71). In terms of the original variables, we have 

v t = -Fxt. 

The closed loop system for the transformed variables is 

which is asymptotical ly stable by theorem 5.8. The closed loop system in terms of the 

original variables is then 

(5.72) xt+i = [A- BF]xt + (t+l. 

Let the eigenvalues of [A'— BF] be (pi,p2, • • • i Hn)- Lemma 5.2 implies that the eigenvalues 

of [biA - biBF] are b\fi\t... ,62/in Theorem 5.8 then implies that 62/11,. . . , 6 2 / i n are all 

less than unity in modulus. This in turn implies that 

I Mi l< —JI » = l , . , n . 
v 6 

Thus the closed loop system (5.72) is "of exponential order less than K.* 

Since the original system was assumed to be in controllabil ity canonical form, so is the 

transformed system. Wri t ing out the state difference equation, we have 

*2( + l , 
Aiib> Al2bi 

+ 

0 A22bi 
1 

X2t 

Bxbi \ - . . 1 *1 -
0 j 
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The transformed system is stabilizable if the pair (A\\, B\) is controllable, and if the eigen­

values of A22^ are all less than unity in absolute value. This last condition is equivalent 

with the eigenvalues of A22 all being less than in absolute value. 

9. S o l v i n g the L i n e a r R e g u l a t o r P r o b l e m V i a S t o c h a s t i c L a g r a n g e M u l t i p l i e r s 

We return to the nonstochastic optimal linear regulator problem: to maximize 

ti-l 
{XJB-Xt + ujQut} + xfiPtlxtl subject to xt+\ = Axt + But. 

t = to 

subject to xt+\ = Axt + But where R and P t , are given negative semi-definite matrices and 

A is negative definite. We now solve this problem using Lagrange multipl iers. This will give 

rise to the discrete time maximum principle. 

We form the Lagrangian 

ti-i 
(5.73) J = £ {xjRxt + ujQut + 2Xj+1[Axt + But - xt+i\} + i ^ P t , * * , . 

t=t„ 

Here {Xt,t = to + 1 , . . . , t\} is a sequence of (n x 1) vectors of Lagrange multipliers. We 

obtain first order necessary conditions by differentiating the right side of (5.73) with respect 

to {ut, t = to,. ..,ti — 1} with respect to {xt, t = t0 + l,. .., ti} and equating these derivatives 

to zero. Differentiating the right side of (5.73) with respect to ut and equating to zero gives 

2Qut +2BTXt+l = 0 

or 

(5.74) ut = -Q-1BTXt+1. 

Differentiating with respect to the i t ' s and equating to zero gives 

(5.75) Xt = Rxt + ATXt+i, t = t0 + 1 , . . . , tx - 1 

(5.76) Xtt = PtiXtt, 
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Equation (5.75) is called the "co-state equation". Substituting (5.74) into the transition 

equation i j + i = Axt + But gives 

(5.77) zt+i = Axt - BQ-1BTXt+i 

Combining (5.77) and (5.75), we have the homogeneous vector difference equation in the 

pair ( z ( , Xt+i) 

(5.78) f * t + r 
r 

[ xt j 
A -BQ-'B 
R AT 

xt 
lXt+i 

The system (5.78) is to be solved joint ly for (xt,Xt+i;t = t o , s u b j e c t to the two 

boundary conditions 

(5.76) 
xtn given 

Xti = Ptixti 

We shall describe two ways to go about solving this system. 

a. The Riccati Equation Again 

The first method involves guessing that a solution can be found of the form 

Xt = Ptxt for all t < ti, 

where Pt's are matrices to be determined. Substitut ing this guess into the first equation of 

(5.78) gives 

xt + x = Axt - BQ-lBTPt+ixtrl 

or 

ci+] = (I + BQ-lBTPt+1yiAxt 

Substitut ing this and A< — Ptxt into the second equation of (5.78) gives 

Ptxt = Rxt + ATPt+x{I + BQ~X BT Pt+\)~x Axt, 

which must hold uniformly in x<. This requires that the following difference equation in Pt 

be satisfied 

Pt = R + - 4 T P ( + 1 ( 7 + BQ-1BTPt+1)-1A 
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Th is can also be written 

(5.79) Pt = R + AT{Pt-+\ + BQ-xBT)-lA. 

Equat ion (5.79) is simply an alternative form of the matrix Riccat i difference equation. To 

see this, first let (a,b,c,d) be matrices with d - 1 and a - 1 existing, and recall the formula (see 

Noble and Daniel [ p. 29] or Fortman [ ] ) 

(a - bd~lc)-1 = a - 1 - a~lb[d - a T ^ r ' a T 1 

Use this formula with a - 1 = Pt+Ub= -B,d= Q,c= BT to get 

(Pt~+\ + BQ-lBT)-1 = P t + i - Pt+iB[BTPt+1B-r Q}-1BTPt+1 

Substitut ing this into (5.79) gives 

(5 80) Pt = R + A1 P M - Pt+1B(BTPt+1B + Q)-lBTPt+1]A, 

which is the form of the matr ix Riccati difference equation that we have usually uti l ized. 

So with \ t = PtXt, where Pt obeys (5.80) subject to the terminal condition Pti given, we 

have generated a solution to the difference equation system (5.78) that satisfies the terminal 

condition A f , = PtlXfl. Since the ini t ial condition for !<„ is also satisfied, we have produced a 

solution of our system subject to the appropriate boundary conditions. We have a sufficient 

number of boundary conditions (2n) to make the solution unique. 

b. Vaughan's Method 

The second method of solving the system avoids the need to solve the Riccati equation 

iteratively, but obtains it as a function of the eigenvectors of the state-co-state transition 

matr ix of (5.80). The method is due to Vaughan. 2 

As a preliminary, using the lag operator L, we can write (5.55) as 

(5.81) 
(L~lI - A) BQ~lBT 

-R (LI - A) 
xt [01 

A(+]. .0 
2 Vaughan, David R., "A Nonrecursive Algebraic Solution for the Discrete Riccati Equation," IEEE 

Transactions in Automatic Control, October 1970, pp. 597-599. 

163 



The dynamic behavior of the system is governed by the zeroes of the characteristic polynomial 

of the system, namely the solutions of 

(5.82) det 
{z~lI-A) BQ~1BT 

-R {LI-A) = 0 

Recall the formula for the determinant of a partit ioned matr ix 

(5.83) d e t {c d ) - d e t d d e t ( a - b d ~ l c ) - d e t a d e t ( d - c a ~ l b ) 

Apply ing the identity (5.83) to (5.82), we immediately find that if ZQ is a zero of (5.82), 

then so is ZQ - 1 . So the zeroes of (5.82) come in reciprocal pairs. Thus the characteristic 

polynomial in (5.82) has an "Euler-equation l ike" structure. We shall study this structure 

further below. 

For the infinite horizon problem that emerges when {t\ — to) —» oo, suppose that condi­

tions are met such that there is a stable asymptotic closed loop system matr ix (A — BF). 

Under these circumstances, the optimal solution of (5.81) for the infinite time problem is to 

solve the "stable roots backwards" and "the unstable roots forwards." Following Vauglian, 

this insight permits deriving a convenient formula for the l imit ing value P of the matrix 

Riccat i equation. 

To proceed, we follow Vaughan and assume that A is nonsingular. Then rearrange system 

(5.78) to 

( 5 ' 8 4 ) ( 2 ) " ( j M - 1 (RAAQ-?BT + AT)) 

Using (5.82), it can be verified that the zeroes of the characteristic polynomial of (5.84) 

equal those of the characteristic polynomial of (5.81), which must be true because (5.81) and 

(5.84) describe the same system. These zeroes also equal the eigenvalues of the matrix on 

the right side of (5.84), call it A / , so that we have 

(5.85) ( ; ) . 

Assume that the eigenvalues of M are distinct. Since the eigenvalues of M come in reciprocal 

pairs, we can represent M as 

(5.86) M = \VDW~1 
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where 

D 
" ( o A " 1 ) 

where A is the (n x n) diagonal matrix whose diagonal elements are the eigenvalues of M 

that exceed unity in absolute value, and W is the matr ix of eigenvectors corresponding to 

the eigenvalues in D. Inverting, (5.62), and using (5.86), we have 

xt+i 
A<+i 

= WD~lW 

The solution of this system is 

(5.87) 

where 

(5.88) 

xt+j 
L A t + ; 

= W \~> 0 
0 A> 

Vlixt + V12Xt 

V2lxt + V22\t 

w = 
w u w n 

w2X w22 

IV"1 = V ' l l 

V'21 
• 12 

22 

and Wij and V^- are each (n x n). 

For the infinite time problem, we have already seen that the shadow price A t must obey 

(5.89) At = Pxt 

where P is the l imit point of backward iterations on the matrix Riccati difference equation. 

Substi tut ing (5.89) into (5.87) gives 

(5.90) \xt+3 ' = w 
*t+j . 

A - ' ( l ' „ * f + Vi»Pxt) 
A](V2ixt + V22Pxt) 

Under the condition that the optimal closed loop system is stable, we require that l i m ; _ _ 0 0 xt+j 

0. Since the diagonal elements of A exceed unity by construction, this requires that 

(5.91) 

which implies 

(I'll + Vi2P)xt = 0, 

(5.92) P = -V22'V21 
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Equat ion (5.92) expresses the l imit point P of iterations on the matr ix Riccat i difference 

equation in terms of the partit ioned inverse of the eigenvector matr ix of M. To get an even 

handier formula, substitute (5.91) into (5.90) and use Xt+j = P^t+j t ° g e t 

[ xt+j \Wn W W !A->{Vnxt + V12Pxt) 
Pxt+j. W2i w22. 0 

Mul t ip ly ing the first n equations by P and equating to Pxt+j gives 

PWnA-'(Vii + V12P)xt = W2i\-j(Vn + V12P)xt, 

which implies that 

(5.93) . p = WnW{1

l 

This is Vaughan's formula for the l imit ing value of P in terms of the partit ioned matrix of 

eigenvectors of the state-to-state transition matrix M of (5.85). 

c. The Stochastic Version 

We can briefly describe the minor modifications of interpretation required to use the 

above procedures to solve the stochastic optimal linear regulator: to maximize 

f t i - i 

Etc { £ {xfRxt + ujQut\ + xlPtlxh 

subject to 

xt+i = Axt + But +e(* + 1) 

where e(t) is a vector white noise with 
Ee(t)e(tf = Vt>0, 

and where Et is expectation conditioned on xt- The relevant Lagrangian becomes 

J = M £ \*tR*t + "tQvt + *T+M*i + But + e«+i - x £ + , ) l + x[Phxtl\. 

The first order necessary conditions can be obtained by using the calculus described by 

Sargent [1987, ch. X IV ] to be 

(5.94) ut = -Q-1BTEtXt+i t = t 0 , . . . , t 1 - l 
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(5.95) Xt = Rxt + ATEtXt+1 

(5.96) Et^Xtt = P^Et.-iXt, 

From the form of (5.96), it is natural to guess a solution for EtXt+i of the form EtXt+i = 

Pt+iEtxt+i for al l t < t\. Using essentially the same mathematics as above, this guess can 

be verified, and the matr ix Riccat i difference equation for Pt can be derived. 

d. Relationship to "q" Theories of Investment 

We can write our solution for Xt in the form 

EtXt+i = Pt+\Etxt+\ 

or 

(5-97) EtXM = Pt+1{A - BF)xt 

In the case of an infinite t ime problem in which Pt converges to P we have 

(5.98) EtXt+l = P{A- BF)xt 

Subst i tut ing (5.98) into (5.94) gives 

(5.99) ut = -Q~1BTP{A - BF)xt 

The form of (5.99) and our earlier result that ut = -Fxt where F is the asymptotic feedback 

law (the l imit point of Ft) implies the indentity 

(5.100) F = Q~lBTP(A - BF) 

Solving (5.100) for F gives 

F = (Q + BTPB)-1BTPA 

which is by now a familiar formula. So (5.94) can be viewed as a reinterpretation of our 

earlier result that ut = —Frt. 

e. Cross-Products Between States and Controls in the Criterion Function 
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We now consider the following optimal linear regulator problem: to maximize 

t i - i 

subject to 

£ {x}Rxt + 2xJ\Vut + ujQut} + x£Ptlxtl 

t=t0 

= Axt + But. 

We solve this problem by forming the Lagrangian 

J = £ {xjRxt + 2xJ\¥ut + ujQut + Xj+1[Axt + But - xt+1}} + x^Puxh. 
t=t0 

Proceeding exactly as above on page ???, we obtain the first-order necessary conditions 

(5.101) ut = -Q~1BTXt+1 - Q~lWxt 

(5.102) Xt = ATXt+l + Rxt - Wut, t = t0 + 1 , . . . , ti - 1 

(5.103) Att = Ptxxtl 

Substitut ing (5.101) into the state transition equation and (5.102) and rearranging gives the 

system 

(5.104) Xt+l 

Xt J 
A-BQ~lWT -BQ~1BT 

R-WQ~XWT AT - WQ~XBT\ 
xt 

At+i j 

Proceeding exactly as above, it is straightforward to show that the zeroes of the characteristic 

polynomial of the homogeneous difference equation (5.104) come in reciprocal pairs. (Notice 

the l ink to the transformation that we described in Chapter 2 to show how to transform a 

problem with cross-products in states and controls in the objective function into an equivalent 

problem without cross products.) 

As earlier, it can be verified that Xt obeys 

At+i = Pt+î t+i 

where Pt is the solution of the pertinent matrix Riccat i difference equation, in ths case 

equation ( ) of Chapter 2. This form of the Riccati equation can be derived using the guess 

Aj+i = Pt+\xt+i to solve (5.104), proceeding exactly as above on pp. ???. 
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For the stochastic optimal linear regulator problem, (5.100), (5.101), (5.102) are replaced 

w i th 

ut = -Q-lBTEt\t+i - Q~lWxt 

\ t = ATEtXt+i + Rxt - Wut 

Eti-iXti = PtlEtl-ixtl 

Because of the presence of the term Wxt, the controls ut are permitted to be an inexact 

function of the shadow price EtXt+\. 

10. The Inverse Optimal Linear Regulator Problem 

We now consider the following problem: 

Problem: Given the nonstochastic time invariant system 

xt+i = Axt + But 

and the stationary feedback rule 

ut = —Fit = u't 

find a return functional of the form 

(5.105) / ( « , - to) = xlPtlxti - || GTxs + DTu, ||2 

»=(,. 

with —DDT = Q < 0, such that u't is the optimal control law for the asympototic return 

functional J = l im<,_t 0_ a o J(tx — to) for every Ptl = Pj < 0, and such that the maximum 

taken on by J for uj = u't is independent of the choice of Pt1. 

Note that DDT = Q is nonsingular. The matrix Q can be regarded as given or as chosen 

arbitrari ly. Thus, the problem is, given A, B and the closed loop system xt+\ = (A - BF)xt, 

to find an infinite time optimization problem (i.e., a G and D in (5.82)) such that F is the 

opt imal feedback law for any negative semi-definite terminal value matr ix Ptl. Mosca and 

Zappa 3 formulate this problem and prove the following: 

3 See Edoardo Mosca and Giovanni Zappa, "Consistency Conditions for the Asymptotic Innovations 
Representation and an Equivalent Inverse Regulation Problem," IEEE Transactions on Automatic Control, 
Vol. AC-24, No. 3, June 1979. 
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Theorem 5.12: (Mosca-Zappa) The inverse optimal regulator problem has a solution if and 

only if (A — BF) is a stable matrix. 

Proof: 

(a) F i rs t , we show that if (A— BF) is stable, the problem has a solution. Begin by setting 

Q < 0 arbitrari ly. Choose D = DT = (-Q)i. Then set GT = DTF. W i t h this choice of 

GTx, + DTu, ||2 = || DTFx, - DTFx, || 2= 0, so that J{tx - t 0 ) = xfPtlxtv Since the 

closed loop system is asymptotical ly stable, we have that for all xtn,lim^tl_to^_00 xtl = 0, 

which in turn implies that l i m ^ , . ^ ) . , ^ J(tx - t0) = l i m / t l _ < 0 \ _ 0 0 x^P^x^ = 0 for any 

pti < 0. Since the return functional (5.82) is nonpositive, we know that a feedback law that 

achieves l i m ^ . ^ ^ ^ J(t\ — to) = 0 must be optimal for the infinite t ime problem. 

