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Chapter 1

Classical Control and Prediction Theory

1. Introduction

A theme that will recur throughout these pages is that there is an intimate connection
between two superficially different classes of problems: the class of linear-quadratic optimal
control problems, and the class of linear least squares predicition and filtering problems.
The classes of problems are connected in the sense that to solve each, essentially the same
mathematics is used. This connection, which is often termed “duality,” 1s present whether
one uses “classical” or “recursive” solution procedures.! It is worthwhile to exhibit this
interconnection early on. We do this here in the simple context of a pair of univariate

examples.

2. An Infinite Horizon Control Problem
Consider the discrete time control problem, to maximize

1

N
. t 2 _ 1 2
(11) dm, 3 B e - g hel - UL’} A >0, 0<B <

whered(L) =do+d,L+...+dnl™, Lis the lag operator, {a;, t =0, 1,...} is a sequence of

172 and B is the discount factor. The maximization in (1.1}

exponential order less than 3~
is subject to the initial conditions for y_1,¥-2...,y-m- The maximization is over infinite -
sequences for ¥;,¢ = 0,1,.... Simple examples of this problem for factor demand, economic
growth, and government policy problems are given in Sargent [ch. 9].

We first study a finite N version of the problem. Qur approach will be to study the
limit of the solution of the finite ¥ problem. This will require being careful, as indicated
below, because the limits as N approaches inﬁnit‘y of the necessary and sufficient conditions
for maximizing finite N versions of (1.1) are not sufficient for maximizing (1.1).

We begin by fixing N > m, differentiating the finite version of (1.1} with respect to

Y0, ¥1,---, YN, and then setting these derivatives to zero. Fort = 0,..., N — m these first

1 By “classical” procedures, we mean solntion of the control problem via discrete time variational methods,
and solution of the prediction problem by the Wiener-Kolmogorov method. By “recursive” procedures, we
mean solution of the control problem by iterating on the matrix Riccati difference equation, and solution of
the prediction problem via the Kalman filter.



order necessary conditions are the Euler equations. Fort = N -m+1,..., N, the first order
conditions are a set of terminal conditions.

In carrying out this differentiation, the only problematic term is
3 B {d(L)y:).
1=0
Consider the term

L= Zﬂ‘ [d(L)ye][d( L )we]

Bdoyr +diyi1+ - +dmy—m)}{doye + diye—1 + -+ + dmm Yt—rm).

||[V]z

Differentiating L with respect toyy fort =0, 1, ..., N —m gives

oL _
dye Btdgd(L)y + B+ di d(L)yesr + -+ + B ™ dr d(L)ytsm

+ B dod(L)ys + B d1 d(L)yees ++ - + B dem d(L)ye+m
=28 (do + 1 BL 1 4+ o BEL0 4 - 4 dn B LY d( L)yt
So we have

oL
(1.2) By 28'd (8L} d(L)ye

Differentiating L with respect toy, fort =N -m+1,... /N 'gives

=2 Nd d
ayN " dod(L}yn
L N-1 -1
_—— =2 do+ 3dy L d L -
(1.3) T B [do + B dy Jd(L)yn-1
8L ' '
Bom 28N -t dy + AL dy 4 -+ AT LT N, G d(L)YN—maet-
YN-m+1

The derivatives (1.2) and (1.3) are the keys to obtaining the Euler equations and the
transversality conditions, respectively.

Differentiating (1.1} with respect to y; for t =0,..., N — m gives the Euler equations

(1.4) h+d(BL YLy =ar, t=0,1,...,N —m.

2



Differentiating (1.1) with respect toy fort = N—m+1,..., N gives the terminal conditions

(1.5)
B%(an — hyn — dod(L)yn) = 0

B¥ "t (ay_y —hynoy — (do + By L' d(L))yn_1) =0

g -m+l (GN-m+l — hyN-ms1 — (o +BL Yy + - + 5m_lL”m+ldm_1)d(L)yN—m+1) =0.
In the finite N problem, we have to solve the Euler .equation (1.4), which is a 2m!" order
linear difference equation, subject to the m initial conditions yy,...,ym and the m terminal .
conditions (1.5). These conditions uniquely determine the correct solution in the finite N
problem. That is, for the finite N problem, conditions (1.4} and (1.5) are necessary and
sufficient for a maximum. In Section 6 below, we shall briefly describe representations of the
solution using matrix methods. |

For the infinite horizon problem, we propose to discover first-order necessary conditions
by taking the limits of (1.4) and (1.5) as N goes to infinity. This approach is valid, and
the limits of (1.4) and {1.5) as NV approaches infinity are first-order necessary conditions for
a maximum. However, for the infinite horizon problem with 3 < 1, the limits of {1.4) and
(1.5) are, in general, not sufficient conditions for a maximum. That is, the limits of {1.5)
do not provide enough information uniquely to determine the solution of the Euler equation
(1.4} that maximizes {(1.1). As it turns out, and as we shall see below, a side condition on
the path of y; that together with (1.4) is sufficient for an optimum 15 | |

. o0

(1.6) ‘ Y. Bt hy? < +o0.

t=0
All paths that satisfy the Euler equations, except the one that we shall select below, violate

this condition and, therefore, evidently lead to {much) lower values of the criterion function
(1.1} than does the optimal path selected by the solution procedure below.

Consider the characteristic equation for the Euler equation
(1.7) ‘ (A +d(Bz71)d(2)) = 0.

Notice that if Z is a root of equation (1.7), then so is 32~!. Thus, the roots of (1.7) come

in “B-reciprocal” pairs. If 3 = 1, the roots come in reciprocal pairs. Assume that the

3



roots of (7, are distinct.? Let the roots be, in descending order according to their moduli,
21,22,y Zmy Zm41y " " * 22m, 50 that |z1] > |z2] > ... |zm| > |zZm41] > ... > |z2m|. From
the pairs property and the assumption of distinct roots, it follows that |z;| > /A for j <
m and |zj| < VB for j > m. It also follows that zym_; = ﬁz;’_:l,j =0,1,...,.m -1,
Therefore, the characteristic polynomial on the left side of (1.7) can be expressed as®

(1.8)
[h - d(ﬁz'l)d(z)] =z2""z(z-21) (2= zm)(z2 — Zm41) (2 — 22m)

=z""z0(z — 21)(z — 22) - (2= 2m)(2 = Bz ) -+ (2 = B2y ' )z = BzY),
where zg is a constant. In (1.8), we substitute (z — z;) = —z;(1 — %z] and (z — ﬂz;l) =

z(1 - %z"l) forj =1,...,m to get

[h+d(82~1)d(2)] = (—1)™(z021 - 2m)(1 = —2) - (1 iz)(l - zilﬁz-l) (1= iﬁz'l).

Z1

Now define c(z) = X7oq¢; 2 as

(1.9) (@)= [(-)"z0m ] (1= 2y (1= D)1= D)
Then notice that (1.8) can be written
(1.10) h+d(Bz7")d (z) =c(Bz7")e(2).
It is useful to write (1.9) as
(1.11) c(z)=co(l=Arz)...(1 = Anz)
where
o= [(-1)" 2021 2m]| s A = :—J o ——

? We make this assumption mainly for convenience. The development below can readily be modified to
accommodate repeated roots of (1.7), using Gabel and Roberts [ ], Churchill [ ], or Sargent [ , ch. 9]. From
a practical point of view, the assumption of distinct roots is not very restrictive since systems with repeated
roots can be approximated arbitrarily well by systems with distinct roots.

3 These expressions are correct even if there is a repeated root of (1.7) at zero, that is, even if z,, =
Zms1 = v/B. Most, but not all, of the subsequent results on prediction and control go through if z,, = /3.
The optimal feedback law (1.14) or (1.15) holds with z;! = ),, = - '/? if we restrict the a, sequence to

be of exponential order less than f,”. The Weiner-Kolmogorov formula (1.27) is not appropriate if z,, = 1,
v

because c(L)~! does not exist. However, a modified version of the Wiener-Kolmogorov formula, expressing
the optimal prediction in terms of “innovations,” does obtain.

4
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Since |z;| > /B for j = 1,...,m it follows that |Aj| < 1/y/F for j =1,...,m. Using (1.11),

we can express the factonzation (1.10) as
[h +d(Bz7")d(z)] = cB(1 = Mz} (1 = Amz)(1 = MBz71) o (1 = ApnB271).

In sum, we have constructed a factorization (1.10) of the characteristic polynominal for

~1/2

the Euler equation in which the zeros of c(z) exceed 8 in modulus, and the zeros of

c(Bz71) are less than 871/2 in modulus. Using (1.10), we now write the Euler equation as
(1.12) c(BL ) e(L)y = av.

The unique solution of the Euler equation that satisfies condition (1.6) is given by

(1.13) e(L)y = ¢(BL™ ) a,.

This can be established by using an argument paralleling that in Sargent {1987, chapter [X].
To exhibit the solution in a form paralleling that of Sargent [1987], we use (1.11) to write
(1.13) as '

c_zat
1.14 1= ML)l = AnLl)y = . .
Using partial fractions,* we can write the characteristic polynomial on the right side of (1.14)
as .
2N -y
(L MBL™Y) (1= AmBLY) ~ 25 1= ), L
where '
r:g2

Then (1.14) can be written

_ i 11;‘
(1 - AIL)"'(I - /\mL)yi = Jg [ — AjﬁL'—-Iat
or
(1.15) (1= ML) (1= AnL)ye = 3 (8X)* avas.
) k=90

% See Sargent [1987) or Gabel and Roberts [1973]

5
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Eqﬁation (1.15) expresses the optimum sequence for y; in terms of m lagged y's, and m
weighted infinite geometric sums of future a;'s. Furthermore, equation (1.15) is the unique
solution of the Euler equation that satisfies the initial conditions and condition (1.6). In
effect, condition {1.6) compels us to solve the “unstable” roots of [k + d(B8z~!)d(z)] forward
(see Sargent [ ]). The step of factoring the polynomial [h + d{Bz71) d(z)} into ¢(Bz~")c(z),
where the zeros of c{z) are outside the unit circle, is central to solving the problem.