(b) Now we assume that = —Fxt maximizes J = l i m ^ . ^ ^ o , , J(tx — to) for all 

Pti £ 0, and that the corresponding maximum of J , call it J * , is independent of P j j . Thus 

r = l im {xlSttX^ - £ || C 7 * ; + DTu's ||2} = x T P x t n 

where 

x't+i = Ax't + Bu't, with x'tn = xtl, given, 

and where P is the l imit of the matrix Riccat i difference equation, which by assumption 

exists for all Ptl < 0 and which is independent of P ( l . In particular, choosing P<, = 0 gives 

l im \\GTx's + DTu:\\2=xlPxt„. 

Therefore, we must have that l i m ( ( l . ^ . . ^ xjx Ptxx'tl exists and equals zero for all Pti < 0. 

But l i m ( u _ ( o ) _ 0 0 x'tTPtlx'tl = 0 for all xt„, implies that l i m ( t l _ ( n ) _ 0 0 x'h = 0 for all xttr 

Therefore the system is stable, and the closed loop system matrix (A — BF) is a stable 

matrix. I 

We reiterate that given an A, B, and F , we can solve the inverse optimal control problem 

as follows. Pick any Q < 0 Set D = DT = ( - ( ? )? , and then set GT = DTF. We note 

that the solution to the inverse optimal control problem is not unique, since wecan select Q 

arbitrari ly. 

a. Two Examples 
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We ask the reader to solve the following two inverse optimal control problems. 

1. The law of motion of capital at t, kt, is 

fct+l = fcf + *t-

where t t is investment during t. The observed closed loop system for k is 

fct+l = 9kt. 

Determine whether the inverse optimal control problem has a solution, and if it does, find 

one. (Hint: set A — l,B = l,F = l,Q = 1 and proceed.) Then formulate the resulting 

problem as a classical optimization problem (use the calculus of variations) and solve it by 

factoring the characteristic polynomial of the Euler equation. 

2. The law of motion for capital kt and its rental are 

kt+i 
uit+i 

1 0 
0 .8 

kt 

Wtl + It-

The observed closed loop system for (kt,wt) is 

[ kl+1 1 [.9 - . 1 ] f * t | 
m . 0 .8 J U>l. 

Determine whether the inverse optimal control problem has a solution. If it does, find one. 

E x e r c i s e s 

1. Consider the problem of a firm that tries to maximize 

(1) W / , n t - ^n 2 -d72 (n , + 1 - nt)2 - wtnt), f1,f2,d>0 
t=o 1 1 ' 

0 < B < 1 

subject to (nt,wt) given at t, and 

wt+i = Xwt + (t+\, | A |< —^ 

where 6+1 is a white noise for Wt- Here n< is employment of a factor at t, Wt is its rental at 

t. The firm is imagined to maximize (1) over linear contingency plans of the form 

nt+i = L(l,nt,wt). 
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Assume that is orthogonal to u>t for s > t. 

(a) Formulate the problem as an undiscounted opt imal linear regulator problem, defining 

the appropriate state variables, controls, and matrices A, B, Q, R. 

(b) Prove that the system is not controllable. F ind a basis for the controllable subspace. 

F ind a basis for the uncontrollable subspace. 

(c) F ind a controllabil i ty canonical form for the system. Prove that the system is stabilizable. 

(d) Use our convergence and stabil i ty theorem to prove that 

(t) Iterations on the matrix Riccat i equation converge, and 

(it) the closed loop system matr ix (A — BF) for the original system has eigenvalues 

bounded by in modulus. 

(e) Write down the matr ix Riccat i difference equation, and part i t ion it conformably with 

the part i t ioning of (A',Bf) in the controllabil ity canonical form. Write the difference 

equation for the Pu submatrix, and argue that it is itself a matrix Riccat i equation. For 

what problem is it the matrix Riccat i difference equation? 

( /) Show how the algebraic Riccat i equation satisfied by P\\ (i.e., the equation resulting 

from taking the l imit as to —» —00 on both sides of the Riccat i difference equation) can 

be solved analyt ical ly using the quadratic formula of high school algebra. 

2. Consider the problem of a consumer who seeks to maximize 

(1) £ * £ 0 ' { « i c t - ^ c ? } , u , , u 2 > 0 0<3<l 

subject to 

y*+ i = Xyt + I A |< „ 
VP 

At+i = (1 + r)[At + y t - et] 

(yt) At) given at t, (yn, A0) given at 0, (1 4- r) < Here c ( is consumption, yt is income, At 

is assets, r > 0 the interest rate. The random process ( t is a white noise that is orthogonal 

to y, for s < t. 

(a) Formulate this problem as an undiscounted opt imal linear regulator problem, defining 

the state, control, ,4, B,Q, R. (The term 3lu,c in (1) might cause you a problem. Try 

using the budget constraint to express c< in terms of At+i, At, and yt, and rearrange the 

sums in At+\ and At into a single sum in At) 
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(6) Prove that the system is not controllable. 

(c) F ind a controllabil ity canonical form. Prove that the system {A, B) is stabilizable. Prove 

that when written in the controllability canonical form, the pair (A\\,G\) is detectable 

but not observable. Here -R\\ = G^G\ where G\ is r x m, where r = rank (R\\) < m. 

(d) Argue that the matrix Riccat i equation converges and that the associated closed loop 

system matr ix (A — BF) for the original system has eigenvalues of modulus bounded by 

l 

(e) If (1 + r ) > is the pair (An,Gi) detectable? If (1 + r) > y/0)'1, do you think 

that iterations on the matrix Riccat i difference equation wil l converge? 

3. Consider the opt imum problem, to maximize 

£ - ( n m - 2n<)2, 
t=tn 

subject to n j 0 given. 

(a) Using the dynamic programming algorithm, compute the optimal controls in feedback 

form, i.e., 

nt+i = Ltnt, t = t0,t0 + — 1. 

(b) Prove that iterations on the matr ix Riccat i equation converge as to —» —oo. 

(c) Is the asymptotic closed loop system 

nt+i = ( l im L,)nt 

J — • — oo 

stable? If not, what parts of the sufficient conditions for stability from our convergence 

theorems fail to be met? 

4. Consider the opt imum problem, to maximize 

ti-l 
£ -.000005 n] - (nt+l - 2ntf 
t = t„ 

starting from n t l , given. 

(a) Prove that iteration on the matrix Riccat i equation converge as to —* —oo. 

(6) Write down the algebraic matrix Riccati equation. Argue that the asymptotic optimal 

closed loop system is approximately nt+i = \nt. 
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(c) Why does such a "smal l " difference in the objective functions in this problem and the 

preceding one lead to such a "b ig" difference in the optimal rules? 

5. Consider the following two-player, linear quadratic dynamic game. The ( n x l ) state 

vector xt evolves according to the transition equation 

(0) x t + 1 = Atxt + Bnuu + B2tu2t + 6+1 

where 6+1 is a vector white noise with E£t = 0,E£t£t = Vt\ ujt is a (kj x 1) vector of 

controls of agent j . Agent 1 maximizes 

t,-l 
(1) Eto ] T ( x f Rixt + uftQiUu + uJtSiu2t) 

t=to 

where Ri and Si are negative semidefinite, Q\ is negative definite. Agent 2 maximizes 

t , - i 

(2) Et0 J2 (xjR2xt + uJtQ2u2t + uJtS2uu) 

t=tn 

where R2 and S2 are negative semidefinite and Q2 is negative definite. We define a Nash 

equilibrium as follows. Agent j is assumed to employ linear control laws 

Ujt = -Fjtxt, t = to,...,ti - 1 

where Fjt is a (kj x n) matrix. Agent t is assumed to know {Fjt',t = to,...,t\ — 1}. Then 

agent one's problem is to maximize (1) subject ot the known law of motion (0) and the 

known control law u2t = —F2txt of agent two. Symmetrically, agent two's problem is to 

maximize (2) subject to (0) and u\t — —FuXt- A Nash equilibrium is a pair of sequences 

{F\t, F2t; t — to, to + 1,. . . , <i — 1} such that {Fit} solves agent one's problem, given {F2t}, 

and F2t solves agent two's problem, given {Fu}. 

(a) Show how agent one's problem can be written as, maximize 

*i—1 

Etn £ {xJ(Ri + FjtSiF2t)xt + uJtQxuit} 
t=t„ 

subject to 

x, + i = (At - B2tF2l)xt + B\tU\tl\t+\. 

Argue that this is a standard optimal linear regulator problem. 
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(b) Pose agent two's problem as an optimal linear regulator problem. 

(c) Prove that the solution of agent one's problem is given by 

(3) Fu = {BftPu+iBu + Qx)-xBT

tPu+x{At - B2iF2t) 

< = <o,*o + l , - - , ' i - 1 

where Pu is the solution of the following matrix Riccat i difference equation, with terminal 

condition P K , = 0: 

Pu = (At - BitF2t)TPu+l(At - B2tF2t + {Ri + F2t)TSiF2t) 
( 4 ) 

- (At - B2tF2t)TPit+iBuiBlPu+iBu + Qx)-1 BjtPlt^(At - B2tF2t) 

Prove that the solution of agent two's problem is given by 

(5) F2t = (BjtP2t+1B2t + Q2)-xBlP2t+x(At - BuFlt) 

where P2t is the solution of the following matrix Riccati difference equation, with terminal 

condit ion P\tl = 0: 

P2t = (At - BltFT)P2t+i(at - BuFu) + (R2 + FjS aFM) 
(6) 

- [At - BitFit)TP2t+iB2t(BjtP2t+iB2t + Q2)-x Bl[tP2t+i(At - BUFU). 

(d) Describe how the equi l ibr ium sequences {F\t,F2t\t = <o,'o + 1, • • •, ti — 1} can be cal­

culated. Hint: use (3), (4), (5), and (6) and "work backwards" from time tx - 1. Notice 

that given P\t+i and P2t+i, equations (3) and (4) are a system of (k2 x n) + (k\ x n) 

linear equations in the (k2 x n) 4- (k\ x n) unknowns in the matrices Fit and F2t. 

(e) Notice how j's control law F]t is a function of { F „ , J > t,i ^ j}. Thus, agent t's choice 

of {Fit,t = to,---,ti — 1} influences agent j's choice of control laws. However, in the 

Nash equi l ibr ium of this game, each agent is assumed to ignore the influence that his 

choice exerts on the other agent's choice. In the Nash equil ibrium of a Stackelberg or 

dominant player game, the t iming of moves is so altered relative to the present game 

that one of the agents called the leader takes into account the influence that his choices 

exert on the other agent's choices. 
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Computer Example: A Linear Quadratic Dynamic Game 

This section reports the output from the M A T L A B program " judd" , which computes the 

Nash feedback equi l ibr ium of a linear quadratic game proposed by Kenneth Judd. The 

M A T L A B program nnash.m is used to compute the equi l ibr ium, as wil l be seen below. The 

equi l ibr ium is computed by iterating on a pair of Ricat t i equations that is defined by the 

choice problems of the two agents (firms) in the model. 

The output from " judd" follows. 

j udd 

echo on 

c l a 

This program computes the Nash feedback equi l ibr ium of a linear quadratic dynamic game. 

Each of two players solves a linear quadratic optimization problem, taking as given and 

known the sequence of linear feedback rules used by his opponent. 

The particular game analyzed is a price-quantity setting game suggested by Ken Judd. 

pause ' / .Press a key t o c o n t i n u e 

c l a 

There are two firms. There is no uncertainty. Relevant variables are defined as follows: 

Ii(t) = inventories of firm i at beginning of t. 

qi(t) — production of firm i during period t. 

pi(t) = price charged by firm i during period t. 

Si(t) = sales made by firm i during period t. 

Ei( t ) = costs of production of firm i during period t. 

C i ( t ) = costs of carrying inventories for firm i during t. 

It is assumed that costs obey 

Ci( t ) = c i ( l ) + ci(2)*Ii(t) + .5* ci(3)*I i( t) 2 

Ei( t ) = e i ( l ) + ei(2)*qi(t) + 5* ei(3)*qi( t) 2 

where ei(j) and ci(j) are constants. 
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It is assumed that inventories obey the laws of motion 

Ii(t+1) = (1 - del) * l i ( t) + qi(t) - Si(t) 

pause '/.Press a key t o con t i nue 

c l a 

It is assumed that demand is governed by the linear schedule 

S(t) = d * p(t) + B 

where S(t) = [Sl(t),S2(t)] ', d is a (2x2) negative definite matrix, and B is a vector of 

constants. F i rm i is assumed to maximize the undiscounted sum 

Jim ]= £ { P i ( t ) *S i ( t ) - Ei( t ) - Ci(t)} 
r - ° ° T (=0 

by choosing a control law of the form 

ui(t) = -F i * x(t) 

where ui(t) = (pi(t),qi(t)]', and the state x(t) is given by x(t) = [Il(t),I2(t), 1). 

pause ' / .Press a key to con t i nue 

c l a 

F i r m i is assumed to solve its control problem taking the (sequence of) control laws uj(t) 

= -Fj( t )*x( t ) as known and given. 

The program computes the l imit ing values of the control laws (F l ( t ) ,F2( t ) ) as the horizon 

is extended to infinity. 

pause '/.Now the program w i l l set some pa ramete rs . P r e s s a key . 

c l a 

d e l = . 0 2 ; 

d= [ - l . 5 ; .5 -1] 

d = 

-1.0000 0.5000 
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0.5000 -1.0000 

B=[25 2 5 ] ' 

B = 

25 

25 

pause ' / .Press a key t o se t more parameter 

c l a 

c l = [ l - 2 1] 

c l = 

1 - 2 1 

c2=[ l - 2 1] 

c2 = 

1 - 2 1 

e l= [10 10 3] 

e l = 

10 10 3 

e2= [10 10 3] 

e2 = 

10 10 3 

d e l l = l - d e l 

d e l l = 

0 .9800 

pause '/.Press a key t o con t i nue 

c l a 

Now we'l l create the matrices needed to compute the Nash feedback equi l ibr ium. We will 

proceed by iterating on pairs of "R ica t t i " equations. Player 1 has a regulator problem with 

matrices r l , w l , q l , s l , m l in the objective function (see the explanation of these quantities 

when Nash is called shortly) and matrices a,bl ,and b2 in the law of motion (again, see the 

explanation when nnash is called). 
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a = [ d e l l 0 - d e l l * B ( l ) ; 0 d e l l - d e l l * B ( 2 ) ; 0 0 1] 

a = 

0.9800 0 -24.5000 

0 0.9800 -24.5000 

0 0 1.0000 

b l = d e l l * [ l - d ( l , l ) ; 0 - d ( 2 , l ) ; 0 0] 

b l = 

0.9800 0.9800 

0 -0.4900 

0 0 

pause ' / .Press a key t o con t i nue 

b2=de l l * [0 - d ( l , 2 ) ; 1 - d (2 .2 ) ; 0 0] 

b2 = 

0 -0.4900 

0.9800 0.9800 

0 0 

r l = [ . 5 * c l ( 3 ) 0 . 5 * c l ( 2 ) ; 0 0 0 ; . 5 * c l ( 2 ) 0 c l ( l ) ] 

r l = 

0.5000 0 -1.0000 

0 0 0 

-1.0000 0 1.0000 

r2=[0 0 0;0 . 5 *c2 (3 ) . 5 * c 2 ( 2 ) ; 0 . 5 *c2 (2 ) c 2 ( l ) ] 

r 2 = 

0 0 0 

0 0 -1.0000 

0 -1.0000 1.0000 

pause ' / .Press a key t o con t i nue 

r l = - r l ; r 2 = - r 2 ; 
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q l = [ - . 5 * e l ( 3 ) 0; 0 d ( l , l ) ] 

q l = 

-1.5000 0 

0 -1.0000 . 

q2= [ - .5*e2(3) 0; 0 d ( 2 , 2 ) ] 

q2 = 

-1.5000 0 

0 -1.0000 

pause '/.Press a key t o con t i nue 

ml=[0 0; 0 d ( l , 2 ) / 2 ] 

ml = 

0 0 

0 0.2500 

m2=ml 

m2 • 

0 0 

0 0.2500 

s l = z e r o s ( 2 ) ; s 2 = s l ; 

pause ' / .Press a key t o con t i nue 

Hl=[0 0 ;0 0 ; - . 5 * e l ( 2 ) B ( l ) / 2 ] 

wl = 

0 0 

0 0 

-5.0000 12.5000 

w2=[0 0 ;0 0 ; - . 5 * e 2 ( 2 ) B (2 ) / 2 ] 

w2 = 

0 0 

0 0 
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-5.0000 12.5000 

pause '/.Press a key to c a l l nnash to compute equil ibrium 

nnash 

echo on 

c l a 

This program computes the limit of a Nash linear quadratic dynamic game 

Player i maximizes 

Sum {x'*ri*x + 2 x'*wi*ui +ui'*qi*ui + uj'*si*uj + 2 uj'*mi*u 

subject to the law of motion 

x(t+l) = a*x(t) +bl*ul(t) + b2*u2(t) 

and a perceived control law uj(t)= -fj*x(t) for the other player 

is nxn; bl is nxkl; b2 is nxk2; 

r l is nxn; r2 is nxn; 

ql is klxkl; q2 is k2xk2; 

si is k2xk2; s2 is klxkl; 

wl is n x kl 

w2 is n x k2 

ml is k2 x kl ; m2 is kl x k2; 

pause '/.Press a key to compute the equilibrium 

n=length(a); 

[x k l ]=size(bl ) ; 

[x k2]=size(b2); 

v l - eye (k l ) ; 

v2=eye(k2); 

pl=zeros(n);p2=zeros(n); 

fl=rand(kl,n);f2=rand(k2,n); 

dd=l;tol=.000000000001; 
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t l = c l o c k 

t l = 

1.0e+003 * 

1.9880 0.0120 0.0120 0.0050 0.0150 0.0236 

jj-oj 

w h i l e d d > t o l ; 

f l 0 = f l ; f 2 0 = f 2 ; 

g 2=(b2 ' *p2*b2+q2)5 ; 

g l = ( b l ' * p l * b l + q l ) I ; 

h2=g2*b2 ' *p2 ; 

h l = g l * b l ' * p l ; 

f l = ( v l - ( h l * b 2 + g l * m l ' ) * ( h 2 * b l + g 2 * m 2 ' ) ) ( ( h l * a + g l * s l ' ) - . . . 

( h l * b 2 + g l * m l ' ) * ( h 2 * a + g 2 * w 2 ' ) ) ; 

f 2= (h2*a+g2*w2 ' ) - (h2*b l+g2*m2 ' ) * f1 ; 

a2=a-b2* f2 ; 

a l = a - b l * f 1 ; 

p l = a 2 ' * p l * a 2 + r l + f 2 ' * s l * f 2 - ( a 2 ' * p l * b l + w l - f 2 ' * m l ) * f l ; 

p 2 = a l ' * p 2 * a l + r 2 + f 1 ' * s 2 * f 1 - ( a l ' * p 2 * b 2 + w 2 - f 1 ' * m 2 ) * f 2 ; 

jj-jj+i; 

dd=max(abs( f10 - f1 ) )+max(abs( f20 - f2 ) ) ; 

end 

t 2 = c l o c k ; e t = e t i m e ( t 2 , t l ) ; 

pause '/.Press a key t o see t ime i t took t o compute e q u i l i b r i u m 

et 

e t = 

6.8100 

f i ; 

f 2 ; 

pause '/.Press a key to see number of i t e r a t i o n s on R i c a t t i needed 
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jj 

jj • 

20 

pause ' / .Press a key t o see F i r m l ' s feedback r u l e 

f 1 

f l = 

0.2437 0.0272 -6.8279 

0.3924 0.1397 -37.7341 

F i r m 2's feedback rule is 

f 2 

f 2 = 

0.0272 0.2437 -6.8279 

0.1397 0.3924 -37.7341 

pause ' / .Press a key t o compute c l o s e d loop c o n t r o l l a s 

a a a = a - b l * f l - b 2 * f 2 

a a a = 

0.4251 0.0287 0.6810 

0.0287 0.4251 0.6810 

0 0 1.0000 

Recall that the state is x(t) = [Il(t),I2(t),l] ' So the equil ibrium law of motion is 

x ( t+ l ) = aaa * x(t) 

o r 

x( t+ l ) = (a - b l * F l - b2*F2) * x(t) 

pause '/.Press a key t o con t i nue 

c l a 

pause ' / .Press a key to c a l c u l a t e the o p t i m a l s t a t i o n a r y v a l u e 

of the inventory levels [Il(t),I2(t))\ 
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aa=aaa(l:2,l:2); 

tf=eye(2)-aa; 

t i i = inv ( t f ) ; 

xbar=tfi*aaa(l:2,3) 

xbar • 

1.2469 

1.2469 

pause Xpress a key to return to menu 

This terminates the output of judd. You can use the program nnash.m to compute a nash 

equi l ibr ium for a game of your design. 
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Chapter 8 

The Optimal Observer 

1. Introduction 

Th is chapter heavily exploits duality and the theorems of chapter 5 to state conver­

gence and stabil i ty theorems for the Kalman filter. The chapter begins with a derivation of 

the Ka lman filter in the style of Luenberger's optimal observer system. This presentation 

provides interesting perspectives on the Kalman filter. The chapter also describes the "sepa­

ration principle" of linear opt imal control theory, which states how regulation problems with 

hidden state variables can be solved. 

2. T h e Optimal Observer Problem 

We now define an auxil iary system whose behavior is designed to mimic the behavior of 

another system 

Definition 6.1: The system 

(6.1) xt+i = Atxt + Btut + Ctyt 

is a full order observer for the system 

(6.2a) xt+i = Atxt + Btut 

with measurement equation 

(6.26) yt = Ctxt + Etut 

if setting it0 = i t ( ) implies that i t = xt for all t > to and for all ut,t > to-

Theorem 6.1: The system (6.2) is a full order observer for the system (6.1) if and only if 

.4, = At - Kt Ct 

(6.3) Bt = Bt - Kt Et 

Ct = Kt 

where {Kt,t > to} is an arbitrary sequence of matrices. 
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P r o o f : Substi tut ing (6.26) into (6.1), gives 

i t + i = Atxt + Btut + Ct[CtXt + Etut\. 

Subtract ing (6.2a) from the above equation gives 

- xt+i = At{x - xt) + [At + CtCt - At]xt 

(6-4) . . 
+ [Bt + CtEt - Bt]ut 

Evident ly from (6.4), xto = xto implies xt = xt for t > to for all {ut,t > to} if and only if 

At = At — CtCt and Bt = Bt — CtEt. This is true for any arbitrary sequence of matrices 

Ct = Kt. I 

Subst i tut ing formulas (6.3) into (6.1) establishes that the full order observer can be 

represented 

(6.5) xt+i = Atxt + Btut + Kt[yt - Ctxt) - Etut} 

or 

(6.6) xt+i = Atxt + Btut + Ktlyt - yt} 

where yt is the "previously predicted" value for yt, 

yt = Ctxt + Etut. 

The sense in which yt is the previously predicted value for the measurements yt wi l l become 

clear shortly. So (6.5) or (6.6) expresses the "predict ion" xt+\ for xt+\ as a function of 

the "lagged predict ion," the control, and the error just realized in predicting the observable 

variables yt-

Define the reconstruction error in estimating the state as xt — xt = et. We can then 

state the following theorem. 

Theorem 6.2: Consider the full order observer for the nonstochastic system (6.2a)-(6.26). 

The reconstruction error e f = xt — it satisfies the difference equation 

et + i = [At - KtCt}et for t > t 0. 
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P r o o f : Subtract the state difference equation (6.2a) from (6.6) to get 

zj+i - xt+i = [At - Kt Ct][xt - it}. | 

If the reconstruction error in this nonstochastic system has the property that e< —» 0 as 

t —» oo for all in i t ia l errors eto, the full order observer is said to be asymptotically stable. 

Notice that the asymptotic stabil ity of the observer depends on the behavior of the matrices 

[At — KtCt] as t gets large. For the case in which At and Ct are time invariant, we shall 

presently study the l imi t ing behavior of this matr ix. 

T h e following simple lemma is useful in our study of the stochastic l inear observer prob­

lem. 

Lemma 6.1: Consider the system 

xt+i = Atxt + BtvJt+\, t > t 0 

where u>t is a white noise vector with 

Ewt = 0 

EvjtwJ = Vt. 

Define the mean vector and covariance matrix of xt, t > to 

rri( = Ext 

E f = E(xt - mt){xt - m,) 

Let xt„ be a random variable with given mean vector mtl< and covariance matr ix Assume 

that xt0 is uncorrelated with wt for t > to- Then 

(6.7) Extn+l = *{to + i,to)mtn 

where ty(t,to) is the transition matrix 

nt,to) = {At-lAt~j 

Further, E t is the solution of the difference equation 

At-iAt-2 • • • Atn t > t0 

t = t0. 

(6.8) Ej+i = AtEtAj + BtVt+\Bj 
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with in i t ia l condition E t 0 given. 

P r o o f : Equal i ty (6.7) follows from taking the mathematical expectation of each side of 

the solution of the state equation 

Equal i ty (6.8) follows from writ ing 

x t + \ - mt+\ - Atxt + Btwt+i - AtExt 

or 

xt+i - m-t+i = Atxt + Ext + BtvJt+\. 

Mul t ip ly ing each side of this equality by its tranpose and taking mathematical expectations 

implies equality (6.9). I 

The preceding discussion is extended in a straightforward manner to cover the case of a 

stochastic system. 

D e f i n i t i o n 6.2: Consider the stochastic system 

(6.9a) x t + i = Atxt + Btut + w u + i 

(6.96) yt = C t x t + E t u t + w2t 

where Wu+i and w2t are vector white noise random errors satisfying Ewu+i = 0, Ew2t = 0 

E 
T f V „ 0 1 

. mt . . yj2t . L 0 Vit. 

and Ewuw-f = 0 for all t and 3. Let the system start at time to, and let r j 0 be a random 

variable with mean vector xto and covariance matr ix T,Q. Consider the auxi l iary system 

(6.10) it+i = Atxt + Btut + Ctyt. 

The system (6.10) is said to be a full order observer for the system (6.9) if setting xt<) = Extn 

implies that it = Ext for all t > to and for all ut,t > to-

We immediately have the following theorem, whose proof mimics the proof of theorem 

6.1. 
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Theorem 6.3: The system (6.10) is a full-order observer for the system (6.9) if and only if 

At = A t - KtCt 

Bt = Bt — KtEt 

Ct = Kt 

where {Kt,t > to} is an arbitrary sequence of matrices. 

W e leave the proof as an exercise. 

W e now consider the stochastic linear optimal observer problem whose solution leads us 

to a version of the celebrated Ka lman filter. 

D e f i n i t i o n 6.3: Consider the discrete time system 

(6.9a) xt+\ = Axt + But + u>u+l t > to 

(6.96) 

where u>t = Wu + l 

poraneous covariance matrix 

yt = Cxt + Eut + u>2t 

is a serially uncorrelated random process with mean zero and contem-

U>2t \w,,,,wit\ -T\ - Vu 0 
I o v2t 

I " ' Z t J 

We assume that Ewit+iwJt+s = ^ f ° r a l l 9 , s o that u;i and w2 are orthogonal at all leads and 

lags. In (6.9a) and (6.96), xt is an underlying state vector that is not directly observed, ut 

is a vector of controls, yt is a vector of variables that is directly observed, u/it+i is the error 

process dr iv ing the "hidden" state variables, and w2t is a process of "measurement errors." 

We assume that xto is a random vector with 

Extl) = xo 

B(xto - * o ) ( * t 0 - * o ) T = S 0 . 

We assume that xt0 is orthogonal to u>t+, for all s > 0. Consider the observer system 

(6.11) x t + i = Axt + But + Kt\yt - Cit - Eut\. 

Let Wti be a given positive definite "weighting" matrix, and let t\ > to be fixed. The stochas­

tic linear optimal observer problem is to find a sequence of matrices {K t l t, Ktl)+\,..., Ktl_i} 

and an ini t ia l condition it0 that minimizes 

E{el Wtletl} 
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where et = xt — it is the reconstruction error at time t. 

D e f i n i t i o n 6.4: If Vu > 0 for all t > to, the problem is called nonsingular. 

We shall restrict ourselves at this point to considering the nonsingular observer problem. 

We further restrict ourselves to the time invariant or homoskedastic case in which V2t = V2 

is independent of t ime. 

We proceed to solve the optimal observer problem. Subtracting the observer equation 

(6.11) from the state equation (6.9a) gives 

xt+i - it+i = [A - KtC\(xt - it + wu+i - KtW2t) 

or 

(6.12) e £ + 1 = [A — KtC}et + wlt+i - Ktw2t. 

Let Ylt he the covariance matr ix of e< and let e< be the mean of e<. Then 

E etej = E t + etej. 

Further, we have 

E {eJWtet} = E {(et - et)TWt(et - et)} 

+ E {eJWtet} 

= tr\VtE {(et-et)(ei-et)T} 

+ eJ\Vtet. 
It follows that 

(6.13) E eJ\Vtet = trWtT,t + eJ\Vtet. 

Apply ing Lemma (6.1) to the difference equation (6.12) for et for an arbitrary sequence 

{Kt, t = to,...yti- 1} gives 

(6.14) ee = ¥ ( M o ) e ( „ . 

and 

(6.15) E t + i = [.4 - KtC]Vt\A - KtC\T + V\ + KtV2KT 
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where the transition matrix 9(t,to) is given by 

{A - Kt-iC)(A - Kt.2C) ••• (A- Kt„C) t > t0 

I t = t0 

First note that for given Kt, (6.15) implies that E<+i is a monotonically increasing function 

of E t . Next notice that E* 0 is independent of the choice of the in i t ia l conditions i < 0 . To see 

this, write 

E < 0 = E ( e t o - eto)(eto - e«0) 

= E [(x« 0 - x , 0 ) - E {xto - xto)] [(««o ~ xto) - E (*<o - **<,)] 

= E [xtQ - x0}[xto - x0\T = £0. 

Thus, we have that £«„ = Eo independent of the choice of i t ( ) . Clearly, since from (6.14) 

et = $(£,to)et 0> * n e term e ^ ' W j S i is minimized for any positive definite Wt by choosing 

etl) = 0, from (6.14) this choice of Cj 0 implies that et = 0 for all t > to. Setting et0 = 0 is 

accomplished by setting 

(6.16) i«o = So-

Further, since E j is given by the solution of the difference equation (6.15) starting from 

ini t ia l condition E ( n = Eo, and since Ej„ is independent of the choice of it,,, if follows from 

(6.13) that setting itn = XQ is the choice that minimizes E eJWtet = trWtZt + e{Wtet. 

It follows that our problem is reduced to that of minimizing the first term of (6.13) 

for some t = t\ > to- We must choose a sequence of matrices [Kt,,, Ktu+\,.. . ,Ktx-\) to 

minimize tr IV j jE j , , where E ( , solves 

(6.15) E«+i = [A - KtC\Zt[A - KtC\T + \\ + KtV2KT 

with in i t ia l condition 

E ( o -- E 0 

given. Evidently, this is equivalent with minimizing E<, with respect to { Kt, t = to, • • •, t\-1} 

subject to (6.15) and the init ial condition E t ( ) = Eo- In solving this problem, the following 

theorem is useful. 
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Theorem 6.4: Consider the difference equation 

Pt = {A- BFt}TPt+1{A - BFt) + R + F^QFt 
(6.17) 

e = «o,«o + i,---,*i - Mi > *o 

with terminal condition Pt, = P\ and where {Ft,t = to, • • • ,t\ — 1} is an arbitrary sequence 

of matrices. Let Pt be the solution of this difference equation with boundary condition 

Pti — P\- Consider the difference equation 

G(s) = [A - BH,-i)TGt-i[A - BHs-i] + R + Hj_xQH,-X 

(6.18) 

3 = tQ + l,<o + 2 , . . . , « i 

subject to the boundary condition Gto = P\, and where H,-X = F(j,+«„_,)• Then the 

solution of the difference equation (6.18) is 

G, = P ( t , + t n - 4 ) . 