We note two features of the solution (1.15). First, since |A;| < 1/v/F for all j, it follows
that (A; 3) < +/B. Therefore, the assumption that {a;} is of exponential order less than
1/+/B is sufficient to guarantee that the geometric sums of future a;’s on right side of (1.15)
converge. We immediately see that those sums will converge under the weaker condition
that {a,} is of exponential order less than ¢! where ¢ = max {BA;,i=1,...,m}.

Second, note that with e, identically zero, (1.15) implies that in general |y;| eventually
grows exponentially at a rate given by max, |A;|. The condition max; |X;| < 1/4/F guarantees
that condition (1.6) is satisfied. In fact, max; X < 1/+/F is a necessary condition for (1.6)
to hold. Were (1.6) not satisfied, the objective function diverges to —oo, implying that the
ye path could not be optimal. For example, with a, = 0, for all ¢, it is easy to describe a
naive (nonoptimal) policy for {y:,t > 0} that gives a finite value of (1). We can simply let
yi = 0 for ¢t > 0. This policy involves at most m nonzero values of hy? and {d(L)y|?, and so

yields a finite value of (1.1). Therefore it is easy to dominate a path that violates (1.6).

3. Undiscounted Problems

[t is worthwhile focusing onr a special case of the problem of Section 2, the undiscounted

problem that emerges when 3 = 1. In this case, the Euler equation is
(A +d(L™"Yd(L)) yo = ar.

The factorization of the characteristic polynomi.a.l (1.10} becomes

(1.19) (h +d(27")d(2)) =c(;-‘)c(z)

where

c(z)

cp = [(—1)”‘2021 . zm]

eo(l = Mz). .. (1= Anz)

Ajl<lfor j=1,...,m.

]
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The solution of the problem becomes
m 0o
(1=ML)- (L= AmL)ye = 3 A; 3 Mayy.
'= K=0

Discounted problems can always be converted into undiscounted problems via a simple

transformation. Thus consider problem (1) with 0 < # < 1. Define the transformed variables
(1.20) a = B"%a, o =By

Then notice that 8*(d(L)y:|? = [d(L))|? with d(L) = £ d; L’ and d; = B7/%d;. Then

the original criterion function (1.1) is equivalent with

' N
; e 1 - "
(1-1') lim Z{a:y: = éhyf = é[d(L)yllz}
% =0
which is to be maximized over sequences {§, t = 0,...} subject to y_1,--+,y_m given and

{a@;, t=1,...} a known bounded sequence.

The Euler equation for this problem is [k + d(L~')d(L)| 3 = a,. The solution of this

problem 1is
m o0
(1=ML)---(1- Z Z
or
m o0
(1.21) vt = fiye-1 +"'+fm!-ft—m+ZAjZ,\f&t+k
j=1 k=0

where &(271)é(z) = h 4+ d(27')d(z), and where
(=)™ 3031 ... 3m]/2(1 = Ay 2)...(1 = Anz) = (), where |Aj] < L.

We leave it to the reader to show that (1.21) implies the equivalent form of the solution

. m o0

(1.22) ve=fiveer+ o+ fmyem+ 3 A 3 (A B)* arsn
J=1 ' k=0

where

(1.23) f; = f; 87972, Aj = A;, f\j‘-‘-j\jﬁ‘m-

By making use of the transformations (1.20) and the inverse formulas (1.23), it is always

possible to solve a discounted problem by first solving a related undiscounted problem.
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4. Infinite Dimensional Prediction and Signal Extraction

We now consider two related prediction and filtering problems. We let 1} be a univariate

m't order moving average, covariance stationary stochastic process,
(1.24) Y; = d(L)u,

where d(L) = 7%, d,'L-f, and uy is a serially uncorrelated stationary random process satis-

fying
Eug =0
(1.25)
1 t=s

Eu(u, = {0 ¢ ;é #
We impose no conditions on the zeros of d(z). A second covariance stationary process is X,
given by
(126) ng = Y’g + €4

where ¢, is a serially uncorrelated stationary random process with Ee; = 0 and

h>0 t=gs
0 t#s

Eee, = {
It i1s assumed that Feyu, = 0 for all ¢ and s.

The linear least squares prediction problem is to find the random variable :'_{:¢+j among
linear combinations of {X;, X;-1,...} that minimizes E{,?H.,' }2. That is, the problem is to
find a 7;(L) = 5207,k L* such that 352 |y;k|? < oo and such that E{v; (L)X; — Xi4;}?
is minimized.

The linear least squares filtering problem is to find a b(L) = ¥324b; L7 such that
I |6;]> < oo and such that E{b(L).X; — Y;}? is minimized. Interesting versions of these
problems related to the permanent income theory were studied by Muth [ ].

These problems are solved as follows. The covariograms of ¥ and X and their cross
covariogram are, respectively, defined as

Cx(r)=EX{X;_,
(1.27) Cylr) = EYiYi-r r=+1,+2,...
Cy.x(r) = EY1 Xi-+

8



The covariance and cross covariance generations functions are defined as

gx(z) = i Cx(r)z"

(1.28) gr(z) = _i: Cy(r)z"

grx(z) = i Cyx(r)z".

r=-00

The generating functions can be computed by using the following facts. Let vy, and vy be
two mutually and serially uncorrelated white noises with unit variances, i.e., Ev}, = Ev, =
1, Evyt = Evyy = 0, Evyqvy, = 0 for all ¢ and s, Evyvye—j = Evavae—j = 0 for all j # 0. Let

z; and y; be two random process given by
ye = A(L)vie + B(L)va
zy = C(L)vie + D(L)vy.
Then, as shown for example in Sargent [, ch. 11], we have
94(2) = A(z)A(z™") + B(2) B(=7")
(1.29) 9:(2) = C(2)C(27") + D(2)D(z™")
gy2(2) = A(2)C(z7") + B(z)D(z7").
Applying these formulas to (1.24)-(1.27), we have
gy (z) = d(z)d(z7")
(1.30) gx(z) =d(z)d(z7") +
gy x(z) = d(z)d(z"").
The key step in obtaining solutions to our problems is to factor the covariance generating

function of X, gx(z). The solutions of our problems are given by formulas due to Wiener

and Kolmogorov. These formulas utilize the Wold moving average representation of the X,

5
process,

(131) .Yg = C(L)Yh

% The existence of which is assured by Wold’s representation theorem. See, for example, Sargent [ , ch.
XI).



where ¢(L) = £ ¢j L7, where
(1.32) come = Xi — E[Xy| Xe-1, Xe—2,.. ],

where E is the linear least squares projection operator. Equation (1.32) is the condition that
cone can be the one-step ahead error in predicting X; from its own past values. Condition
(1.32) requires that n; lie in the closed linear space spanned by [X;, X;-1,...]. This will
be true if and only if the zeros of ¢(z) do not lie inside the unit circle. It is an implication
of (1.32) that 7, is a serially uncorrelated random process, and that a normalization can
be imposed so that En? = 1. Consequently, an implication of (1.31) is that the covariance

generating function of Xy can be expressed as

(1.33) gx(z) = c(z)e(z7")

It remains to discuss how ¢(L) is to be computed. Combining (1.29) and (1.33) gives
(1.34) d(z)d(z') + h =c(z)e(z7)).

Now equation (1.34) is identical with (1.10). Further, the conditions that (1.31) imposes on
c(z), that its zeros not lie inside the unit circle, are identical with those imposed in (1.9).
Therefore, we have already showed constructively how to factor the covariance generating
function gy (z) = d(z)d(z7!) + h.
We now introduce the “annihilation operator:”

m . e .

(1.35) [ ¥ sV, =X 6L
j=-o00 1=0

In words, [ |+ means “ignore negative powers of L.” We have defined the solution of the
prediction problem as E’[Xg.,._,'LYg, Xit-1,--.] =7 (L)X;. Assuming that the roots of ¢(z) = 0

all lie outside the unit circle, the Wiener-Kolmogorov formula for +;(L) holds:

(1.36) 3i(0) = [32) e(r).

ks
We have defined the solution of the filtering problem as E[Y; | Xy, Xo—1, .. ] =b(L)X;. The

Wiener-Kolomogorov formula for (L) is

(1.37) b(L) = (i‘(z’—_(f‘))) o(L)!

10



or

-1
= ()
Formulas (1.36) and (1.37) are discussed in detail in Whittle [ ] and Sargent [ ]. The interested
reader can there find several examples of the use of these formulas in economics. Some classic
examples using these formulas are due to Muth [ .

As an example of the usefulness of formula (1.37), we let X, be a stochastic process with

Wold moving average representation
Xe=c(L)m

where En? = 1, and com = X, — E[.Xngg_l, v B) = Y Teoc;L. Suppose that at time ¢,
we wish to predict a geometric sum of future X’s, namely

i . 1
Yt = EJJYH.' = ——_Xg
) 7 1-6L71

given knowledge of Xy, X;_1,.... We shall use (37) to obtain the answer. Using the standard
formulas (1.29), we have that

gy=(2) = (1 = Az7")e(2)e(z7")

g2(2) = c(2)e(z7").
Then, (1.37) becomes

_ -1
(1.38) b(L) = [ 6L ,] (L)™'
In order to evaluate the term in the annihilation operator, we use the following result

from Hansen and Sargent | |.