P r o o f : Define <i + £o = and J = {t\ + £n) — Note that £ = <i implies a = to and 

t = to and £ = <o implies 3 = t\. Then note that equation (6.17) can be written 

P t 0 _ , = [A- BFt.-.]TP{t._{,_1)){A - BF{r_t)) 

(6.19) +R + Fft._,)QFc-3 

3 = t0 + Mo + 2,...,«i 

where the boundary condition is Pr-to = P i - Define G(s) = Pt,,-, and H,-X = Ft,,-,. Then 

(6.18) can be written 

G, = [A- BH,_X\TG,.X{A - BH,_X\ + R + H]_,QH,.X 

(6.20) 
3 = <o+ l,«o + 2, . . . ,< i 

where the boundary condition is now G t 0 = P i - Therefore, if Pt,£ = to, to + 1 , . . . ,tx — 1 is 

the solution of equation (6.17) with Pt, = P i , it follows that G, = Pp-t is the solution of 

(6.18) with = P\ 8 i v e n - • 

We also have the following corollary: 

Corollary 6.1: Consider the problem of maximizing Gt, subject to Gt{) = P i given 

and the difference equation (6.18), where the maximization is with respect to {H,-X,s = 

to + 1 . . . , tx}. The maximizing values of H,-X are 

//;_, = [BT,G°_XB + Q}-iBTG°_xA 
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where the optimized value G° of G, obey the "forward" matrix Riccat i equation 

G° = ATG°,_lA + R + ATG°,_1B{BTG°S_1)B 
( 6 2 1 ) , T o 

+ Q-lBTG°,_lA. 

P r o o f : We leave it as an exercise for the reader to show that theorem 6.4 ad theorem 

X X X (matr ix Ricatt i equation) readily imply the corollary. I 

Now rewrite the difference equation (6.15) E t + i as 

- E . + i = [AT - CTKj\T{-*.)[AT - CTKj) 
(6.22) 

+ (-V1) + {Kj)T(-V2)[Kj], 

subject to E t 0 = Eo given. Evidently maximizing — E<, with respect to {Kt,s = to,to + 

l,...,t\ — 1} is equivalent with minimizing E t , . It immediately follows from corollary 6.1 

that the optimal choice of K, is given by 

Kj = [ C E ° C T + V 2 ] - 1 C E ? A T , 
(6.23) 

s = to,to + 1, — t*i — l 

where E° is generated from 

SJ+i = AY,°,AT + VX- / l E ° C r 

(6.24) [ C E ° C r + V 2 ) - 1 C E ° . 4 T 

* = t o i t a+ It — »*i - 1. 

with Ef ( | = £ 0 given. 

3 . D u a l i t y 

It is useful at this point to recall the equations that describe the solution of the optimal 

l inear regulator problem: 

(6.25) Ft = (BTPt^B + Qr,BTPt + ,A 

Pt_i = ATPtA + R - ATPtB{BTPtB + Q)~iBTPtA 
(6.26) 

t = to,to + - 1 . 

The concept of duality is the key to characterizing the relationship between the two problems 

and their solutions. Thus, suppose that we have a time invariant linear optimal regulator 

193 



problem with given matrices, A, B,Q, R, and P i , and that the parameters t\ and to are 

given. Let Pt and Ft be the solutions for tins problem that obey (6.25) and (6.26), for 

t = eot<o + i , . . . , * i - 1 -

Now consider creating the optimal linear stochastic observer problem for the system 

xt+i = A xt + u>u+i 

yt = B xt + w2t 
(6.27) 

where 

™it+i 
L u>2l J L u>2t 

R 0 
0 -Q)-

Further, suppose that the opt imal linear stochastic observer problem is to be solved for the 

time period starting from to and ending at t\ > to- Let - £ t o = P i be given, where P i 

is the same negative semidefinite matr ix used as the terminal value matr ix in the optimal 

l inear regulator problem. It follows immediately from equations (6.23), (6.24), on the one 

hand, and (6.25), (6.26), on the other hand, that the solution to the opt imal linear stochastic 

observer problem is given by 

- £ t 0 = Ptx = P\ = - S o 

-S« n +1 = F t , _ i 

(6-28) - E t l l + 2 = Ptl_2 

(6.29) 

- E t = Pt 

Ku, = Pti-i 

T 
k«0+ 

K t „ + \ - Fti-2 

This claim can be established directly by verifying that the solutions (6.28) and (6.29) satisfy 

(6.23) and (6.24) with the correct boundary condition E ( „ = —Pi. Thus, the solution of an 

opt imal linear regulator problem can always be reinterpreted as the solution of a specific 

opt imal l inear stochastic observer problem for the dual (6.27) of the system for which the 

regulator problem is solved. These interconnections are usefully summarized in Table 1. 

194 



Table 1 

Object in Optimal Object in Corresponding 

Regulator Problem Optimal Observer 

A AT 

B CT 

R - V j 

Q -V2 

Pto 

Pt„+l -E ( , - i 

Pt,-1 

Pt, 

Pi 

Ft, 

Ft„+i 

- S o 

A - BFt0 

A-BFu-i 
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4. C o n v e r g e n c e a n d S t a b i l i t y T h e o r e m s for the O p t i m a l O b s e r v e r 

For systems that are time invariant, two properties of the l imi t ing behavior of E , and 

K, given by (6.23) and (6.24) are desirable. F i rs t , it would be desirable if for any init ial 

Eo = E«„,l imt_oo E t exists and is independent of the init ial covariance matrix £ 0 . Where 

this property obtains, it follows from (6.23) that l im ( _oo Kt exists and is independent of £o-

Given that l i m ( _ 0 O Kt = K exists, a second property would be desirable, namely that the 

matr ix (A — KC) be a stable matrix. The steady state observer is given by 

x t + l = (A - KC)xt + Kyt 

(6.30) or 

xt+i = Axt + Kyt - Cit). 

Notice that the system (6.30) has the solution 

(6.31) itl)+j = (A- KCyit, + X > - KCy-'Kyt^-v 
1=1 

If the eigenvalues of (A - KC) are bounded in modulus by unit, (6.31) expresses it„+j as 

a matr ix distr ibuted lag of ytl)+j-i,.. . ,ytn with an ini t ial condition whose effect approaches 

zero as j —» oo. The steady states observer is said to be asymptotically stable if (A — KC) 

is a stable matr ix. 

The fact that the stochastic linear optimal observer problem is dual to the linear opt imal 

regulator problem, means that we can simply reinterpret the sufficient conditions for Pt„ to 

converge as to —» oo in order to deduce sufficient conditions for to converge as t\ —• oo. 

Similarly, from the conditions on the linear regulator problem sufficient for the steady state 

closed loop system matrix (-4 — BF) to be stable, we can immediately deduce conditions on 

the observer problem sufficient for (A — KC) to be stable. 

We proceed to state several theorems for the stochastic linear opt imal observer problem 

that follow by duality from corresponding theorems for the optimal linear regulator problem. 

Corresponding to theorem — we have: 

Theorem 6.5: Consider the stochastic opt imal linear observer problem with Eo = 0. As­

sume that the pair (A , C) is reconstructible. Then the reconstruction error covariance matrix 

Et , calculated from the Riccat i equation (6.24) converges as t\ —» oo. 

196 



P r o o f : 

matr ix 

The pair (A,C) is reconstructible if and only if the rank of the reconstructibility 

r c 
CA 

Q = 

ICA"-1 

is n. Consider the linear optimal regulator problem corresponding to the optimal observer 

problem (see Table 1). In the corresponding linear opt imal regular problem, the controlla­

bi l i ty matr ix is [CT, AT, CT,..., AT, C T n _ 1 ] , which has rank n. Thus the pair (A, C) = 

(AT,CT) is completely controllable, implying by virtue of theorem — that starting from 

P t , = 0, l imt o__oo Pt 0 exists. Therefore, by virtue of duality l im^ -oo £ ( t i ) = limtg—«_oo * tii 

exists. I 

Corresponding to theorem — we have 

Theorem 6.6: Consider the stochastic opt imal linear observer problem with X)t„ = 0- Let 

the (n x n) positive semidefinite matr ix V\ be expressed as GTG where G is (r x n), r < n 

and r is the rank of VI. Assume that the pair (A,C) is reconstructible, and that the pair 

(A,G) is controllable. Then the steady state matr ix (A - KC) is stable. 

P r o o f : It is readily verified that (A,C) is reconstructible if and only if (AT,CT) is con­

trollable, and that (A,G) is controllable if and only if (AT,GT) is reconstructible. Set 

A = AT,B = CT,G = GT,-R = V i .and - Q = V2. Consider the optimal regulator 

problem for the system G, B,G,R,and Q with P{t\) = 0. From theorem it follows that 

the steady state closed loop matrix (A — BF) is stable. By virtue of duality, we have that 

KT = F and (A - BF) = (AT - CTKT). This implies that (A - KC) is a stable matrix. I 

By ut i l iz ing theorem (), the hypotheses of theorem 3.6 can be weakened from assuming 

that the pair (A,G) is controllable to assuming that the pair [A,G) is stabilizable. Under 

this assumption it remains true that the steady state matr ix (A - KC) is stable. 

We also have the following counterpart to theorem — : 

Theorem 6.7: Consider the stochastic linear opt imal observer problem. Assume that 

sufficient conditions are satisfied so that iterations on the Riccati equation (6.15) starting 
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from E i 0 = converge, and that the associated steady state matr ix (A — KC) is stable. Then 

for any positive semidefinite ini t ial covariance matr ix E t ( ) , iterations on the matrix Riccati 

equation (6.24) converge to the same positive semidefinite matr ix E , i.e., the l imit point 

described in theorem 6.5. 

P r o o f : Exercise. 

By this t ime the reader wil l have understood that by virtue of duality, all of the theorems 

stated for the optimal linear regulator problem have interesting counterparts for the optimal 

linear stochastic observer problem. We invite the reader to state and prove the counterparts 

to theorems — — — . 

5. A n E x a m p l e : (Mu th [], Friedman [], Cagan [] ) 

A n agent is interested in making inferences about a random variable 9t which obeys the 

first-order autoregressive process 

Qt+i = p9t + Ct+n 

where et is a white noise with Ett = 0, Ee\ = a\ for all t. The agent observes at time t the 

record of noise corupted signals zt, zt-\,. .., Zt 0, where 

zt = 9t + ut 

and where ut is a serially uncorrelated random process with Eut = 0, Ev?t = a\. We also 

assume that Eutt, = 0 for all t and s. The agent desires to estimate 9t+i on the basis of 

information he possesses at t. At time to,9tlt is (believed to be) distributed with mean 9n 

and variance Eo-

This problem fits into the stochastic linear opt imal observer problem with the following 

identifications. We set 

V = E 

Xt = 9t 

WU + 1 = yt = zt 

W2t = Ul 

[u'u + i 1 'u>u+i 1 
T " vx n 

W2t . U>2t+1 . . o v2. 
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(6.32) 

A = p 

C = 1 

Bt = E($t | Zt-\,Zt-2,. . • ,Zt„) 

E, = E(0t - Ot) 

The recursive equations defining the filter are 

Et+i = p 2 S f + <r2 

- ^ [ S t + o- 2 ] - 1 , w,th E« 0 = E 0 . 

(6.33) Kt = pHt + 

The opt imal observer is 

(6.34) 9t+l = (p-Kt)8t + Ktzt. 

We can readily verify that the pair (A,C) = (p, 1) is reconstructible, and that the pair 

{A,G) = (p,o-e) (where GGT = V\) is controllable. Therefore from theorems 6.5-6.7, we 

know that limt_oo exists, that limj_oo Kt = K exists, and that the steady state matrix 

{A - KC) is stable. 

The steady state observer is 

6t+i =(p- K)6t + Kzt 

or 

0 t o + J = (i - Kyetn + K ]T](i - K y - ^ i - i . 

where recall that 9to+j = E6t„+j \ [z„ s = t0,... , to + j - 1]. 

6. T h e O p t i m a l L i n e a r R e g u l a t o r P r o b l e m w i t h H i d d e n S ta te V a r i a b l e s 

We consider the problem of maximizing the criterion 

(6.32) E 

subject to the law of motion 

£ {xjRxt + u[Qut} + xJxPtlxti 

t = tn 

xt+i = Axt + But + wu+i 
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where wu+i is a vector white noise with Ew\tw[t = V\. The state vector xt is not observed 

by the problem-solver. Instead, at t the problem-solver sees {y$,u,\s < t} where 

yt = Cxt + w2t 

where u>2t is a vector white noise with covariance matr ix Exv2tu>2t = ^2- We also assume 

T f V " i 2 . t = a 

The criterion (6.32) is to be maximized over feedback laws making u< a function of ( j / , ,u ,_ i ; 

s < t). 

We shall show that the solution of this problem can be obtained in two steps. First , 

solve the standard optimal linear regulator problem that results from assuming that xt itself 

is observed, obtaining the sequence of linear feedback rules ut = —Ftxt- Second, from the 

linear-least-squares estimator xt of the hidden state xt using the Kalman-f i l ter 

x t + 1 = [A - KtC)xt + Ktyt 

Then the optimal solution for the problem (6.32) is to use the control law 

(6.33) ut = -Ftxt 

i.e., to feedback on the optimally reconstructed state as though it were the actual state. 

This structure of the solution indicates the sense in which the optimization (linear regulator) 

problem and the state reconstruction (Kalman filtering) problem can be solved separately 

in solving the general linear regulator problem (6.32) with hidden state variables. This 

structure of the solution is said to mean that it satisfies a separation principle. 

To prove the separation principle property, we begin by noting that for the optimally 

reconstructed state it 

Ex^Rxt = E [xt - it + it}TR[xt - it + it] 

(6-34) = E {[xt-it\TR[xt-xt]} 

+ IE {{xt - it}TRxt} + EijRit. 

Lett ing = E(xt - it)(xt - *t)T, recall that 

E(xt - i f )R(xt - xt) = trR2t. 
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Further, by the orthogonality principle, we have 

E (xt - xt)TRxt = tr[xt(xt - xt)TR] = 0 . 

Therefore, we have 

(6.35) E xjRxt = trRZt + EiJ Rit. 

Using (6.35) and the analogous expression for E xJPtlxtl in (6.32) gives the criterion function 

E £ {xjRxt + ujQut} + + tr{ £ RXt 

(6.36) L*=«o «=«o 

+ «,*«•,}] 
The last term in braces is independent of the controls ut, since the problem solver is assumed 

to see current and lagged controls, so they don't confound his reconstruction problem. The 

last terms in braces evidently depends only on the statistics of the optimal reconstruction 

problem, and furthermore is maximized by the opt imal observer, since the E j sequence is 

minimized. Our problem is now to maximize (6.36) subject to the following law of motion 

for the reconstructed state: 

(6.37) x m = (Axt + But) + Kt [yt - Cxt\ 

It was established above that (yt — Cit) is a vector white noise, so that maximizing (6.36) 

subject to (6.37) is a standard stochastic linear opt imal regulator problem with state vector 

xt known, with system matrices (A, B, R,Q), and with noise statistics given by 

KtE(yt - Cit) (yt - Cit)TKT 

The optimal solution of this problem is of the form 

ut = -Ftit-

This concludes the proof that our problem possesses the separation principle property. 