Proposition:  Let g(z) = 72,9 27 where T2olgil? < +oo. Let h(z71) = (1 -
1271) ... (1 = 8,271), where |§;| < 1, for j = 1,...,n. Then

g(z2) 1 _ 9(z) & 679(5) 1
(1.39) [h(z‘l)] T h(z7Y) g ﬂ'5=1(5k1— 85) (z - 61')

and, alternatively,

(1.40) [ ] za,(zg U

2—6,

11



where B’ = l/ nz¢1(1 - & ;J)
Applying formula (1.40) of the proposition to evaluating (1.38) with g(z) = ¢(z) and
h(z™') =1 -6z gives

L)_[M] (L)
or
1—8c(§)L~Ye(L)™!
=[5

Thus, we have

= ac(a)L-lc(L)—l]

(1.41) E[Jgsjzuﬂzt, Ty ] = [ A

This formula is useful in solving stochastic versions of problem (1.1) in which the ran-

domness emerges because a4 is a stochastic process. The problem is to maximize

(1.42) Eo lim Zﬂ'[a:}’: h!h - “[d (L))

where E; is mathematical expectation conditioned on information known at ¢, and where

{a:} is a covariance stationary stochastic process with Wold moving average representation
ay = (L) m
where i
n
e(L) = ):

and n; = a¢ — Elaias_y, .. ).

The problem is to maximize (1.42) with respect to a contingency plan expressing y; as
a function of information known at ¢, which is assumed to be (y;—1, ye-2,.--,a¢, @¢—1,...).

The solution of this problem can be achieved in two steps. First, ignoring the uncertainty,

we can solve the problem assuming that a; is a known sequence. The solution is, from above,

e(L)ye = c(L™)ay

or
(1.43) (1=ML)...(1 = A L)y = Y A4; Y- (A8)*arya.
=1 k=0

12



Second, the solution of the problem under uncertainty is obtained by replacing the terms on
the right-hand side of the above expressions with their linear least squares predictors. Using

(1.41) and (1.43), we have the following solution

- 6«‘15(@\5)15*’5(5)"’]“

n 1
(1_,\IL)...(1—,\mL)y¢=ZAJ'[ 1-p8A;L1

j—-1
5. Finite Dimensional Control

We briefly study the finite horizon version of our optimization problem, using matrix
methods. For simplicity, we shall focus on the special case in which m = 1, although it
should be clear how things will generalize to the case in which m > 1.° We want to solve

the system of N + 1 linear equations.
h+d(BL ) d(Llye=a, t=0,1, ..., N1
(1.44)
BNlan — hya — dod(L)yn] = 0

where d(L) = dg + djL. These equations are to be solved for yp, ¥1,...,¥n-1 and yy as
functions of ag,ay,..., ay_; and ay. Let ¢(L) = ¢o+ @1 L+ B¢ L~ = h+d(BL1)d(L) =
(h+di + d}) + didoL + d1doBL™". Then we can represent (1.44) as the matrix equation

[(do—d?) ¢ 0 0 ... ... O1[ y~v ] [ an
B do & 0 ... ... 0]]|yNva anN-_1
(1.45) 0 Bér b0 1 ... ... 0| |yn-2| aN-2
(.] . - . . e 6¢1 &0 ¢.1 .t);l all
0 ciieee e 0 B ol L yo | ~ Lao— d1y-1.
or
(1.46) W§ =a.

Notice how we have chosen to arrange the y;’s in reverse time order. The matrix W on the
left side of (1.45) is “almost” a toeplitz matrix, there being two sources of deviation from the
toeplitz form. First, the (2,1) element differs from the remaining diagonal elements, reflecting
the terminal condition. Second, the subdiagonal elements equal 3 time the superdiagonal

elements.

6 See exercise number
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The solution of (1.46) can be expressed in the form
(1.47) g=Wla,
which represents each element y; of § of a function of the entire vector @ That is, y, is a
function of past, present, and future values of a’s, as well as of the initial condition Y-1.
An alternative way to express the solution to (1.45) or (1.46) is in so called feedback—
feedforward form. The idea here is to find a solution expressing y, as a function of past y’s

and current and future a,’s. To achieve this solution, one can use an “LU” decomposition

of W. There always exists a decomposition of W of the form
(1.48) ' W=LU
where L is an (N + 1) x (N + 1) lower triangular matrix, and U/ is an (N + 1) x (N + 1)

upper trangular matrix. The factorization can be normalized so that the diagonal elements
of U are unity. Using representation (1.48) in equation (1.47) we obtain

(1.49) . - Ug=L'a

Since L~! is lower trangular, this representation expresses y; as a function of lagged y's
(via the term Uj) and current and future a's (via the term L~'a@). Because there are zeros
everwhere in the matrix on the left of (1.45) except in the diagonal, superdiagonal, and
subdiagional, the LU decomposition takes L to be zero except in the diagional and the

leading subdiagonal, while U is zero except on the diagonal and the superdiagional. Thus,

(1.49) has the form

(L U 0 O .0 0 [ v ]

0 1 Uz;; 0 . ¢ 0 YN

0 0 1 U ... O 0 YN -2

0 0 1 .0 0 UN-3| =

¢c ¢ 0 O 1 Unv_oyw 3,;1

|0 0 0 0 0 1 | v
Lili lll 0 0 aN
L2_Il L2_21 01 0 anN-1

(1.50) Lf‘ Lf’ L? 0 aN-2

Ly Lsh LsL .. 0 '

N1 N2 N3 a
-1 -1 -1 -1 _

-LN+1,1 LN+1.2 LN+1.3 LN+1N+1, L a0 — d1y-1J

14



where L‘-'J-l is the (i,7) element of L~! and Uj; is the (i, j) element of U.
We briefly indicate how this approach extends to the problem with m > 1. Assume that
B = 1. Let D4y be the (m+1) x (m+1) symmetric matrix whose elements are determined

from the following formula:
Djp = dodg—j + drdi_j41 + ... +djadey, k23]

Let I';m41 be the (m+1) x (m+1) identity matrix. Let ¢; be the coefficients in the expansion
¢(L) = h+d(L~")d(L). Then the first order conditions (1.4) and (1.5) can be expressed as:

YN aN
YN-1 anN-—i
(Dm+1 + hImyy) . = .
YN-m aN-m

PmYN + Pm-1YyN-1+ ... + POYN-m + P1UN-m-1 + - - + PmYN-2m = AN—m—1

PmYN-1+ Pm-1YN-2+ ... + PoYN-m-1+ P1YN-m-2 + ... + PmYN-2m-1 = EN—m-2

Pm¥m+1 + Pm-1ym + + ... + doy1 + S1Y0 + PmY-m+1 = a1
¢mym + ‘ﬁm—lym—! +Pm-2+ ... +doyo+d1y-1+ ... + dmY-m = ag

The matrix on the left of this equation is “almost” toeplitz, the exception being the leading

m x m sub matrix in the upper left hand corner. As before, we can express equation as
(1.51) Wy =a.

We can represent the solution in feedback-feedforward form by obtaining a decomposition

LU = W, and obtain

Uy =L 'a.
t N-t
(1.52) Y Uiimgitiei = Y, Liteioeis
1=0 7=0

where L;,I is the element in the t + m + 1 row and s + m + 1 column of L, with a similar

convention of Uy ,.

15



The left side of equation (1.52) is the “feedback” part of the optimal control law for y,
while the right-hand side is the “feedforward” part. We note that there is a diflerent control
law for each ¢. Thus, in the finite horizon case, the optimal control law is time dependént.

It is natural to suspect that as N — oo, (1.52) becomes equivalent to the solution of our

infinite horizon problem, which we have expressed as
o L)yt = (BL71) ey,

so that as N — oo we expect that for each fixed t,L,_.‘l_J- — ¢; and Uy q4; approaches
the coefficient on L~/ in the expansion of ¢(#L~!). This suspicion is true under general
conditions which we shall study later. For now, we note that by creating the matrix W for
large N and factoring it into the LU form, good approximations to ¢(L) and ¢(BL~!)~! can

be obtained.

8. Finite Dimensional Prediction

Let {z1,z3,...27) = z be a T x 1 vector of random variables with mean Ez = 0 and
covariance matrix Exz’' = V. Here V is a T x T positive definite matrix. We shall regard
the random variables as being ordered in time, so that z, is thought of as the value of some
economic variable at time ¢. For example, z; could be generated by the random process
described in Section 5. In this case, V}; is given by the coefficient on zI"=71 in the expansion
of ge(2) = d(z)d(z~') + h, which equals h + T32gdkdy,(;_;. We shall be interested in

constructing j—step ahead linear least squares predictors of the form

E[”T—j:‘-’]‘—j+l1 cee r:lJ

where E is the linear least squares projection operator.
The solution of this problem is clearly exhibited by first constructing an orthonormal
basis of random variables € for z. Since V is a positive definite and symmetric, we know

that there exists a (Cholesky} decomposition of V such that
V=LYt

or
LVvL =1I
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where L is lower-trangular, and therefore so is L™!. Form the random variable Lz = ¢.
Then ¢ is an orthonormal basis for z, since L is nonsingular, and Ec¢e' = LEzz'L' = I.