Next we study the behavior of the system under conditions in which both Ft and R't 

converge to l imi t ing values The asymptotic closed loop system governing the (2n x 1) system 

of variables (xt,it) is then 

xt+\ = Axt - BFit + wu+i 
(6.38) 

x t + 1 = (A - KC)it - BFit + KC(xt) + Kw2t. 
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It is useful to express this system in terms of the variables i f , it — it- (This can be accom­

plished by subtracting the second equation from the first.) In terms of these variables the 

system is 

(6.39) 
\A-BF 

xt+i — it+i. 0 

+ 

BF 
A- KC 

u>u+\ 
l t u . i i + i - Kw2t\ 

xt - xt 

Since the system matr ix of (6.38) is related to that of (6.39) by a similar i ty transformation, 

it shares common eigenvalues with that of (6.39). From the block triangular structure of the 

system matr ix in (6.39), it follows that its eigenvalues are the eigenvalues of A — BF and 

those of A — KC. This property is known as the eigenvalue separation theorem. 

Theorem 6.8 (Eigenvalue Separation): The variables are governed by a linear system 

with a transition matr ix whose characteristic values are those of (A — BF) and (A — KC) 

jointly. 

7. E c o n o m e t r i c E s t i m a t i o n 

We now consider the problem of estimating the free parameters of a model of the form 

(6.38), namely, 

(6.40) \xt+l 1 r A -BF 1 
.KC A-KC-BF .it. 

Kw2t 

w here 

V = E 
[Kw2t Ku>2t J 

V'i V3KT 

KVJ K\\K 

The model is subject to the extensive cross-equation restrictions 

(6.41) F = {B1 PB + Q)~1BTPA 

(6.42) K = (AT.CT(CT,CT + V j ) " 1 

where P is the unique negative semi-definite solution of 

(6.43) P = [A1 PA + R - A' PB(B'1 PB + Q)~lBTPA 
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and E is the unique positive semi-definite solution of 

(6.44) E = AY,AT + Vx - A2ZCT{CzZCT + V 2 ) " ] C E / 1 T 

Equat ion (6.40) is a vector first-order linear difference equation in the variables (xt, it), some 

subset of which we assume that the econpmetrician observes. The econometrician's problem 

is to estimate the free parameters of agents' objective functions and constraints. From the 

econometrician's viewpoint, the free parameters of the model are the free parameters in 

9 = (R,Q,A,B,C,VUV2,VZ). The parameters of F and K enter the "closed loop" law 

of motion (6.40), but are not free parameters, instead being functions of the deep free 

parameters in the list 6. Thus, the model (6.40) to be estimated is linear in the variables 

but highly nonlinear in the deep parameters of agents' objective functions and constraints. 

These nonlinear restrictions are characterized by equations (6.41), (6.42), (6.43) and (6.44). 

The general theory of estimation can be stated compactly and simply. The model formed 

by (6.40)-(6.44) determines the second moments of the joint (xtxt) process as functions of the 

free parameters. The idea behind all alternative estimators is to choose the free parameters in 

9 so that the sample moments of the data on which the econometrician has observations fits 

the theoretical moments impl ied by the model as closely as possible. Alternative estimators 

differ in impl ic i t ly choosing different measures of fit. We turn briefly to the maximum 

l ikel ihood estimator, which is straightforward to describe. 

F i rs t , we rewrite equation (6.40) as 

(6.45) yt+i = Ayt + e«+i 

where 

Vt = 

A = 

xt wu+i 
xt. , £ f + 1 Kw2t 

A -BF 
KC A - KC - BF. 

We assume that sufficient conditions are met that the eigenvalues of A, which equal those 

of A — BF and A — KC, are less than unity in modulus. We define the matrix covariogram 

of the yt process as the sequence of (2ra x 2n) matrices 

Ry(r) = EytyJ_T, integer r. 
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The 2-transform of the covariogram is defined as 

(6.46) Sy(z)= £ Ry(r)zr 

T=-00 

where R(T) is recoverable from Sy(z) by the inversion formula 

dz 

where the integral is a contour integral and T denotes the unit circle. For a model of the 

form (6.45), the z— transform of the autocovariogram can be shown to be 

Sy(z) = {I-Az)-iV{I-ATz-1)-i 

Let the eigenvalues of A be A i , . . . , A r where r = 2n. We have assumed that | A;- |< 1 for 

all j, and assume also that the A ; ' s are distinct. Then by using a matr ix partial fractions 

representation of Sy(z), it can be shown that 

(Mr, « . ) - ± ^_+1 g £ 
; = 1 1 A J Z ; = 1 1 AJZ 

Expressing Sy(z) as 

= 7-77 -. * - T .-. adj(I - Az)Vadj(I - AT z~l) 
det(I - Az)det(I - A1 z - 1 ) 

We note that Sy(z) has poles at the zeroes of det( I — Az), that the zeroes of det(I — ATzT) are 

the eigenvalues of A, and that the zeroes of det(I — Az) are the reciprocals of the eigenvalues 

of A. Wr i t ing det(I - Az) = A 0 ( l - X\z),.. .(1 - A r z ) we have 

<6 4 8 ) S M = A8n;. , ( i -A,-«) 'n i . , ( i -A t . - ) a d l ( ! " k ' ) V a d l { l ' 
Now seek a matr ix part ial fractions representation of the form 

<6-49> w ^ r ^ T ^ r . 

Equating (6.48) and (6.49) and mult iply ing both sides by A g n j = 1 ( l - A ; z ) I I J = 1 ( l - A fez - 1 ) , 

then taking l imits as z — » A J 1 and z —* A ; , respectively, gives 

Wj = [Agn&=i(i - A f c A7')n; = 1 ( i - A ^ A , ) ] - 1 ) adj { / - AJ1} vadj {i - ATxj} 
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Vj=\jWJ 

Subst i tut ing these formulas into (6.49) gives formulas equivalent with (6.44) and () of the 

text. Where 

(6.50) W. ) = L i m ( l - \JZ)[(I - Az)-lV(I - A V 1 ) " 1 ] 
z~*x'i 

From (6.47), the covariogram can be immediately obtained as 

E j . , Wj\), T > o 
(6.51) Ry(r) = 

Equat ion (6.47), (6.50), and (6.51) give the theoretical second moments of the vector process 

yt = (xj, xj) as a function of the free parameters that underlie A and V. 

Now suppose that the econometrician has data on some subset of p variables yt = Dyt 

where p < 2n, and where D is a (p x 2n) matrix. Then it is readily verified that the matrix 

covariogram of yt, call it Ry{r) = EytyJ_T, is given by 

Ry{r) = DRy{r)DT 

Zr

j=lDW}DT\T

j , r > 0 

Er

jmlDWTDT\W , r < 0. 

Equat ion (6.52) gives the covariogram of the variables on which the econometrician has data 

as a function of D and the l V ; ' s , A ; ' s , which in turn are functions of the deep parameters of 

the model. 

Now define the stacked vector of observations 

(6.52) Ry(r) = 

yt -
2/2-

.VT. 

Define the theoretical covariance matrix of y-p, 

VT(9) = Eyry7-, 

whose elements are components of Ry{r) and can be filled in as functions of the deep pa­

rameters 9 of the model by using (6.52). Then the normal likelihood function of the sample 

yx is given by 

(6.53) 
i. & 

LT = -l-Tp log2n - Uog det [>(*) - ^ y f T r V ( 0 ) y T 



Estimation proceeds by choosing the free parameters of 6 to maximize (6.52) subject to the 

cross-equation restrictions given by (6.40), (6.41), (6.42), (6.43), (6.44), (6.45), (), (6.50), 

and (6 52). 

Exercises 

1. The "true" money supply follows the stochastic process 

Mt = XMt-i + ut 

where Eut = 0 ,Uj = [Mt — EMt \ Mt-\, . - . ] , u j has finite variance , and uj is serially 

uncorrelated. But "true" money is reported only with a two-period lag; what is reported 

immediately is a prel iminary estimate of money m< , governed by 

mt = Mt + et, 

where et has zero mean, is serially uncorrelated, has finite variance, and Eute, = 0 for all 

t and J . Suppose that the system has been operating for a long t ime, so that it is a good 

approximation to assume that A and the variances of et and u< are known. 

(a) Show how to compute the linear least squares estimators of mt+i and m, given 

information know at t ime t; i.e., compute Etmt+\ and Et mt where E is the linear least 

squares projection operator. Hint: use the Ka lman filter or full order observer algorithm, 

and define i « , yt, A, B, C. 

(b) Is \'2 positive definite? If not, does this create problems with the algorithm you 

outlined? Can you think of a way of coaxing the full order observer algorithm of class to 

give a good approximate answer? (Hint: think of a way of approximating the true V\ by a 

positive definite Vt). What is the interpretation of your approximate solution? 

(c) W i t h V2 positive definite, prove that for the approximate system 

(t) Iterations on the matr ix Riccat i difference equation for £ (<) converge as t —» oo. 

(it) The steady state matrix (-4 - KC) is stable, regardless of the value of A. 

2. Consider the state space system 

xt+\ = Atxt + Btut + wu+i 

yt = Ctxt + W2t 
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as described in the text. Describe carefully how the following examples fit into the state 

space framework (i.e., for each example, you must define xt, At, Bt, ut, u ' i h i . yt, Ct, and 

Wit). 

(a) A n autoregressive process 

z t = axzt-i + a2zt-2 + r o n z t . - n + €t 

where et is fundamental for {zt}, and the roots of (1 — a\z — a2z2 — ... — anzn) = 0 are 

outside the unit circle. 

(6) A moving average process 

Zt = CQCt + C l C t _ l + • • • + cnet-n 

where et is a white noise that is fundamental for Z*. (Hint: define the state vector as 

xt = (et,et-i, • • • , e t - i ) ) . 

(c) A mixed moving average autoregressive process 

zt = a\zt-\ + et + bxet-i 

where | a i |< 1, | b\ \< 1, and et is fundamental for zj. 

(d) A regression model 

Yt = Xt8 + et t = 1 . . . . . T 

where et is a white noise, Xt are fixed regressors, and 3 is a vector of regression coefficients. 

(e) A moving coefficients regression model 

Yt = Xt3t + et 

where 3t = 0t=\ + u j , where u< is a white noise and the other symbols are as defined in (d) 
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Chapter 7 

Linear Dynamic Equil ibr ium Models 

1. Introduction 

This chapter discusses two alternative ways of solving linear dynamic equi l ibr ium models. 

The first, which we dub the Kydland-Prescott method, is a recursive method that works even 

in the presence of dynamic externalities and other distortions. The second method, which 

is Lucas and Prescott 's, exploits the equivalence between equi l ibr ium and optimality. This 

second method will not work for environments with some distortions that can be handled 

by the Kydland-Prescott method. 

We describe these mthods in the context of a concrete model, namely, a version of Lucas 

and Prescott's model of investment under uncertainty with adjustment costs. We go on to 

apply these methods to a two sector model of "corn-hog" equi l ibr ium dynamics. 

2. The Kydland-Prescott Method 

This is a model of an industry in which n identical competit ive firms employ a single 

productive input, capital , to produce a single output. The industry demand curve for output 

at t ime t is 

(7.1) ju = A0 - A\Yt + ut, Ao>0,Ai>0 

where pt is output price at t, Yt is industry output, and ut is a shock to demand. The output of 

each firm is yt = fokf where kt is the firm's capital stock at time t and fcrj > 1. The industry­

wide capital stock is Kt — nkt, and the industry-wide output is Yt = ny< = nfokt = foKt 

The firm pays a rental u>t per unit of capital at time t. The rental process wt is assumed to 

follow the law 

(7.2) wt = A 0 + A]u>t_i + X2Kt-\ + awt 

where awt is a serially uncorrelated random process with mean zero. It is important to note 

that with A 2 ^ 0, (7.2) permits feedback or Granger causality from the market-wide capital 

stock K to the rentals process w. At time t, the market wide capital stock Kt is assumed to 
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follow the linear law of motion. 

(7.3) K t + 1 =k0 + h\Kt + h\wt + hiut, 

where notice that the coefficients in (7.3) are permitted to depend on time. We suppose that 

the demand shock U( follows the autoregressive process 

(7.4) u t + i = aut + a u t + i 

where aut+i is a serially uncorrelated random process with mean zero that is fundamental 

for u. 

The individual firm is supposed to maximize 

( ? g ) Eto E ̂  {ptfokt - wtkt - \ (kt+1 - fct)2} 
d > 0, 0 < 3 < 1 

subject to kto given, and subject to knowledge of the laws of motion (7.2), (7.3), and (7.4), 

and the demand curve (7.1). In (7.5), 5(̂ +1 — kt)2 represents costs of adjusting the capital 

stock rapidly, while 3 is a discount factor. A t t ime t, the firm is supposed to choose kt+i 

as a function of the state variables it knows, namely {kt, Kt,ujt, ut}. In (7.4) Et„(') = 

E(- | kt0, Kt0, w<o> uto)> w n e r e E is the mathematical expectations operator. The solution of 

this problem wil l be a sequence of linear contingency plans 

fcf+1 = di + d\kt + d2wt + d\ut + d\Kt, 
(7.5) 

t - to,to+\,•••,£] , 

where the coefficients dj are in general dependent on time. 

Equi l ibr ium requires that the choice (7.6) of the representative firm imply the aggregate 

law of motion (7.3) assumed by firms in maximizing (7.5). Mul t ip ly ing both sides of (7.6) 

by n gives 

(7.7) K t + l = nd0 + (d\ + nd\)Kt + (nd2)wt + (nd\)ut. 

Since (7.7) must be identically equal to (7.3), we have the equil ibrium conditions 
= 71 dg 

h\ = d\+ nd\ 
(7.8) 

h\ = nd\ 

h\ - ndj 
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Formally we can define a rational expectations equi l ibr ium as follows. 

D e f i n i t i o n 7.1: A rational expectations equilibrium is a pair of sequences h(to, t\) = {h0, h\, 

h2,h3; t = t0,...,ti} and d{t0,t0) = {dQ,d\,a\ya%,a\; t = t0t. such that 

(a) Given h(t0, t\) as the law of motion in (7.3), d.(t0, tx) in (7.6) maximizes the representative 

firm's expected present value (7.5). 

(6) Market clearing and the firm's choice of d(to,t\) imply that h(to,ti) gives the aggregate 

law of motion, i.e., equations (7.8) hold. 

Let us substitute [Ao - AifoKt + ut) for pt in the objective function (7.5). Then the 

firm's problem is equivalent with finding a sequence of value functions V'( fc t , tu t , ut} Kt, 1) 

that satisfy Bel lman's functional equation 

V^kt^uut, Kt,l) = max I [A0 - Aif0Kt + ut] f0kt - wtkt 

- \ (kt+i -kt)2 + dEtVt+1(kt+i,wt+l,uM,Kt+1, 1)} 

where the maximizat ion is subject to the given laws of motion 

Kt+i = hl

0 + h\Kt + h2wt + h3ut 

(7.10) wt+i = Xo + X\wt + X2Kt + awt+\ 

ut+i = aut + aut+\ 

In (7.9) it is assumed that u t l + 1 (ktl + i, u>j,+i, utl+\, K^ + i, 1) = 0. This is a linear reg­

ulator problem that can be solved by standard methods. Define the state vector Xt+i = 

[kt, wt,ut, Kt, 1)', and the control vt = kt+\ - kt. Then the law of motion is 

kt+i 

(7.9) 

VJt+\ 

1 

0 
A, 

0 0 
0 

0 
0 
a 

h2 h3 

0 
A 2 

0 

0 
Ao 
0 

0 0 0 0 1 

' 1 1 [ 0 

wt 0 
Ut + 0 vt + &ut-l 

Kt 0 0 
. 1 . . 0 . 0 

or 

Xt+\ = AtXt + Bvt + at+1. 

Define the quadratic form XTRXt as 

i T r o 
kt 

Kt 

1 

l 
2 

2 

2 

2 

- i + fo 

0 

(J 

0 

0 

0 

0 

n 

0 

0 

0 

0 

0 

ft)Aa 
2 
0 
0 

0 

0 

ut 

Kt 

1 
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Define Q = — 5 . Then the firm's problem is the discounted optimal linear regulator problem, 

to maximize 

Btot, 3{t-to)(*TR*t + vlQvt), 
t=t0 

subject to 

x t + i = Atxt + Bvt + at+\ 

The maximizat ion is over linear contingency plans of the form 

vt = -Ftxt, t = t0,t0 + l,...,ti. 