It is-convenient to write out the equations Lz = € and L~ '¢ = z.
Lz, = ¢

Lyzy + Lapzy = €3

(1.53)
Ltizy ... + LTTzy = €T
or
t-1
(1.54) Y Liyt-im-j =€ t=1,2,...T
j=0
We also have
(1.55) T = 2 Lit;ei-j-

Notice from (1.55) that z; is in the space spanned by &, £,_y,...,€1, and from (1.54) that
€4 18 in the space spanned by zy, z_1,..., z;.

Therefore, we have that fort =1 >m > 1
(1.56) E [3g [ Tt—my Tt—m-—=1,- - .,1:1] — E[rg ' Et—m ) Et—m+1,--. ,61].

Fort —1 > m > 1 rewrite (1.55) as
t-1
J =m

Representation (1.50) is an orthogonal decomposition of z; into a part Z;_L L;}l j€t—j that
lies in the space spanned by [z4_m, Z¢—m+1, ..., Z1], and an orthogonal component not in
this space. It immediately follows from the “orthogonality principle” of least squares (see

Papoulis [ | or Sargent [ ]) that

Elz | Bty Br=matsev @1 = L.
(1.56) [t t t-m+1 I] Z “J

= (Lo BT v Bl ..AO]L:‘

17



This can be interpreted as a finite-dimensional version of the Wiener-Kolmogorov m-step
ahead predict on formula.

We can use (1.51) to represent the linear least squares projection of the vector z condi-

tioned on the first s observations [z,,z,_1...,2;]. We have
= ! 0
Elz | 2020y .. =L’[’ ]L.
[ | 0 Ty-] zl] 0 O(t-—.) E

This formula will be convenient in representing the solution of control problems under un-
certainty.

Equation (1.55) can be recognized as a finite dimensional version of 2 moving average
representation. Equation (1.54) can be viewed as a finite dimension version of an autore-
gressive representation. Notice that even if the z; process is covariance stationary, so that V
is such that V;; depends only on |i — }|, the coefficients in the moving average representation
are time-dependent, there being a different moving average for each ¢t. If z; is a covariance
stationary process, the last row of L™! converges to the coefficients in the Wold moving
average representation for {x¢} as T — oo. Further, if z, is covariance stationary, for fixed
k and j > 0, Li}-_i converges to L.}l,“.r_k_j as T — oo. That is, the “bottom” rows of
L~ converge to each other and to the Wold moving average coefficients as T — oo,

This last observation gives one simple and widely-used practical way of forming a finite T
approximation to a Wold moving average representation. First, form the covariance matrix
Ezxz' = V, then obtain the Cholesky decomposition LY of V', which can be accom-
plished quickly on a computer. The last row of L~! gives the approximate Wold moving

average coefficients. This method can readily be generalized to multivariate systems.

7. Combined Finite Dimensional Control and Prediction

Consider the finite-dimensicnal control problem, maximize

E gj{a:yz - %hyf - %[d(L)yclz}, h>0
where d(L) = do + diL + ... + dnL™, L is the lag operator, @ = [an,ay.1...,21,40] a
random vector with mean zero and E aca; = V. The variables y_y,.. .y_m, are given. The
maximization is over choices of yg, ¥ .. ., yN, where y is required to be a linear function of

(Ye-s-15 at—g; t =123 20}
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We saw in section 5 that the solution of this problem under certainty could be represented
in feedback-feedforward form
Uy = La.
Using a version of formula 1.58, we can express E’[& | as, @g—1,...,a0] as

. _=_1[0 0 17,
Ela| as, ay-1,...,80] = U [0 I(,_,_])]Ua

where J(,,,) is the (s +1) x (s + 1) identity matrix, and V = U-10-Y, where U is the upper
triangular Cholesky factor of the covariance matrix V. (We have reversed the time axis in
dating the a’s relative to section 5. The time axis can be reversed in representation ( ) by
replacing L with LT.)

The optimal decision rule to use at time 0 < t < N is then given by the (N — ¢ + 1)

row of
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Exercises
1. Consider solving a discounted version ( < 1} of problem (1.1), as follows. Use the
transformations in footnote 2, to convert {1.1) to the undiscounted proB]em (1.1') of
footnote 2. Let the solution of (1.1') in feedback form be

" m'k
Z JZAJ&'

i= k=0

(L =MLY - (1 = AnL)y

H

—

or
- - m o0
(.) Y= flit—l + ot fonBt-m Z Z Ttk

where & + d(z71)d(z) = &z~1)e(z) and &(z) = [(=1)™Z021--- 2m]2(1 = X12)---(1 -
Amz), where the %; are the zeros of h + d(z71)d(z). Prove that (*) implies that the
solution for y; in feedback form 1s

m o0
Y= figior+ ot fnvem + 3 A5 Y B X ayu

1=1 k=0

where fJ = }Jﬁ_ﬂzs AJ = AJ! and "\J = :\J‘ﬁ—lﬂ.

2. Solve the optimal control problem, maximize

2
Z {atyt -1 - 2L)y:] }

subject to y_; given, and {a;} a known bounded sequence. Express the solution in the
“feedback form” (1.15), giving numerical values for the coefficients. Make sure that the
boundary conditions (1.5) are satisfied. (Note: fhis problem differs {rom the problem in
the text in one important way: instead of A > 0 in (1.1}, b = 0. This has an important
influence on the solution.)

3. Solve the infinite time optimal control problem to maximize

N 1 R

subject to y_; given. Prove that the solution is

y =2y = 2y t>0.
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4. Solve the infinite time problem, to maximize
g 1
lim Y (.0000001)y? - s~ 2L)y)?

=0 =0

subject to y_; given. Prove that the solution y; = 2y;—; to problem (1.3). violates

condition (1.6), and so is not optimal. Prove that the optimal solution is approximately

1 et
= —yy_1 = (- - t i
e = Sy (2) y-1, >0

5. Consider a stochastic process with moving average representation
Ty = (1 - 2L]Et

where €, is a serially uncorrelated random process with mean zero and variance unity.
Use the Wiener-Kolmogorov foumula (1.36) to compute the linear least squares forecasts
E(ziyj | ¢, x-1,...], for j =1, 2.
Hint: Let 7(z) = 70, m;z). Let z1,...,z; be the zeros of 7(z) that are inside the unit
circle, k < m. Then define
z21z2-1 292 — 1 2z — 1
=l -l

The term multiplying m(z) is termed a “Blaschke factor.” Then it can be proved directly

that
8(z=1)8(z) = m(z7V)n(2)

and that the zeros of 6(z) are not inside the unit circle.

6. Consider a stochastic process X; with moving average representation
Xe=(1-v2L + L)e,

where €, is a serially uncorrelated random process with mean zero and variance unity.
a. Find a Wold moving average representation for z;.
b. Use the Wiener-Kolomogorov formula (27) to compute the linear least squares fore-
casts E[XH.,' | Kespis sl fof' § = 123
(The hint to the previous problem is again useful.)
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7. Let Yy = (1 — 2L)u, where u, is a mean zero white noise with Euf = 1. Let

where ¢, is a serially uncorrleated white noise with Ee? = 9, and Eequ, = 0 for all ¢ and
s.
a. Find the Wold moving average representation for Xj.

b. Find a formula for the A;;’s in
e a0
EXip1 | Xe, Xe-1y... = ) Aj X
j=0
c. Find a formula for the Ajz;’s in

(s +]
EXiia | Xo, Ximy,... = Y A2j Xo-j.
=0

8. (A multiple variable control problem)

Consider the problem, maximize
I 5~ g AY: - SY/HY, - (DY
aim gﬁ { Yo - SY/HY - S[D(L)Yi}, 0< <1,

where Y} is an (n x 1) vector, {4, ¢t = 0,1,...} an n x 1 vector of known sequences of
exponential order less than 3'/2, D(L) = Do + DyL + ... + Dy L™ where the D; are
n x n matrices, and H is an n x n positive definite matrix. The maximization is subject
to Y_;,...,Y_,, given, and is over infinite sequences for {}},t = d, - )

a. Prove that the Euler equations are
(H + D(BL~) D(L)}Y: = Ay

b. Give a boundary condition that generalizes (1.6).
c. Prove that if Z is a zero of |H + D(827!)'D(z)| then so is 8z~1.
To solve the Euler equations subject to the boundary conditions it is necessary to achieve
the factorization
[H + D(B="")D(2)] = C(B="")C(2)
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where the zeros of |C(z)| exceed B in modulus, and those of |C(Bz~")| are less than 3 in
modulus. Hansen and Sargent | | describe methods for achieving this factorization. The

solution of the control problem can then be represented
C(L)Y: = C(BL™') A..