Since vt = kt+\ — kt, we have that 

(7.11) n = [ 1 - 4 , - 4 , - 4 , - 4 , - 4 ] 

For this problem with At matrices taken as given by the firm, the solution is given by 

(7.12) Ft = 3(8B'Pt+iB + Q)-1B,Pt+lAt 

where {Pt} is computed from the matrix Riccat i difference equation, 

(7.13) Pt = 3A'tPt+1At + Rt- 02A'tPtB[0B'Pt+lB + Q)'1 B'Pt+1At, 

start ing from the terminal condition Pj,+i = 0. It is revealing to use (7.11) in (7.12) and to 

write out At explicit ly to get 

-((1 - ~4< ~4> -4>-4} = 

(7.14) 0(0B'Pt+1B + Q)-1B'Pt+1 

Recal l ing (7.8) we have 

(7.8) 

1 0 0 0 0 ] 
0 A, 0 A 2 A 0 

0 0 a 0 0 
0 h\ M i K 
0 0 0 0 1 . 

h0 = n4 

h\ = 4 + n 4 

h\ = n4 

h\ = nd3 
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Given Pt+i, equations (7.14) and (7.8) are nine linear equations in the nine variables OQ, d\, d2, 

d\, d\, h0, h\, h2, h3. 

Equations (7.13), (7.14), and (7.8) provide the recursive algorithm used by Kyd land and 

Prescott. A t t\, the nine linear equations (7.14) and (7.8) are solved joint ly for the nine 

variables {n 0 , h'j, h\\ h\\ <#> di> <#> <#> <*4}- w i t h Ph + i = 0- The solution for the *}*»• 

determines the matr ix A^, where recall that 

At = 

r I 0 n 0 0 1 
0 A, 0 A 2 Ao 
o 0 a 0 0 

h\ h\ M ho 
.0 0 0 0 1 . 

Given Atlt Pf. is calculated from the Riccat i difference equation (7.13). Then (7.14) and 

(7.8) are used to solve for {fc} 1" 1, d^~x j = 1,2,3; t = 1 , . . . ,4}, Atl-\ is formed, and Ptl-\ 

is computed with (7.13). The recursive process is repeated unti l the nj- and d*j's have been 

computed for all t = to, • •., t\. 

Like Prescott and Kyd land , we are actually interested in using this algorithm to compute 

a rational expectations equi l ibr ium for the case of an infinite horizon for the firm, in which 

case there obtain t ime invariant laws of motion both for the firm's capital stock and the 

industry's aggregate capital stock. The firm's problem is to maximize 

(715) l im EtoY0{t~t''){ptfokt-wtkt-d(kt + l - k t ) 2 ) 
' i - * 0 0 e=t„ 1 2 ' 

subject to the laws of motion 

f f+i = + h\Kt + h2wt + hiut 

(7.16) vJt+i = Ao + Aiti;t + \ 2 K t 4- a „ l + 1 

"t+l = Q"i + S + i 

The solution of this problem for the firm is a linear contingency plan 

(7.17) fc,+, = d0 + dxkt + d2wt + d3ut + dAKt, 

which is now time invariant. A rational expectations equilibrium is a pair of {hj}, j = 

1, 2, 3; t = 1,. . . , 4 such that (<i) given the hj's, the d{'s in (7.17) lead to maximization of 
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(7.15), and (6) the d^'s imply the law of motion for K assumed by firms in their maximization 

problem, which means that 

/in = ndo 

k\ — <*i + nd4 

( 7 1 8 ) K i 
hi = n a 2 

hi = nd3 

If the Kydland-Prescott algorithm converges, then it converges to the infinite-horizon, time-

invariant equi l ibr ium. That is, set 

4= l im dj° j = l , . . . , 4 
(7.19) 

hi = l im a " £ = 1 , . . . , 3 
to—•—oo 

If the l imits on the right sides of (7.19) exist, then it can be proved directly that the hi and 

dj defined by (7.19) constitute a rational expectations equi l ibr ium for the infinite horizon 

setup. 

In general, in the presence of feedback from K to w, that is, with A 2 not zero, there is 

no guarantee that an infinite horizon equil ibrium can be calculated using (7.19). The l imits 

in (7.19) may or may not exist in the presence of feedback from K to w. At present, it is an 

open question whether, when the l imits in (7.19) fail to exist, there sti l l exists an equil ibrium 

for the infinite horizon setup, even though it cannot be calculated by the Kydland-Prescott 

algori thm. 

W i t h A 2 = 0 and with | a |< l/y/fi and | A[ |< l/y/'d, it can be proved that a time 

invariant equi l ibr ium exists for the infinite horizon setup. 

Under conditions delineated by Lucas and Prescott, the rational expectations equil ibrium 

for a model l ike ours can be computed by solving a particular social planning problem, 

namely, by maximiz ing the expected discounted consumer surplus minus the total costs of 

production. The Kydland-Prescott algorithm is designed for computing rational expectations 

equi l ibr ia in circumstances in which the equivalence between the social planning problem and 

the competit ive equil ibrium does not obtain. In our model, the feedback from market-wide 

capital K to the rental w manifested in equation 7.2 produces an externality that renders 

the Lucas-Prescott method inapplicable. 
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3. The Lucas-Prescott Method 

A n alternative to Kydland-Prescott 's algorithm is to represent the feedback from current 

market wide phenomenona to future u;'s in a way that preserves the Lucas-Prescott equiva­

lence between the competit ive equi l ibr ium and the social planning problem. In the context 

of the present example, this can be done by introducing feedback directly from u to w, and 

suppressing the explicited dependence of w on lagged K exhibited by (7.2). This would be 

accomplished, for example, by replacing (7.2) with 

(7-2') u>t = A0 + \\Wt-\ + A 3u t_i + awt. 

This change restores the equivalence between competitive equi l ibr ium and the social planning 

problem. 

The advantage of the alternative formulation is that by solving the social planning prob­

lem, the competit ive equi l ibr ium can be calculated more quickly and much more nearly 

in closed form than by the Kydland-Prescott method. Thus consider the infinite horizon 

problem, to maximize 

(7.20) Et0 £ 0 ^ iptfokt - wtkt - t (kt+1 - kt)2} 
t = tn 1 1 ' 

with ktn given, and subject to 

(7.21) P t = A 0 - AiYt + u, 

(7.22) 

(7.23) 

Yt = nf0kt 

\wt] 
f c n ( I ) c 1 2 ( I ) l 
. 0 C 2 2 ( L ) . V2t. 

= c(L)vt 

where Cij(L) = HkLo c «' ; .kL k , and all zeroes of det c(z) lie outside the unit circle. Here 

[uit, V2t,} are joint ly fundamental for [wt, ut, j , i.e. they are serially uncorrelated, have means 

of zero, obey Ev\tV23 = 0 for all t and s, and one step ahead linear least squares errors in 

forecasting (wt, ut) by linear functions of lagged u/'s and u's are linear combinations of v\t 

and V2t-
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Following the procedures in Hansen and Sargent [] and Sargent (], we first solve the 

certainty version of the above problem, then use the Wiener-Kolmogorov prediction formulas 

to find the solution under uncertainty. For the certainty version of (7.20), differentiating 

(7.20) with respect to kt yields the Euler equation 

dBkt+l -d{l+ 0)kt + dkt-i = Bvjt - Bfm 

At this point, but not before, we substitute for pt from pt = AQ — A\nfokt + u<. Substituting 

at this point and not before is what guarantees that the firm is behaving as a competitor 

with respect to the output price pt. Upon substitution we get, after some rearrangement 

/o<40 fo 
(7.24) _ v . . , . d n . B . ^ - d - d 

As i n Sargent [], it can be shown that this equation itself is the Euler equation associated 

with the social planning problem, to maximize 

Wtl, = £ / 3 ( t - f , , ) {[Aofonkt - ^ l , ( / o V f c t ) 2 ) + fonutkt] 

- nvjtkt - -nd(kt+\ - A:,)2 j 

The term in brackets is the area under the demand curve since 

fYl 1 
/ {A0 - Aix + ut)dx = AoYt - -AtY? + Ytut Jo i 

The Euler equation (7.24) can be written as 

/1 » r \ / i \ r\L 1 h (1 - A i L ) ( l - A2L)*t+i = jWt - ^ ~ d 

w here (1 - A,L) (1 - A 2 L ) = (1 - (1 + J + ± ^ ) L + \L2), and where B\x = A J 1 , and 

where A] < 1 < ^ < A 2 . The solution of the Euler equation that satisfies the transversality 

condit ion for the firm's and for the social planning problem is (see Sargent [] ) 

(7.25) (1 - A,L)fc f + 1 = 
- l - ( A i / 3 ) L 

1 - (Ai/3)L-> ; -wt -
foAo fo 

~ 7 U t . 

For the problem under uncertainty, the solution is 

\-\i0L 
-1 
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Given (7.23), we have that 

(7.27) 

• - 1 

Using the method of appendix A of Hansen and Sargent [1980], it is readily established that 

(7.28) [ L-^CuiD-CnipXj)] L-l\Cn(L)-Cl2(t3\i)] 

0 

Substitut ing (7.28) and (7.27) into (7.26) gives the equil ibrium 

foA0 (7.29) 

where 

(1 - A i l ) k t + i = — ^ ' p + Bi(L)vlt + 62(L)v2t 

9i{L) = 
- A , / 3 L - M C n C ^ - C n ^ A , ) ! 

1 - Ai /9L - l 

(7.30) 
A,/3 L-l[C12{L)-C12(0Xi)] 

1 - A i j 0 L - l 

fo0\x L-l[C22{L)-C22{0\x)) 
d ' l-Xi0L-1 

Expressions (7.30) can be made to yield explicit formulas for the distributed lag coefficients. 

Let t(L) = Y?j=oljL' a n ( * I ^ l< 1- Then following the same procedure as in Hansen and 

Sargent [], it can be proved that 

(7.31) 1 1-6L - l 

+ (7i + 5 7 2 + . . . + ^ - ! 7 f ) L ° ) : 

Repeated use of (7.31) in (7.30) converts (7.30) into explicit formulas in terms of lag distri­

butions. 

Substitut ing (7.27) into (7.26) gives 

(1 - i\L)kt+\ = -
(7.32) 

+ 

1 - Xx0 d 

- A i / 3 / o / ? A i 

d d 
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It is useful to consider the case in which [u>t, ut] has an autoregressive representation 

(7.33) 
An(L) A»{L) 

0 An(L) 
\wt] 

V2t. 

o r 

\vu] 
ut V2t. 

A{L) 

where A(L) = C(L)~l. Sometimes it wi l l be convenient to parameterize the model in terms 

of the autoregressive parameters of (7.33). In this case, (7.32) can be written 

. ,v , X^B foA0 (1 - \iL)kt+i = -

(7.34) 
l - A j / 3 d 

Using 
1 _ -MiiL) 1 

An(L) Jii\L)A„\t) 
1 0 A2i{L) 

C{L) = A{L)-X = 

together with (7.34) and (7.28), we obtain the equil ibrium in the form 

(7.35) 
„ . rsi A,/? f0A0 XyBfoBXi. 
( l - ^ ) k t + l = — - - - - r + {--d-~-d-. 

[ L-1 , 1 / i_Au±L} AniXiP) ,1 
\ l - / 3 A , I - i Uu(L) >»n(A,/3) J / \ \-0XlL-^Au(L)Aj2l.L) All{\l0)A22(>'i0V ) 

r- l , i , 
l - / 3 A , I , - ' l l ^ T ] A"{Xt0)i 

AU(L) A]2(L) 
0 A22(L) 

Performing the indicated matrix multiplications gives 

ru>, 1 
. ut . 

w here 

kt+l = A,fc t + - ^ - r ^ + by(L)wt + b2(L)ut 

bi(L) = -
Ai/3 

{ ' - ' " - s i 

4 n ( L ) 1 

( L ) ( A , 0 ) 1 - A , / ? L 
- i 

A i / 3 / L _ 1 [ : 4 I 2 ( i : ) - 4 2 2 ( A 1 / 3 ) - / l 1 2 ( A 1 / ? ) . 4 2 2 ( Z , ) 1 

>l i i (Ai /3).4 2 2 (A 1 /3) 

1 

1 - A i / J L " 1 } 

<f I 1 A22(Xi0) I - XiBL~l 1 
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4. A C o r n - H o g M o d e l 

This section describes a simplified model of the "corn-hog cycle". We have adopted the 

most rudimentary specification of technologies, retaining only those elements that are essen­

tial to exhibit what we believe are the key features such a model must have. A more realistic 

specification of the technologies would involve more state variables and more complicated 

dynamics, but would not involve any essential analytical complications. 

There are m identical corn farmers, each of whom maximizes 

(7.36) Eto £ / 3 ( ' - ' o ) {pc, ct - wtkct - d

2 ( k c t + 1 - fee)2} 

t = t0 

where pct is the price of corn, ct is output of corn, kCt is the capital stock of the corn 

producers, and u>t is the rental rate on capital. Output of corn obeys 

(7.37) ct = f k C l , / > 0 

The corn producer faces the stochastic processes for pct and Wt as a price taker. The rental 

is assumed to be the first element of a (pw x 1) stochastic process zt which obeys the o t h 

order autoregressive law 

(7.38) {/ - piL - . . . - p q L q } z t = vz

t or p{L)zt = vz 

where the zeroes of det {/ — p\z — ... — pqzq} lie outside the unit circle. Here v* is a serially 

uncorrelated vector process with mean zero. We assume that v\ is fundamental for zj. The 

assumptions about the stochastic process for pct wil l be filled in later. 

The hog industry consists of n identical producers each of whom maximizes 

(3.4) Etn £ 0<<-<n> ipktht - r t k h t - \ { k h t + x - M 2 - Pctcht) 
t=to 

where p^t is the price of hogs, c^t the consumption of corn by hogs, kht the number of hogs, 

ht sales of hogs, r rfc^ t is miscellaneous expenses to maintain k^t hogs. The technology is 

assumed to be 

Chi = f k h t 7 > 0 

(7.40) 
ht = (1 + 4>)kht - kkt+u <t>>Q 
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where <p is governed by the reproduction rate of pigs, which is assumed exogenous here but 

would be a decision variable in a more realistic analysis. In (7.39), the term (e/2)( fc^ < + 1 — 

k^t)2 represents costs of adjusting the number of pigs. 

The price r< is the first element of a (p r x 1) vector which follows the g t h order 

autoregressive process 

(I-SiL-SiL2 6qL*)xt = vf 

or 

(7.41) 5(L)xt = vf, 

where the zeroes of det(,(z) lie outside the unit circle and vf is a fundamental white noise 

vector for x<. The demand for hogs is given by 

(7-42) P H L = A0-AlHt + uht , AQ, AI > 0 

where Ht = nht, and where u^t is a stochastic shock to demand that obeys the autoregressive 

law 

{1 - a\L - ... - a,L2}uht = Vt 

or 

(7.43) a{L)uht = v} 

where the zeroes of ct(z) lie outside the unit circle and is the fundamental white noise for 

The demand for corn is the sum of the demand derived from hog production, Cht — ncht 

and the demand for final consumption, Cct- The demand for final consumption obeys 

(7.44) Cet =00- 0\Pct + uct 0o >O,0i> 0, 

where uct is a demand shock that obeys the autoregressive law 

{1 - 7 i L - . . . - -ysLs}uct = vc

t 

or 

(7.45) -r(L)uct = v\ 
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where the zeroes of 7 ( 2 ) lie outside the unit circle, and u£ is the fundamental white noise for 

uct. The total hog-derived demand for corn from (7.39) is 

Cht = i K k t 

where K\t — nknt and Kct = mkci. The equil ibrium condition in the market for corn is 

Cct + Ckt = fKct 

or 

0o ~ 0lpet + «ct + fKkt = fKct 

which implies 

(7.46) pct = ^-hKht + 0o + u c t - fKct]. 