9. (Multivariable Prediction)

Let Y; be an (n x 1) vector stochastic process with moving average representation
Y: = D(L)U,
where D(L) = T4 D;L?,D; an n x n matrix, U; an (n x 1) vector white noise with

EU, =0 forall ¢

1 _ I t=3
EU‘U‘“{D t#s

Let €; be an n x 1 vector white noise with Ee, = 0 for all ¢, Ee,U, = 0 for all ¢ and s and

EE[E:_! s { H t==2

0 t#s
where H is a positive definite matrix. Define the covariograms as Cx(r) = EX, .:-'r' Cy(t)=

EYiY/_ .,Cyx(r) = EY;X|_,. Then define the matrix covariance generating function, as in

(1.20), only interpret all the objects in (1.20) as matrices.

a. Show that the covariance generating functions are given by
gy(z) = D(z)D(="")
9x(:) = D(z)D(="") + H

gy x(z) = D(z)D(z71Y
b. A factorization of gx(z) can be found (see Rozanov [ | or Whittle [ ]) of the form

D(z)D(z7")' + H=C(2)C(z7"), C(z2)= i C;2’
1=0

where the zeros of |C(z)| do not lie inside the unit circle. A vector Wold moving

average representation of X is then

i\’t = C(L)!h
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where 7; is an (n x 1) vector white noise that is “flundamental” for X;. That is,
){g - E[Xg ' Xg_l,Xg_z i ] = C'o UIE

. The optimum predictor of X, ;, is

R o C(L
ElXt4j | Xo, Xior,.. ] = ( é:’ )+1’h-

If C(L) is invertible, i.e., if the zeros of det C(z) lie strictly outside the unit circle,

then this formula can be written

E'X'g+j | Xg,Xt_], el = ( e~ ')+C(L)_1 M
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Chapter 2

Introduction to Recursive Control and Prediction Theory

1. Introduction

In the text and problems of the preceding chapter, we described a class of discrete time
opitmal control and filtering problems, described how to solve them by classical methods,
and noted that the control and filtering problems had equivalent mathematical structures.
Not surprisingly, the relationship between the two classes of problems again surfaces when
recursive techniques are applied to these problems. By recursive techniques we mean the
application of dynamic programming to the control problems, and of Kalman filtering to the
filtering problems.

The purpose of this chapter is briefly to introduce the dynamic programming and the
Kalman filtering algorithms, and to point out their formal equivalence. By pointing out their
equivalence early on, we hope to double the readet’s interest in the subsequent sections on
controllability and reconstructibility. These concepts are of interest because it is in terms
of them that conditions for the convergence and other important properties of the recursive
algorithms are developed.

This chapter also contains a number of examples of controt and filtering problems that
have interested economists. We indicate how they fit into our framework.

The appendix contains statements of a few facts about linear least squares projections. .

Familiarity with Sargent | , Ch. 10] would also help the reader.
2. The Optimal Linear Regulator Control Problem

One problem that we shall study extensively is the optimal linear requlator problem. We
consider a system with a (n x 1) state vector z; and a (k x 1) control vector u;. The system

15 assumed to evolve according to the law of motion
3:+1=A11'¢-+‘811£t t=t0,t{)+l,”.,t1—1,

where A; is an (n x n) matrix and By is an (n x k) matrix. Both 4, and B; are known

sequences of matrices. We define the relurn function at time ¢, ri(2¢,u¢), as the quadratic



form

R Ry W, (Zg) _
1";(31,‘!&;) = (ztut) u,: Qg] t = to, " .,t] - l

Uy

where Ryis (nxn), Q¢is (kxk)and W is (nxk). We shall initially assume that the matrices

( Ry W,
Wi Qe

still be well-posed even if this assumption is weakened. We are also given an (n x n) negative

) are negative semi-definite, though subsequently we shall see that the problem can

semi-definite matrix P, which is a meteric for terminal values of the state z,.
The optimal linear regulator problem is to maximize
ty
(2.1) 2 e ‘ff:’ g:] [::] + ty Py X,
subject to Ty = Ay + Byuy, Ty, glven.
The maximization is carried out over the sequence of controls (uy,, %4, ,,-.-,ut,_,). Thisis
a recursive or serial problem, which it is appropriate to solve using the method of dynamic
programrﬁing. In this case, the value functions are defined as the quadratic forms, s =
toslo Ly ty —1;
t
2, Pyz, = max{hzl‘[ziu;] [g,:, g/:] [z:] + x',lpgu\-h}
s.t. z441 = Ayzy + Byuy,
T, given s = to,tg + 1,...,t; — 1. Bellman’s equation becomes the following backward

recursion in the quadratic forms z,Pz,:
a:'tpg:cg = max {z:Rw} + U:qug + 21:1“’]u. + (Az¢ + But)'Pg.;.l(Az:; + Bug]},
LT R S
Py, given .

Using the rules for differentiating quadratic forms (see appendix), the first-order necessary
condition for the problem on the right side of (2.3) is found by differentiating with respect
to the vector uy:

{Q‘ - B;Pt+13t} Uy = —(B:Pg+] Ag + ‘V:)It

Solving for u; we obtain

(2.4) ue = —(Qu + BiPiy1B) " (BiPrar Ar + W)z
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The inverse (Qq + BiPiy18;)7! is assumed to exist. Otherwise, it could be interpreted as a
generalized inverse, and most of our results would go through.
Equation (2.4) gives the optimal control in terms of a feedback rule upon the state vector

x4, of the form

(2.5) up = —Feze
where
(2.6) Fo = (Q¢ + BiPr1 By (BiPen Ac+ W)

Substituting (2.4} for u; into (2.3} and rearranging gives the following recursion for Fy:
P, = Ry + A{Pi1Ar — (AtPigy By + W) Qo + BiPu By)  (BiPivi Ac+ W),

Equation (2.7) is a version of the matriz Riccati difference equation.

Equations (2.7) and (2.4) provide a recursive algorithm for computing the optimal con-
trols in feedback form. Starting at time (¢; — 1), and given Py, (2.4) is used to compute
Uy = _F‘rlzh—l' Then (2.7} is used to compute Pgl_l. Then (2.4) is used to compute

Uy g = Fgl_.l:fl_'l, and so on.
By substituting the optimal control u; = — Fyz; into the state equation {2.1), we obtain

the optimal closed loop system equations
Tyl = (A¢ - Bf,Ft)Ig.

Eventually, we shall be concerned extensively with the properties of the optimal closed loop

system, and how they are related to the properties of A, B, ¢}, and R.

3. Converting a Problem with Cross-Products in States and Controls to One

With No Such Cross-Products

For our future work 1t is useful to introduce a problem that is equivalent with (2.1) -
(2.2), and has a form in which no cross-products between states and controls appear in the
objective function. This is useful because our theorems about the properties of the solutions

(2.4) and (2.7) will be in terms of the special case in which W = 0. The equivalence between
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the problems (2.1) - (2.2) and the following problem implies that no generality is lost by
restricting ourselves to the case in which W = 0.
The equivalent problem

t

(2.8) meE 2, = {3':(31 - WiQ7 ' W)z + ug Q;“;} + zy Py z¢,
t] 1=ty

subject to

(2.9) 241 = (A — BQ7'W))z, + Byu;

and z,, Py, are given. The new control variable u; is related to the original control u; by
(2.10) ui = Q7' Wizy + us.

We can state the problem (2.8) - (2.9) in a more compact notation as being to maximize

ty

(2.11) :Zg {ziReze + u)'Quu;}
=ty

subject to

(2.12) Te41 = Aizy + Byu;

where

(2.13) Ry = R - W,Q; ' W

and

(2.14) | A = A, - B, _;‘w{.

With these specifications, the solution of the problem can be computed using the following

versions of (2.4) and (2.7)

(215) u: = —Frg — —(Q! + B:Pg+1Bg)FIBng+1A¢

(2.16) Pi = Ry + ABa Ay — A Pigy Bl Qo+ Bl Pigs By BB Ay
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We ask the reader to verify the following facts:
a. Problems (2.1) - (2.2) and (2.8) - (2.9) are equivalent.
b. The feedback laws F; and F; for u} and u,, respectively, are related by

Fg = Fg + Q;IW:
c¢. The “closed loop” transition matrices are related by

A; — B;F, = A, — B,F,.

4. An Example

We now give an example of a problem for which the preceding transformation is useful.

A consumer wants to maximize

(2.17) > B {ure - %cf} 0 <A1

t=tp

subject to the intertemporal budget constraint

(2.18) kepr = (1+7) [ke + 31 — c,
the law of motion for labor income

(2.19) Ye+1 = Ao + A1y,

and a given level of initial assets, ky,. Here 8 is a discount factor, c is consumption, k; is
“nonhuman” assets at the beginning of time ¢, r > —1 is the interest rate on nonhuman
assets, and y; is income from labor at time ¢.

We define the transformed variables

f‘: = 3"’2-’“':
y= 5”23&
& = Y%,

In terms of these transformed variables, the problem can be re-written as follows: maximize

(2.20) )tf {wpt? 2 - ?’af}

t=in 2
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subject to
kipr = (14 2)8" 2 (ke + §¢ - ¢t] and
J1 + 2B + 0,81,

and ky, given. We write this problem in the state-space form:

(2.21)

o0
max Rz, + 2z, Wiy + 4.Qi
{ie) ‘;"{ tflet t t e !}

s.t. iH-l = Ai‘g + Bﬁg.