At this point it is convenient to define the vectors 

zt — [Zl, 2 t - l> • • • ) Zt-q+l\ 

Xt = [ C | , « t _ i , . . • ,x't-q+i\' 

Uht = [ttftt-li • • .ttftt-t+ll' 

«ct = («c«,"ct- l • • • ,«c<-« + l|'-

The farmers in each market need to form expectations about future prices of corn and 

hogs in order to solve the maximum problems (7.36) and (7.39). Since future corn and hog 

prices wil l depend on future state variables in each market, including the capital stocks in 

each market, farmers in each market need to form a view about the laws of motion of the 

market wide stocks of capital in both markets. We assume that farmers views about these 

laws of motion are correct. It will turn out that the laws of motion for the market wide 

capital stocks in the two industries wil l have the forms 

(7.47) K e t + 1 = Ge(zt,xt,uhuKet,Kht,l) 

(7.48) Kht+i = Gh(zt,xt)uhtuct, Kct, KhtA) 
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where both Gc and Gn are linear functions. Notice that (7.47) and (7.48) share a common 

set of arguments, so that any state variable for one market is also a state variable for the 

other. 

W e are now in a position to state well posed optimum problems for firms in each industry. 

F i rms in the hog industry maximize 

Et0 £ 3(t~t()) {[Ao - A1((l + <p)Kht - Kkt+1) + uht) • [(1 + <p)kht - kht+l) 
t=t0

 1 

(7-49) - rtkkt - e-(kht+1 - kht)2 

-lkhf{Ulf<Kt+3o + uct-fKet)}} 
P i f 

Firms in the corn industry maximize 

Eto £ P^HlUlKkt. + 3o + ua - fKct)\fkct 

(7.50) t = t » P l 

— wtkci — ̂ {kct+\ - kct)2} 

Here i t should be noted that pct = a frJfju + 0o + "ct - fKct) a n { i Pht = A0-

A\[(l + <t>)Knt — Knt+i] + u/,t, and that these expressions for pct and pnt have been sub­

stituted into (7.36) and (7.39) to obtain (7.50) and (7.49), respectively. The maximization 

in (7.49) and (7.50) is subject to the following laws of motion, which the firms in each 

industry take as given: 

(7.38) C(L)z, = v't 

(7.41) S(L)xt = v1 

(7.43) <*{L)unt = wt

A 

(7.45) f{L)uct = vc

t 

(7.47) A ' c ( + 1 = Gc{zt,xuuht,ucUKcUKhu\) 

(7-48) A'nt+l = Gn(zt, Xt, Unt, Kct, Knt, 1) 
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The optimizations in (7.49) and (7.50), respectively, are over linear contingency plans of the 

forms 

(7.51) fcfct+i = gh{h,xuuht,uct,Kct,Kht,l,kkt 

(7.52) fcet+i = 9c{zt, it, u k u uet, Kct, Kht, 1, kct) 

where both gn and gc are linear functions. 

We are now in a position to define a rational expectations equi l ibr ium for this pair of 

industries. 

D e f i n i t i o n 7.2: A rational expectations equilibrium is four linear functions (7.47), (7.48), 

(7.51), and (7.52) such that 

(o) Given the aggregate laws of motion (7.47) and (7.48), the contingency plans (7.51) and 

(7.52) maximize the expected present values, (7.49) and (7.50), respectively. 

(6) The contingency plans of the representative firms in each industry (7.51) and (7.52) 

imply the aggregate laws of motion (7.47) and (7.48), so that 

Gc{lt,it,Uhi,Uct,KcuKnt,\) = 
(7-53) _ . _ 

m9c{zt, it, Unt,Uct, Kct, Knt, 1. kct) 

Gh{zt,it,uht,uct, Kct, Knt, 1) 
(7.54) 

n9h{*t, it, unt, uct, Kct, Knt, I, knt). 

Let us indicate how the Kydland-Prescott algorithm can be used to compute the equi­

l ibr ium. Wri te (7.38), (7.41), (7.43) and (7.44) as 

Zt + l = + Vt + l 

xt+\ = crit + w < + ] 

"fct+l = °<unt + vt+l 

Uct+i = 7"ct + v1+1 

where p = [pip2 . - -Pq],9 = \O-\<T2 . . crq),a = [a\a2 .. .a,}, 7 = [7172 • • -7 , ] . Further, let Gn, 

and Gej be the part ial derivatives of (7.48) and (7.47), respectively, with respect to their i t h 
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and j arguments. Then from the point of view of the corn industry, the state transition 

equation is 

r r p 0 0 0 0 0 0 0 ] r zt i 
0 a 0 0 0 0 0 0 *t 

" f c t + l 0 0 a . 0 0 0 0 0 v-kt 

« C t + l 0 0 0 1 0 0 0 0 
Kct+i Gli Gc2 GU GU GU GU GU GU K c t 

Kkt+i GU G\2 G{3 GU GU GU GU GU Kht 

1 0 0 0 0 0 0 1 0 1 
. 0 0 0 0 0 0 0 1 . . k c t . 

+ 

0 
n 
0 
0 Vet + 

\ v t + i ] 
vf+i 

v i + i 
0 

0 0 
0 0 

.1 . . 0 

(7.55) -Act+i — -4 C (A c t + Bcvct + e c < + i 

For the representative hog producer the state transition equation is 

*t+l 
*t+l 

uht+l 

Uct+l 

Kct+i 

Knt+1 
1 

r p 0 0 0 0 0 0 0 
0 a 0 0 0 n 0 0 
0 0 d 0 0 o 0 0 
0 0 o i 0 0 0 0 

GU GU GU GU GU GU GU GU 

GU GU GU GU GU GU GU GU 
0 0 0 0 0 u l 0 

. 0 0 0 0 (J 0 n 1 

Zt 

it 

Uht 

Uct 

K c t 

Knt 

1 
. kht . 

+ Vht + 
V 

ut r+l 
"t+1 

c 
t + 1 
0 
0 
0 
0 or 

(7.56) -Ut+ i = AhtX^t + Bhvht + c^t+i 
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Now the corn producer's problem (7.50) can be expressed as the maximizat ion of 

(7.50)' Et0 £ 0 ^ {XjtRcXct + vJtQevet} 

t=t0 

subject to 

Xct + i = AdXct + BeVct + €Ct+l 

where Rc and Qc are matrices conformable with Xct which make (7.50)' equivalent to (7.50)'. 

Simi lar i ly the hog producers' problem (7.49) can be expressed as the maximizat ion of 

(7.49)' Et0 £ ) /5<«-«o> {XlRhXht + vJ[tQkvKt} 

t=t„ 

subject to 

Xkt+\ = AntXnt + Bnvht + eht^i 

The Kydland-Prescott algorithm can be used simultaneously to compute the parameters 

of Gl

c and G\ that appear in Act and A^, as well as the optimum decision rules gc and gn. 

The equations for the opt imum decision rules can be written, as in section 1: 

~[~9hlt ~9h2' ~9h3< ~9h4> -9hs> ~9M> -9k7t{l ~ 9k»)] = 
(7.57) 

0(0B'kPht+lBh + Qk)-lAkt 

-[-9cl> -9c2> ~9c3, ~0c4> ~9cS> -9cf>> -9cT>il - S'cs)] = 
(7.58) 

3{BB'cPct+xBc + Qc)-xAct 

where Pct and Pnt are obtained from the matr ix Riccati difference equations 

Pet = 0A'etPet+lAet + Ret 
(7.59) 

- 32A'ctPctBc[3B'cPcl+lBc + Qc]-lB'cPct+1Act 

Pht = 0A'KtPht+lAht + Rht 

(7.60) 

-02A'htPktBh\0B'kPht+1Bn + Qh)-1BikPkt+lAhi 

starting from P c t , + i = 0, + 1 = 0. 
The equi l ibr ium conditions (7.53) and (7.54) supply us with the linear equations 

G<cx = m9cx< Gc2 = m9c2> Gc3 ~ m 9 c 3 . Gc< = m9cA 

(7.61) 
GCi=mgC5 + £ , G j , = « - £ , G*cr = m £ 
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(7.62) 
G * , G i 6 = n o J : 6 + ^ 8 ) C ^ n g ^ , = ng[7 

The reader can verify that equations (7.57), (7.58), (7.61) and (7.62) are 2(2J + 2g + 3) + 

2(2s + 2q + 4) linear equations in the same number of unknowns, where the unknowns are 

the 9hj,gCj,GkiGCi,toTJ = l,...,8,i = l,...,7. 

A s in section 1, the computation strategy is to solve (7.57), (7.58), (7.61), and (7.62) 

jo int ly, starting from Pctl+\ = 0, Pht+i = 0. Equations (7.59) and (7.60) are used to "back­

date" Pet and Pht- The idea is to iterate on these equations and take the limits of the 

^ ; , ^ , ^ , a ^ s a s e 0 - - o o . 

5. S o l v i n g t h e C o r n H o g M o d e l a l a L u c a s - P r e s c o t t 

Th is section shows how to calculate the equil ibrium of the corn-hog model by using the 

methods of section 2. As in section 2, the idea is it obtain the Euler equations for the 

representative firms' problems, then to substitute into those Euler equations expressions for 

equi l ibr ium prices in terms of market wide stocks of factors, and then finally to solve the 

resulting system of difference equations subject to the transversality conditions for firms' 

problems. 

Taking the hog producer's problem first, recall that the hog producers problem is to 

maximize 

£ t o £ {Pht[(l + <t>)kht-kKt+l)-rtkkt-
(7.63) 

e 
2 

As in Sargent [], we solve this problem by first solving the problem assuming there is not 

uncertainty. From the certain version of the problem the Euler equation is 

dek^, - {l+3)ekht + ekht.l 

(7.64) 

= -3{ 1 + <p)pkt +Pht-\ + PlPct + Pit 

From the demand curve for hogs we have 

pht = AQ - Ai[{l + <t>)KHT - Kht+i] + uht 
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so that 

Pht-i ~ 0(1 + <t>)pkt = {A0 ~ 0(1 + <P)AQ} + u k t - i - 0(1 r 4)uht 

(7.65) + {0(1 + ^ ) 2 A j + i4 i>JT M - 0(1 + ^ M , + K h t + i 

-Aiil + QKkt-t 

We also have from the demand curve for corn 

(7.66) P c t = + B0 + uct - fKct}. 
P i 

Substi tut ing (7.65) and (7.66) into (7.64) and using K^t = nknt and Ket = mkct gives 

{Be + 0n{\ + <p)Ai}nkht+1 -
2 , , , . n 0 r 

(1 + 0)e + n{0(l + <p)2Ai + A { } + 
0 

nkht 

(7.67) 

01f 
+ {e + n ( l + <j>)Ai}nkkt-i + —— nmkCt 

01 
= nuht-i -n0{l + (p)uht + 0nrt + ^ f ^ « c , 

Pi 

+

 r ^ l d ° +n[Ao_0{l + t)Ao] 

P i 

Equat ion (7.67) is one of a pair of Euler-l ike equations whose solution wil l determine a 

competit ive equi l ibr ium for the two industries. 

Corn farmers maximize their expected present value 

Eu> I ) 0(t-tn) {Pctfkct - Wtkct - d(kct^ - kct)2}. 
t = U, 1 

Again following the procedure in Sargent, we first consider the version of this problem under 

certainty. Under certainty the Euler equation is 

0dkct+l -d{l+ 0)kct + dkct-l = 0wt - 0fpct 

Substitut ing (7.66) into the above equation gives 

^-Jp-mnkht + 0dmkct+\ - [d(l + 0) + \ m l c c i + mdkct-\ 
( 7 l 6 8 ) ' , m0f m0f0o

i 

= 0muit — Uct 7, 

01 01 

Equations (7.67) and (7.68) are in the form of a pair of Euler equations for k^t and kct- It 

is reasonable to pose the integrabil ity question: for what opt imum problem are these Euler 
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equations first order necessary conditions? The answer is not surprising, given the results of 

Lucas and Prescott []. Notice that since the demand curve for final consumption of corn is 

c c , = 00 — 0\Pct + «e«i the area under the demand curve for final consumption of corn is 

fCrt 1 
+ uct - x]dx 

~ W\ Jx

 1 201 et' 

Subst i tut ing for Cct from the equil ibrium condition Cct = fKct - fKht gives the following 

formula for the area under the demand curve for corn: 

(7.69) 0 1 0 1 

The area under the demand curve for hogs is: 

/ (Ao - A\x + Uht)dx 
Jo 

= A0HT - \MH\ + Htut 

l*-70* = M i + ^ - i f . . + i ] 

+ ((1 + 4>)Kni - Knt+1]unt 

Using (7.69) and (7.70), consider the following social planning problem: to maximize 

Eto £ ^ _ ' ° { { ^ o ( ( l + <l>)nkhi - nkht+i\ - \AX\[\ + <p)nkht - nkht+1}2 

+ [(1 + <p)nkht - nkht+1]uht} 

+ {-^[f"ikct - -ynkht] + ~ u c t [ / m f c C ( - -ynkht] 
01 01 

- o f l \fmkCt - -ynht]2 

- wtmkct - rtnkht - -m(kcl+l - kct)2 

where the maximizat ion is subject to the given stochastic processes (7.38), (7.41), (7.43), 

and (7.45) for wt,rt,uct, and u/, t , and the information set {kct, k^t, it, it, uct, u^t, }• The 
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maximizat ion is over contingency plans setting {fcfct+i, fcct+1,} as a linear function of this 

information set. 

Th is social planning problem amounts to maximizing the expected discounted sum of the 

area under the demand curves for hogs and final consumption of corn minus the total social 

costs of production. It is straightforward to verify that the solution of this social planning 

problem is equivalent with the competit ive equi l ibr ium law of motion for {k^+i, kct+i, }• 

The proof of this claim can be obtained by first obtaining the Euler equations for the social 

planning problem, and noting that they are exactly the two difference equations (7.67) and 

(7.68) whose solutions determine the competitive equil ibrium. Next , it can be verified that 

the transversality condition for the social planning problem enforces the same solution of 

(7.67) and (7.68) as does the transversality conditions for the representative firms' problems. 

The Euler equations (7.67) and (7.68) can be written 

(7.71) { / 3 L _ 1 G _ i +G0 + GxL}kt = H0 + Hx{L)bt 

where 

kct 
,bt = 

wt 

v-ht 
luct J 

H0 = 

HX{L) = 

ff»+n[Ao-0(l + <p)Ao} 

0.1 

0n 0 nL-0n{\ + 4>) ^ 

0 0m 0 

_ nT [en + r i 2 ( l + <p)Ax 0 

01 

0 dm 

Go -
0lf nm - [(1 + 0)e + n{0(\ + tfA, + Ai + %l )n -0~ 

^ m n _[rf(i + 0) + ag£]mJ 
Methods for solving matrix Euler equations like (7.71) subject to boundary conditions are 

described by Hansen and Sargent [1981]. 
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Chapter 8 

Combining Recursive Optimization and 

Classical Filtering to Compute Solutions of Control Problems 

1. Introduction 

T h i s chapter describes a method for solving linear quadratic opt imal control problems of 

a k i nd that often arise in linear "rational expectations" models. The method is a variant of 

one proposed by Hansen and Sargent [1981]. The idea behind the method is to use recursive 

methods to factor the matr ix lag operator polynominal that appears in the Euler equations, 

and to use classical Wiener-Kolmogorov filtering formulas to compute the "feedforward" 

part of the opt imal control. We have already seen many examples of models that fit into the 

control problem studied here. 

2. T h e Problem 

Consider the problem, maximize 

1 e> 
(8.1) Et0 l ira - - £ (x'tRxt + v'tQvt - 2a'tB!2lvt) 

t t - o o [tx - t0) t = t n 

subject to 

(8.2) x t + i - Axt + Bvt 

and Xt0 given, where at is a set of components of a (p x 1) vector zt.governed by the r t h -

order autoregressive process 

Zt = P\Zt-\ + • • • + prZt-r + Vf 

or 

(8.3) p{L)zt = v*t 

The pj are matrices conformable to zt. We assume that the zeroes of detp(z) are outside 

the unit circle, and that v f + 1 is orthogonal to {zt, Zt-x, • • •}• Here xt is an (n x 1) vector of 

states, Vt & (k x 1) vector of controls, A an (n x n) matr ix, and B an n x k matr ix. At time 
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t, the planner is assumed to know {xt, zt, zt-i,...} and is supposed to set the control t>< as 

a l inear function of these variables. The matr ix Q is negative definite; the matr ix R2\ is not 

restricted; the matr ix R is negative semi-definite. 

We are interested in instances in which n is small relative to pr. In such instances, there is 

an advantage to solving (8.l)-(8.3) using a method that takes into account the features of the 

problem as a special case of the general linear opt imal regulator problem. The method that 

we shall use is a mixture of dynamic programming and discrete time calculus of variations 

methods. 

To begin, we first consider the related problem of maximiz ing 

(8.4) l im - — — £ (x\Rxt + v'tQvt) 

subject to Xt+\ = Axt + Bvt with i< n given. The solution of this problem is a linear feedback 

rule 

(8.5) vt = -Fxt 

where 

(8.6) F' = A'PB[B' PB + Q)~l 

and where P is the negative definite solution of the algebraic Riccat i equation 

(8.7) P = A'PA + R - A'PB(B'PB + Q)~XB'PA. 

Under the assumption that the pair (A, B) is stabil izable, the unique negative definite solu­

tion of (8.7) is the l imit point of iterations on the matrix Riccat i difference equation, 

P<_, = A'PtA + R - A'PtB(B'PtB + Q)-}B'PtA 

as t —» - o o , starting from P,t = 0 . Let -R = GTG, and assume that the pair {A,G) is 

detectable. Then , under the assumption that [A, B] is stabil izable, the closed loop system, 

derived by substituting vt = - Fxt into = Axt + Bvt, namely, 

x t + l = (A- BF)xt 
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is asymptot ical ly stable, meaning that the eigenvalues of (A — BF) are less than unity in 

modulus. We assume that the pair (A, B) is controllable, imply ing that it is stabilizable. 

W e now return to the problem (8.1)-(8.3). First use (8.3) to write 

(L~lI - A)xt = Bvt 

or 

(8.8) xt = [ L I — A) Bvt 

Equat ion (8.8) needs to be interpreted carefully, since the eigenvalues of A have not been 

restricted directly, and since the infinite sum (L"11 — A)-1 = L{I + AL + A 2 L 2 + ...} is not 

convergent i f an eigenvalue of A exceeds unity in modulus. Nevertheless, if vt has behaved 

suitably in the past, it is appropriate to regard (8.8) as giving 

(8.8') xt=Y,A>Bvt-j-i, 
j=o 

where by "sui tably" we mean in such a manner as to guarantee convergence of the sum. 

Since we have assumed that (A, B) is controllable, it is permissable for us to think of the 

system as having arrived at its arbitrary in i t ia l state Xf0 via the application of an appropriate 

sequence of controls in the past. (A version of this argument would also work and we only 

assumed that (A, B) was stabilizable.) The preceding interpretation is not the only one that 

would validate our procedures, but it is an acceptable one. 

Subst i tut ing (8.8) for xt in (8.1) gives the expression for the objective function 

E t ° t U n L 7T^T\ £ {{{L-lI-A)-lBvt]'R\{L-'l-A)-lBvt\ 
(8.9) h °° l'» ~ «='o 1 

+ v[Qvt - 2a',/?'21t> t j 

We shall solve the problem of maximizing (8.9) over rules for vt by using the certainty 

equivalence principle. First , we solve the certainty problem to maximize 

(8.10) 
l im 

t l - o o (ti -
£ { [ (L - 1 / - A ) " 1 Bvt)'R[{L-11 - A ) - 1 Bvt) 

+ v[Qvt - 2a\R'nvt j 
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where {at,to < t < t\} is regarded as a bounded sequence. By differentiating with respect 

to successive v<'s one obtains the system of Euler equations 

(8.11) {B'{LI - A')-1R(L-'I- A)~lB + Q}vt = Rnat 

In addit ion to these Euler equations, there is a set of transversality conditions that requires 

that the {vt} sequence remain bounded. The transversality condition wi l l be used to pin 

down the correct solution of the Euler difference equations (8.11). 

3. Factoring the Characteristic Matr ix Polynomial Associated with the Euler 

Equation 

We now indicate how the spectral-density-like polynomial 

{B'(LI — A')~lR(L~XI — A)B + Q} can be factored and how this factorization permits 

obtaining the solution of the control problem in a convenient form. 

Recal l the equations for F and P : 

(8.6) F' = A'PB[B'PB + Q]~x 

(8.7) P = A'PA + R - A'PB{B'PB + Q)~XB'PA. 

We now establish the following identity which gives an expression for the polynominal on 

the left side of (8.11): 

Lemma 8.1: (Factorization Identity)' 

[I + B\zl - A')-lF'][Q + B'PB)\I + F{z~lI - A)~XB\ 
(8.12) 

= Q + B'(zl - A')-lR{z~xl - A)B. 

Proof: F i rs t note the identity 

(8.13) P - A'PA = [zl - A')P{z~lI - A) + A'P(z-xI - A) + {zl - A')PA 

To establish this identity, write out the right side to obtain 

P - zPA - A'Pz~] + A'PA + A'Pz~l - A'PA + zPA- A'PA 

= P - A'PA. 
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Next , we substitute (8.7) for P into (8.13) to get 

(*/ - A')P(z~x - A) + A'P(z~xI -A) + {zl - A')PA + A'PB(B'PB + Q^B'PA 

= R. 

Premul t ip ly the above equation by B'(zl - A')'1 and post mult iply by (z~x I - A)~XB to 

obta in 

B'PB + B'(zl - A)~lA'PB + B'PA(z-lI - A)~XB 

+ B'{zl - A)-1A'PB(B'PB + Q)-xB'PA(z~xI - A)~XB 

= B'(zl - A'yiR(z-1I - A)~lB 

Now from (8.6) A'PB = F'(B'PB + Q), which when substituted into the preceding equation 

gives 

B'PB + B'(zl - A)-lF'(B'PB + Q) + {B'PB + Q)F(z~lI - A)~lB 

(8.14) +B'(zI- A')-XF'(B'PB+ Q)F(z~xI - A)~XB 

= B'(zl - A')~x R(z~l I - A)B 

Notice that 

[/ + B'(zl - A)-lF'](B'PB + Q)[I + F(z~U - A)~*B] 

= B'PB + <? + (B'PB + Q)F(z~xI - A)~lB 

+ B'(zl - A')-lF'(B'PB + Q) 

+ B'(zl - A'yxF'(B'PB + Q)z~xI - A)~XB 

In l ight of the above equality, adding Q to both sides of (8 14) gives the factorization identity 

[/ + B'(zl - A'yxF'\(B'PB + Q)\I + F(z~lI - A)~xB\ 
(8.12) 

= Q + B'(zl - A')-xR(z~xI - A)B. | 

The factorization identity (8.12) is a special case of another factorization identity that is 

associated wi th linear regulation problems in which there are cross products between states 

and controls in the objective function. We state this identity in the following lemma. 

Lemma 8.2: (General Factorization Identity) 

Let F and P satisfy 

(8.15) F = (Q + B'PB)~X (B'PA + W') 
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P = R + A'PA 
(8.16) 

- (A'PB + W) {Q + B'PB)'1 (B'PA + W'). 

(These equations are the formula for the optimal feedback law and the algebraic matrix 

R ica t ta equation, respectively, for a linear regulator with cross product between states and 

controls described by matr ix W.) The following identity holds: 

Q + B'{z-lI - A')-lR(z-lI - A)~lB + B\z~xl - A')~lW + Wiz^I - A)~lB 
(8.17) 

= [/ + B\zl - A')-XF') (Q + B'PB)[I + F{z~ll - A)'lB\. 

P r o o f : The proof precisely parallels the steps for proving lemma 8.1. I 

We wil l not need to use the more general lemma 8.2 here, but it comes in handy sometimes 

(see hansen and Sargent [1988]). 

We shall study the structure of the factorization (8.12) of the matr ix polynomial associ­

ated wi th the Euler equation by using the following two facts from matr ix algebra. Let a, b, 

c, and d be matrices and let all of the indicated inverses exist. Then we have the identities 

(8.18) [a - 6 d - 1 c ] " 1 = a " 1 - a ^ f d - ca^b'^a1 

and 

(8.19) d e * d - d e t . ( a - 6 d - 1 c ) = det a • det (d - c a " 1 b). 

For proofs see Fortmann [] or Nobel and Daniel [p. 29, 210]. Using (8.18) with a = I,-b = 

F', d=(zl - A'), c = F' we have 

(8.20) [/ + B'(zl - A)-1^}-1 = I - B'[zl - {A' - F''B')]"1 F' 

Next wi th a = I,b= B',d = {zl - (A' - F'B')),c = F', apply (8.19) to get 

det [I - B(zl - {A' - F'B'))'1 F'] • det (I - {A' - F'B')) 

= det [zl - (A' - F'B') - F'B'\ 

or 

(8.2!) « ( / - B ( , / - ( * . M ) ) - y . ^ - ^ L 
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Combin ing (8.21) with (8.20) gives 

or 

( 8 , 2 ) - | f + ^ r f . ^ . - l g ^ f i 

Equat ion (8.22) implies the following: 

Lemma 8.3: The zeroes of tfef [/ + B ' ( z / - a ) _ 1 F ' ] equal the eigenvalues of A' - F'B', 

which equal the eigenvalues of (A — BF). If the pair (A,B) is stabil izable, the zeroes of 

det [I + B'(zl — A)~*F'] a l l are less than unity in modulus. 

4. S o l v i n g t h e N o n - S t o c h a s t i c P r o b l e m 

Armed with these results, we now return to study the Euler equation (8.11). The fac­

tor izat ion (8.13) permits the Euler equation to be written as 

(8.23) {[/ + B\LI - A')-lF'){B'PB + Q)[I + F{L~XI - A)~1B]}vt = R21at 

In effect, the transversality conditions require that to get the correct solution we must operate 

on both sides of (8.23) with the inverse of [/ -I- B'{LI - A')~l F'](B' P B + Q), which gives 

[/ + F(L~1I - A)-lB}vt = (Q+ B'PB)-l[I + B(LI - A')~xF'\R2xat 

Subst i tut ing x< = ( L - 1 / — A)~xBvt and equation (8.20) in the above gives 

vt = -Fxt + {Q + B'PB)-\I - B' LI-{A' - F'B')) 
- l 

F' R.2\at 

This can be wri t ten 

vt = - F x , + [Q + B'PB)-lR2lat - {Q + B'PB)-]B'[LI 
(8.24) 

- ( . 4 ' - F'B')rlF'R21at. 

In effect, (8.24) expresses vt in terms of a "feedback" part, -Fxtl and a "feedforward" part, 

as the remaining terms on the right side of (8.24) forms a weighted sum of current and future 

at's. 
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To proceed with the analysis, we use the following theorem from Kwakernaak and Sivan 

[] and Zadeh and Desoer [] : 

Theorem 8.1: (Leverrier's algorithm) 

Consider the constant (n x n) matr ix G with characteristic polynomial 

det (zl -G) = zn + Q n _ i 2 n - 1 + . . . + Q l Z + Q 0 . 

Then 

where the n x n matrices R{ are given by 

Ri £ aiG>-\ i = i , 2 , . . . , n , 

with an = 1. The coefficients cq and the matrices Ri can be obtained from 

an = l,Rn = /, 

a n - f c = I tr{GRn-k+i)>k = 1.2,.- - , n . 

= a n _ f c / + GRn.k+i,k = 1, 2 , . . . , n . 

fln = 0. 

For a proof of the theorem, see Kwabernaak and Sivan [1972, ). 

App ly ing theorem 8.1 with G = ( A ' - F'B') gives 

|" - w -f'B'""' = -(!»•-ps-» S 
or 

[ LJ - ( A ' - F'B')\~l = —r-i - T RiL*-* 

Since the eigenvalues of ( A ' — F'B') are less than unity in modulus, we have 

[LI - (A' - F'B'))'1 = rr \Tr * \ a \ t, W W 

\L — U\)(L — U2) • • (L - un) ~[ 

where | m |< 1 and the /z^'s are zeroes of £ £ L 0 Q{ L \ which equal the eigenvalues of ( A - B F ) , 

which we assume are distinct. Mul t ip ly ing the numerator and denominator of the right side 

of the preceding equation both by L~n gives 

(8.25, I " - ( * - W - ( , _ W t - X 1 - „ ! - , ) . , . ( 1 - g ^ ' " ^ 
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Subst i tut ing (8.25) into (8.24) gives 

vt = -Fxt + {Q + B'PB)-lR2iat  

( 8 2 6 ) -(Q + B'PB)-*B' U=>L-^RtF'R2lat 

(l-HlL-i)(l-p2L-i)...(l-unL-i) 

The last term can be expressed as follows using matr ix partial fractions: 

, , (Q + B'PB)-lB'Y.U L-^+1-^RxF'R2i " CjL^_ 
K ] ( l - u 1 L - i ) . . . ( l - f i n L - i ) ^ ( \ - N L - x ) 

where 

c _ (Q + B'PB)-XB' fcUM-WRi] F'Rn 

Wi th (8.27) substituted into (8.26) the decision rule becomes 
vt = -Fxt +(Q+ B'PB)-lR21at 

(8.28) » Cj 

£ i (1 ~NL ) 

or 

vt = -Fxt + (Q + B'PB)-lR2lat 

(8.29) A n S k 

j=\ k=0 

This is the optimal plan for setting vt when the at sequence is known with certainty. The 

reason for call ing ( — Fxt) the "feedback" part of the solution and the remaining part of the 

right side of (8.29) the "feedforward" part is now clear. 

5. S o l u t i o n U n d e r U n c e r t a i n t y 

Under uncertainty about future <z,'s, the appropriate solution is: 

vt = - Fxt + {Q + B'PB)~lR2lat 

; = 1 *=0 

where Et is the conditional expectation unconditioned on information known at t, i.e., Et(-) -

E(- | zt, zt-i,...). A n explicit formula for vt in terms of the current and past zt's can be 

derived using the procedures of Hansen and Sargent [ , appendix A] . In particular, recall 
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that we have assumed that at is a component of zt, say at = ezt where e is a vector linking 

a and z, e.g. often a vector of zeroes and ones. We have assumed that 

p(L)zt = vf 

or 

zt = t(L)v? = p{L)-\l 

where our assumption that the zeroes of det p(z) are outside the unit circle quarantee that 

p ( L ) - 1 is one-sided and square summable in nonnegative powers of L. We want to form 

terms of the form 
oo 
£ p-j E t a t + x + k 

k=o 

Using the Wiener-Kolomogorov theory of prediction and the results of Hansen and Sargent 

[1980], we have 

(8.31) £ a j E t a t + x + k = e[ )+vl 

W here the operator [ ] + means "ignore negative powers of L", i.e. [H^ -oo hjL}]+ = 

Hy=o njL1. Using the technique of Hansen and Sargent, the right side of (8.31) can be 

shown to be 

L-1 - L-^MCHL) 
i+vt = e\ 1 - MjL-\'~ 1 

where recall that r is the order of the autoregressive process for zt. Substi tut ing the above 

into the right side of (8.30) gives 

vt = -Fzt + {Q + BPB)-xR2\at 

(8.32) 

S = l i=1 fc=; + l S ) 

(8.31) p{L)t = vt 

Equations (8.32) and (8.31) compactly display the restrictions across the { z j process and 

the opt imal control law for {vt} that are implied by the dynamic opt imum theory. 
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Sometimes opt imum theory problems are encountered with criterion functions of the 

form ( P i ) , except that th^e term — 2a'tR2\Vt is replaced by a term of the form — 2a'tR2\Xf. 

W i t h minor modifications, the preceding solution applies in this case. Consider the term 

J= £ a[R21xt = f ) a\R2l(L-lI-A)~lBvt. 
t=t0 t=t0 

Wri t ing out this last sum and differentiating J wi th respect to vt, one finds 

— = B'(LI-A)-1R21dt 

The Eu le r equation thus becomes (8.11) with B'(LI - A)~1R.2iat replacing R2iat on the 

right side. A n equivalent procedure is to define 

(8.33) (R21at)' = (B'(LI-A)-iR2lat)' 

Wi th this definition of R2\dt, the Euler equations for the amended problem remain (8.11). 
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