We take

F 3, ‘

il= it vﬁtzéh
ﬂt{?
[0 0 0 ”

R=10 0 0 ,w'={00—2‘-,
(0 0 0

us [((1+7) (1+7) (147) —(1+4)
Q=-%, 4= 0 x  x% |#B=| 0 |~
0 0 1 0

To obtain the equivalent transformed problem in which there are no cross-product terms

between states and controls in the return function, we take

) (1+7) (14r) —udlin)
A=A-BQ"'W'=| o M i ]ﬁ‘“
0 0 1
0 0 0
- I
(2.22) R=R-wQ w-[g g &]
uz

U'+t=1u,+Q W'z,

o w. B
uz
Thus, our original problem can be expressed as:
max Z RZ¢ + u;'Qu;
(2.23) {u } .;,,{ tRE+ ui'Qui}
st. Ty41 = Aig + Bu{

For future reference, it will be useful to write problem (2.23) - (2.24) in the partitioned

form:
20

- Ry R 7 g
max 3 {[1.52 [ o R;;] [”"]} +ulQu;

{u; t=tn Tat
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subject to

[3:"1(!+1}] [/111 Alz] [rl(t) [Bl]u;'
T2(t+1) Ty(t) 0

Here the partitional vectors and matrices are given by
21(t) = k)

£ = [ 6]
((1+7) (1+7) o (%9
A A A ] B2

Il
o
—

2
0 1

::Ul

Il
c oo
coco °
S o
| IEE—— |

L)

by

(%]

Notice that the pattern of 0’s in A and B, and in particular that Aj; = 0 and B; = 0.
Later on we shall be concerned extensively with properties of linear spaces generated by the

certain functions of the pair of matrices (A);, R11) and the pair (Ay;, By).
5. The Kalman Filter

We consider the linear system

(2.24) zi41 = Azt + Biuy + Grwies

(225) Yt = C:-":t + E;ug + wai

where [w],,, - wh,] is a vector white noise with contemporaneous covariances matrix

(]
wn+1] [w1¢+1] AT Vs:] _—
wat way Vae Vaul —

The wyy41, wae, vector for t > tg is assumed orthogonal to the initial condition z;,, which
represents the analyst’s initial ideas about the state. Here, A; is (n x n), By is (n x k), G,
is (nxn),Cris (€ xn),Eyis (€ x n),wigsy is (n x 1), waes1 15 (£ x 1); x4 is an (n x 1) vector
of state variables, u; is a (k x 1) vector of controls, and y; is an (£ x 1) vector of output
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or observed variables. The matrices Aq, By, G¢, Ci, and Ey are known, though possibly time
varying. The noise vector w4 is the state-disturbance, while wy, is the measurement error.

The analyst does not directly observe the z; process. So from his point of view, 2, is a
“hidden state vector”. The system is assumed to start up at time £o, at which time the state
vector z,, is regarded as a random variable with mean Fz,, = z,,, and given covariance
matrix 3, = Y.o. The pair (£, o) can be regarded as the mean and covariance of the
analyst’s Bayesian prior distribution on zq,.

It is assumed that for s > 0, the vector of random variables [wz::l;':::’] is orthogonal to the .
random variable z,, and to the random variables [“!%*"*1] for r £ 5. It is also assumed that

W +r

E["’:;gx:"] = 0 for s > 0. Thus, [wg:a;)] is a serially uncorrelated or white noise process.

Further, from (2.24), (2.25) and the orthogonality properties posited for |

Wit41

vy | and zy,, it

follows that ["’:";‘] is orthogonal to {z,,ys—;} for s < t. This follows because y; and z¢4;
are in the space spanned by current and lagged u, wit+1, w2, and zy,.

The analyst is assumed to observe at time t {y(s),u(s) : s = to,t0 + 1,...¢}, for
t =tg,to+1,...t;. The object is then to compute the linear least squares projection of the

state z,4; on this information, which we denote Ejz;,;. We write this projection as

(226) E‘izi+l = E[zt-l-l | Y, Yee1,-0 0y yhnihl]

where z,, 1s the initial estimate of the state. It is convenient o let ¥ denote the information

on y; collected through time ¢:

Y, = {yhyt—l: .- -Jtn}-

The linear least squares projection of y:41 on Y3, and #, is from (2.25) and (2.26) given by

Ewerr = E(yea) | Yo, 2o
(2.27) i
= CoEizeq) + Ey ugqg

since wat41 is orthogonal to {wi,41, w2,}, s < ¢, x4, and is therefore orthbgonal to {¥7, 24, }.

In the interests of conveniently constructing the projections Egzopy and Eyyq, we
now apply a Gram-Schmidt orthogonalization procedure to the set of random variables
{Ttn Yto: Yto+1,- - - ¥1, }. An orthogonal basis for this set of random variables is formed by
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the set {Z¢,, Yto¥to41s- - -+ Jt, } Where
(228) . ji =Yt — E[yt I l-ft—ls!-h—‘b v ?;'lul ifn]'

For convenience, let us write ¥; = {¥to, Uto+1,- - -, U1} We note that the linear spaces spanned
by (24, Y:) equals the linear space spanned by (%, Y;). This follows because: (a) § is formed
as indicated above as a linear function of Y;, and %,,, and (b) y; can be recovered from Y; by
noting that y; = E[y; | z4,, Yi—1] + §¢. It follows that E[y; | 249, Yio1] = Elye | 249, Vi) =
Ei_1yi. In (2.28), we use (2.25) to write

E['.'h | 4] = CioZ4, + Eq uy,.

To summarize developments up to this point, we have defined the innovation process

Yt = Ye — E[y! | 24y, Y1)
=y — Elye | 24, Vo1, t 2 to +1
¥to = Yta — Elyta | £4.).
The innovations process is serially uncorrelated ( §; is orthogonal to g, for t # s ) and spans
the same linear space as the original Y process.

We now use the innovations process to get a recursive procedure for evaluating E;z,; ;.

Using theorem A3 about projections on orthogonal bases gives

E[:g.{.l I 5:frn !}lnnﬁtrﬁ-h seey ift]
(2.29)

= E21+1 | gl] + E[zf-l-l I zi[uit{ng!n+lr'"r!}f—ll =t EE:-}.]

We have to evaluate the first two terms on the right-hand side of (2.29).

From theorem Al, we have that

(2.30) E[zes1 | 3 = Ezeqy + cov (zear, #1t) [cov (30, 3:)) " gt

To evaluate the covariances that appear in (2.30), we shall use the covariance matrix of one-
step ahead errors, By = T(q) — E, 124, in estimating z,. We define this covariance matrix
as ¥, = Ez,z}. It follows from (2.24) and (2.25) that
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(2.31)
cov(ze41, ) = cov(Aeze + Byuy — Gowyeqr, ¥t — Er-1y1)

= cov( Azt + Byuy + Guwygqy, Cizy + way — i Ev_y2y)

= cov(A¢z¢ + Byug + Guwyey, CiZy + wae)

= E[(Awzt + Biuy + Guawiey — E(Azy + Buy + Giwy41)(CiZe + war — E(Cizy + way)))

= E[(Awzt + Giwyesr — AiEzy)(Z,C, + why))

= E[A4z:2,C}] + GiE[wy41%,C;) — AtEz,EZC, + A1E|zqwh,)

+ GE|wyg4 wh,] — AEzEw),

= E[Az#,Cy] + GiE[wii41w)]

= E[Al(#¢ — Ei_124)2\C}] + G1E[w1e41wh,)

= A E27)Cy + GLE(wy4 1wy = A ZiCh + GV
The second equality was the fact that Eg-]_wzg = 0 since wy, is orthogonal to {z,, y,-1}, s <
t. To get the fifth equality, we use the fact that EZ; = E[z; — E{_1z¢ = 0 by the unbiased
property of linear projections. We also use the facts that u, is known and wj;;y and wsy,
have zero means. The seventh equality follows from the orthogonality of wjs4; and wyy to
variables dated ¢ and earlier and the means of w), and zj being zero. Finally, the eighth
equation relies on the fact that z; is orthogonal to the subspace generated by y;_y,y¢-2,.-.
and E;_;z, is a function of these vectors.

Next we evaluate o i ) ’
cov(ye, t) = E(CiZy + way)(ciy + way)

= C(EgC: + VM
and since Ey; = 0 and Ez,wh, = 0. Therefore, (2.31) becomes

(2.32) Elzi41 | 9t) = Elze41]) + (AZC, +‘G¢1,3g)(CgEgCt' + Vo) 4.

Using equation (2.24), we evaluate the second term on the right side of (2.29),
Elzesy | Yio1, 2] = AtE[ze | Yie1, 20) + Beuy

or

(233) Et—l-’-t+l = E‘g_lrg + Bg‘ug.
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Using (2.32) and (2.33) in (2.29) gives

(2.34) Eze1 = AiEi124 + Biug + Ki(ye — Ei-1y0)
where

! ] -1
(2.35) Ky = (AZ(C + GVa) (Ci(Ch + Var)

Using Ey_yy = CiEy_1z¢ + Equy, equation (2.34) can also be written
Eizi41 = [At — KiCi)Ey-12¢ + By — KiEJus + Keyr.

We now aim to derive a recursive formula for the covariance matrix ;. From equation

(2.25) we have that Ei_ 1y = CeEy_1z¢ + Equ,. Subtracting this from y; in (2.25) gives
yi — Ev_1yt = Ci[zy — Eqo1z4) + way.

Substituting this expression in (2.34) and subtracting the result from (2.24) gives
(ze41 — Erzeg) = (Ac— KiCo)(z4 — Ei_1zy)
+ Gowngsr — Kiwzy
or

(2.36) Toy1 = (A — KiCy)z + Grwiesr — Koway.

From (2.36) and our specification of the covariance matrix

E[wlt+l][w!t+l]l= Vit 1"31]
w2t way stg Ve

we have '
Ez,3,, = [A - K.C)Ez2z\[A - K.C

+ GgVHG: + K,V K,
- GVauK! — K Vi,G

We have defined the covariance matrix of z; as £; = Ei;:’:: = E(z¢ — Eq_124)(z¢ — Eryz4)'.

So we can express the above equation as
Tent = [Ae = KiC) B A - Kic
(2.37) & GiVaCL 4 KV ) — G VKK,
= K6
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Equation (2.37) can be rearranged to the equivalent form
Dy = AgEgA: + Gg‘/uG;
=1
- [Aith; + GtVSt] (Ctztct' + Vzc)
, :
X (AgE: + Gl Vgg)

We repeat (2.35) here for your convenience
' ' -1
(2:35) Ki = (A2} + GeVay) (CeB(Ct + Vi)

Starting from the given initial condition for Iy, = E(zy, — Ez4,)(z4, — Ezy,), equations
(2.37) and (2.35) give a recursive procedure for generating the “Kalman gain” K, which is
the crucial unknown ingredient of the recursive algorithm (2.34) for generating E,z,,,.

The Kalman filter is used as follows. Starting from time ¢ with £,, = X9 and z,, = z¢
given, (2.35) is used to form K, and (2.34) is used to obtain Ey,zy, 4y with Ey _,zi, = Zo.
Then (2.37) or (2.38) is used to form Iy 41, (2.35) is used to form Ky, 41, (2.34) is used to
obtain E‘nHz‘O”' and so on.

The evolution of the state estimate obeys

(2.39) Ze41 = (Ae — KiCi)zi41 + Ky
where
(240) Yt = Ctl‘g + waq.

We can represent y; as

(2.41) yt = Cizy + a¢
where
(2.42) ay = wy + Ci(zy — Z¢)

Now from (2.40) it follows that

(2.43) it = Eryye = Cuy
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Therefore from (2.41) and (2.43} we have
yi — it = Ce(ze — T0) + wa
or
Yt — Yt = as.
We have that Eaia} = C,L:C, + V3;. The random process a; is the “innovation” in yq, 1.e.
the part of y; that cannot be predicted linea;ly from past y’s.

Using (2.41) the system (2.39)-(2.40) can be presented as

Topr = A2y + Ky
(2.44) .
¥ = Ci2t + ay

System (2.44) is called an “Innovations representation.”
Another representation of the system which is useful is obtained by combining {2.39)
with (2.41) to get

2.0 = (A, - K, Co)2y + Ky,
(2.45)
ar =y — Ci3y

This is called a “whitening filter.” Starting from a given &g, this system accepts as an “input”
a history of y; and gives as an output the sequence of innovations a4, which by construction
are serially uncorrelated.

We shall often study situations in which the system is time invariant, 1.e. 4; = A,C; =
C,Vjs = Vj for all . We shall later describe regulatory conditions on A, C, Vi, V4, V3 which
imply that () K - K ast - coand £, - £ ast — oo; and (i) | \,(A - KC} |< 1
for all 7, whose A; is the ilh eigesvalue of (A — K (). When these conditions are met, the
limiting representation for (2.44) is time invariant and is an (infinite dimensional) innovations
representation. Using the lag operator L where by L#, = &,, imposing time invariance in

(2.44) and rearranging gives the representation

(2.46) ye=[I+C(L™ '] — A) ' K]a,
which expresses y; as a function of [a¢,a;.1,...]. In order that y¢,y:-1,...] span the same
linear space as [as,a¢—1,. ..}, it is necessary that the following condition be met:

det{I+C(z-A)'K]=0 = |z]|< L.
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Now by a theorem in linear algebra we have that

det(zI — (A - KC))
det(z] — A)

det(I + C(z] — A)'K] =

The formula shows that the zeros of det[] + C(zI — A)~1K| equal that zeros of det(z] —
(A— KC)), which are the eigenvalues of A — KC. Thus, if the eigenvalues of (4 — KC) are

all less than unity in modulus, then the spaces [ay, a¢,...] and [y¢,y¢—1,...] in representation

(2.46) are equal.
6. Duality

For purposes of highlighting their relationship, we now repeat the Kalman filtering for-

mulas for K; and I; and the optimal linear regulator formulas for F; and P,

(2.35) Ke = (ABCL + GVt (CiECl + Var) ™

i1 = AZ AL + GG,
=
— (AZ(CL + G Vay) (CLE(Cl + Vay)
X (A:E:C: + Gngg)’

(2.6) Fy = (Qt + BiPrs1By) (B P Ay + WY).

P = R + A'tpt+lAl
(2.7) — (AP B + W()(Qt + B{Pis1By) ™!

X (B:Pt+lBt + Wt)

for t = tg,t0 + 1,...,t;. The equations in (2.35) are solved forwards from ¢ with I, given

while those in (2.6) and (2.7) are solved backwards from t; — 1 with P,, given.
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Table 1

Object in Optimal Linear Object in
Regulator Problem Kalman Filter
Atgre,8=0,... b1 —tp—1 t-1-083=0,.. ., t1 —tg— 1
Biy4s Cly1-1
Biy4s ‘ : ~Giy-1-4V1t;-1-4C4, 1y
Qto+s : ~Vayy, -1,
Wip+s ~Gy 121V -1,
Pioss —~Pi -
Fiy4s Ki_1-,
Pft . _Eiu
Atg+s = Bt Frots ti—1-5 — Chy_1-4Ki, _1-s

The equations for K; and F; are intimately related, as are the equations for P; and I;.
In fact, upon properly re-interpreting the various matrices in (2.35), (2.6} and (2.7), the
equations for the Kalman filter and the optimal linear regulator can be seen to be identical.
Thus, where A appears in the Kalman filter, A" appears in the corresponding regulator
equation, where C appears in the Kalman filter, B' appears in the corresponding regulator
equation, and so on. The correspondences are listed in detail in Table 1. By taking account
of these correspondences, a single set of computer programs can be used to solve either an
optimal linear regulator problem or a Kalman filtering problem.

The concept of duality helps to clarify the relationship between the optimal regulator
and the Kalman filtering problem.

Definition 2.1: Consider the time varying linear system.

Ti1 = Aze + By
(2.47)
ye = Cizy, L= fg,.. ., t; ~ 1

The dual of system (2.47) (sometimes called the “dual with respect to t; — 17} is the system:

+ - ! * ! *
Togr = Ay _yo®e + Oy _1_guy
. ] »
¥¢ = Btl—l—t'tt
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with £ = fg,t0+1,...,t) — 1.
With this definition, the correspondence exhibited in Tablc 1 can be summarized suc-

cinctly in the following proposition:

Proposition 2.1: Let the solution of the optimal linear regulator problem defined by
the given matrices {A,, By, Ry, @, Wit = tg,... .t — 1; Py} be given by {P,,F}, t =
tg,-..,t1 — 1}. Then the solution of the Kalman filtering problem definded by the ma-
trices {A},_1_6: Cty—1-t» —CGty-1-tVity-1-1, Gey~1-t — Vat =11, —Gy-1-tVayy -1ty ¢ =
to,... .ty —1; By }isgiven by {K _, | = Fy,—-Zy_¢=FP; t=tg, to+1,...,¢; - 1}.

This proposition describes the sense in which the Kalman filtering problem and the
optimal linear regulator problems are “dual” to one another. As we also saw in our discussion
of classical control and filiering methods, the very same equations arise in solving the filtering
problem as arise in solving the control problem. This fact implies that most everything that
we learn about the control problem applies to the filtering problem, and vice versa.

As an example of the use of duality, recall the transformations (2.13) and (2.14) that
we used to convert the optimal linear regulator problem with cross-products between states
and conlrols into an equivalent problem with no such cross-products. The preceding discus-
sion of duality and Table 1 suggest that the same transformation will convert the original
dual filtering problem which has nonzero covariance matrix 13 between stale noise and mea-
surement notse into an equivalent problem with covariances zerc. Tlus hunch 1s correct.
The transformations, which can be obtained by duality directly from (2.13)-(2.14), are for
t=tg,....t — L

;1':.—1—: = A'tl-l—t - C:|—1—:1’r2?1l—1—11’;t1—1—:G:1—1—t
~Vit—1mt = ~Vig—1oe + Vag oo Vi Lo Vi, 1
The Kalman filtering problem defined by the matrices {4;, Cy, —=GiViy—Vap, 0; t = tg, ..., t)—

1; Lo} is equivalent to the original problem in the sense that

Ay - K\Cy = A - K,C,
where K, is the solution of the transformed problem. We also have, by the results for the
regulator problem and duality, that

Ky = Ky — GeVaVy '
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7. Examples of Kalman Filtering

This section contains several examples which have been widely used by economists and
that fit into the Kalman filtering setting. After the reader has worked through our examaples,

no doubt many other examples will recur to her or him.

a. Vector autoregression: We consider an (n x 1) stochastic process y; that obeys the linear

stochastic difference equation
=A1yi-1+ ...+ An¥t-m + &

where €, 1s an (% x 1) vector white noise, with mean zero and Eew; = Wy, Esty; =0,1t>s.

We define the state vector z; and shock vector w; as

Y1
2, = yt'—Z , [w“_;_]] — (61) ]
: Wy €t
Yt—m

The law of motion of the system then becomes

Al Ag Am Yi-1 I
y! 1 oo 0 Yi-2 0]
yt 2 e 0 Yi-3 = O £r.
I

Ytemy1

The measurement equation is
Yt = [Al Az...Am]xg+Et-

For the filtering equations, we have

Ay Ay ... Ap I

I o ... ¢ 0
A=|o 1 ... o] G =c=]|0
| o 1o :
Ct.:[.‘ll,...,An]

Vig = 13 = 13,
Starting from ¥, = 0, which means that the system is imagined to start up with m lagged

values of y having been observed, (5.35) imples

Kln = G,
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while (.16) implies that ;41 = 0. It follows recursively that K; = G for all ¢t > to and that"
¢ = 0 for all t > to. Computing (A — KC), we find that

o 0 ... 0 !
I 0 0 0
Eng.] = |0 I 0 Et—lxt + | Y
0 I o 0
which is equivalent with
Yt
= Yi—1
Eyziyy = .
Yi-m

The equation E,y;4; = CEyz¢4, becomes

Eyir1 = Aiye + Aaye1+ - .. Am¥t—ma1-

Evidently, the preceding equation for forecasting a vector autoregressive process can be

obtained in a much less roundabout manner, with no need to use the Kalman filter.

b. Univariate mouving average: We consider the model
Yt=wi+cqwi_1 + ...+ CaWi_n

where w; is a univariate white noise with mean zero and variance V};. We write the model

in the state-space form

wy 0o 0 ... 0 wi— 1
wy-1 1 0 ... 0 wi-2 0

Tiyl = . = 1. : o : ; + .| we
'[Ut__n+1 0 At ]. 0 Wi_n U

ye = [c1 ca... calzy + Wy
We assume that I,, = 0, so that the initial state is known. In this setup, we have A, G and
C as indicated above, and wy¢41 = wy, wyy = wy and V) = V5 = V3. Iterating on the Kalman

filtering equations (2.38) and (2.35) with £(tg) = 0, we obtain £, =0, t > ¢to, K, =G, t >

to, and
i | - L9 —Cn-—1 —Cn
1 0 ... 0 0
(A<KkC)=| 0o 1 ... 0o o0
0 0 1 0



It follows that

—C€1 —C2 —Cn—-1 —Cn
23 10 ... 0 0 o :]
Eng_l = Et = 0 1 .ee 0 0 g . + ‘ Y
wo) Lo o ) el

With Iy, = 0, the above equation implies
Bowy = y1 — ciwi—g — ... — caWyin.
Thus the innovation wy is recoverable from knowledge of y; and n past innovations.

c. Mized moving average-autoregression: We consider the univariate, mixed second-order

autoregression, first-order moving average process
¥t = A1ye-1 + Aayi—2 + vi + Bivey

where vy is a white noise with mean zero, Ev? = V; and Evy(s) = 0 for s < t. The trick
is getting this system into the state-space form is to define the state variables zy, = y; — vy,

and z3; = Azyi—1. With these definitions the system and measurement equations become

(2.48) Tepy = (j; [1}) 2(t) + (B‘LA‘ ) i

(249) Yt = [1 0]1:: + vy.

Notice that using (2.48) and (2.49) repeatedly, we have
Yo =2y + v = Az + 21 + (Br + Ayveey + v
= Ai(z1t—1 + vi—1) + ve + Bivey + Az(z1e-2 + vi-2)
= Arye-1 + Agyi—2 + v + Bive—y
as desired. With the system and measurement equations (2.48) and (2.49), we have |} =

Vo = V3,

1= (i 3)e=(Pih) c-n

We start the system off with ;) = 0, so that the initial state is imagained to be known.
With Z;, = 0, recursions on (2.35) and (2.38) imply that £; = 0 for ¢t > tq and K; = G for
t > ty. Computing A — KC we find

(a-k0)= (" )
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and we have

K=G=(31+Al).

Ay

Therefore the recursive prediction equations become

Ewyi41 = [1 0]Ey—yz¢ = E¢_1214.
Recalling that z3; = Ayy;_1, the preceding two equations imply that
(2.50) Ewyiy1 = —B1Ee1ye + A2ye—1 + (Br + Ar)ye.

Consider the special case in which Az = 0, so that the y; obeys a first order moving average,

first order autoregressive process. In this case (2.50) can be expressed

Ewyis1 = Bi(yt — Ev—1yt) + Ay,

which is a version of the Cagan-Friedman “error-learning” model. The solution of the above
difference equation for Eyy;4 is given by the geometric distributed lag

m—1

Ees1 = (Bi+ A1) Y (- B1)ye—;
i=0

+ (=B1)" Et—m-1Yt-m.

For the more general case depicted in (c) with A; # 0, Eyy;4; can be expressed as a convo-

lution of two geometric lag distributions in current and past y,’s.

d. Linear Regressions: Consider the standard linear regression model
nw=zB+¢€, t=12,...,T

where Z, is a 1 X n vector of independent variables, 3 is an n x 1 vector of parameters, and
€¢ is a random term with mean zero and variance Eef = o2, and satisfying Ee,Z, = 0 for
t > s. The least squares estimator of 3 based on t observations, denoted By is obtained as

follows. Define the stacked vectors

z1] v1
Z = 2
Z: = :2 5 }'g = y
Zy Yt
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Then the least squares estimator based on data through time ¢ is given by
(2.51) Busr = (2,2)7' Z,Y,

with co;ariance matrix

(2.52) E(Bis1 = EBis1)(Busr — EBi) = 0*(212,) 7"

For reference, we note that
Bt = (21-124-1)7'2y_\Yis
E(Bl = Eﬂt)(ﬁt = Eﬁt)' = Uz(z:_lzt—l)_l-

If 3; has been computed via (e), it is computationally inefficient to compute Bisy via (2.51)
when new data (yi, 2¢) arrive at time t. In particular, we can avoid inventing the matrix
(Z2{Z;) directly, by employing a recursive procedure for inverting it. This approach can be
veiwed as an application of the Kalman filter. We explore this connection briefly.

We begin by noting how least squares estimators can be computed recursively via the
Kalman filter. We let y; in the Kalman filter be y; in the regression model. We then set
zy=fforallt, Viy =0, V3y =0, Voy = 0%, wyyy1 =0, wyy =€y, A= I, Cy = z;. Let

6:+1 =E [5 | yhyt—ls---ylaztazt—ln---:zhbo] )

where Bo is £g. Also, let Iy = E(ﬂt - Eﬁt)(ﬁg - EB;)'. We start things off with a “prior”
covariance matrix Zg. With these definitions, the recursive formulas (2.35) and (2.38) become

Kt - 212:(02 -+ Zgng;)_l
(2.53)
2¢+1 = Z, == Egz:(dz + ZgEgz;)-IZng
Applying the formula z;,,y = (A — K{C;)z¢ + Ky to the present problem with the above

formula for K; we have
(2.54) Bis1 = (I — Kize)Be + K.

We now show how (2.53) and (2.54) can be derived directly form (2.51) and (2.52). From

a matrtix inversion formula (see Noble and Daniel [ |, p. 194]), we have that

(2.85) (2:2:) ! = (24_120-1) 7" = (24_1Ze-1) " 21 + 2421 2} 1) 2) 2 20 Ze1)
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Multiplying both sides of (2.55) by o immediately gives (2.53). Use the right side of (2.55)
to substitute for (Z;2;)~" in (2.51) and write

2V = Zi_ Y1 + 2

to obtain 1
Bt+1 = ;{Ec — Tizl(o? + 2e542)) " 254}

{Zi-1Ye-1 + 2y}
—IEZ'Y Byzy(o? Xz3) "} 1EZ'Y
= o U ez4(o "f'jt t24) & g3 =141

— C -~
Be Kt ¢ Be

+ZiZy(0? + 2512y) " v
K.

ﬁt+1 =(A- KtC:)Bt + Ky

These formulas are evidently equivalent with those asserted above.
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Computer Example: Using the Linear Regulator to Compute the
Equilibrium of a Lucas-Prescott Model

This section reports the results of running the MATLAB program longiucd.m. This
program computes the equilibrium of a linear quadratic version of Lucas and Prescott’s
model of investment under uncertainty. The program uses Lucas and Prescott’s device of
exploiting the fact that the rational expectations equilibrium of their model solves a fictitious
social planning problem. For the linear quadratic version of their model (see, e.g., Sargent
{1987, chapter XIV]), the social planning problem is a linear regulator problem. The program
maps the social planning problem into a linear regulator. It uses & “doubling algorithm” to
solve the problem.

You can edit this file and rerun the program in MATLAB to see how the equilibrium
is sensitive to the specification of various demand and cost parameters. Here follows the

output that appears on the screen in response to the command “longluc4”.
longluc4

echo on

cla

This demonstration computes the solution of the social planning problem associated with a
linear-quadratic version of Lucas and Prescott’s 1971 model of investment under uncertainty.

The model is altered to allow for a Romer externality.

There is a linear demand curve for ocutput
p(t)=A(1) - A(2)*Y(t) + u{t)

where p(t) is price, Y(t} is output and uft) is a random shock to demand with an autore-
gressive process

u(t) = au(1}*u(t-1) + . . . + au(r)”u(t-r} + eu(t)
where eu(t) is 2 white noise, and [au(l) . . . au(r}] is to be specified by the user.

The rental rate on capital w(t) also follows an rth order autoregression,

wit) = aw(1)*w(t-1) + . . . + aw(r)*w(t-r) + ew(t)
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where ew(t) is a white noise, and [aw(1) . . . aw(r)] is to be specified.
pause /ipress a key to continue the demonstration
cla

There are n identical firms. Each firm has production function
y(t) = f(1)*k(t) + (2)*K(t)

where k(t) is capital of the representative firm and K(t)=n*k(t) is aggregate capital. We
have Y(t)=n*y(t). Notice that aggregate output obeys

Y(t) = T*K(t)

where fi= (1) + n*{(2). When f(2) is not zero, there is an externality.
pause Jpress any key to continue the demonstration
cla

There is a fictitious social planner who chooses aggregate capital to maximize

T
Tlim 2 E " {consumer surplus(t) - producer surplus(t)}
g =0

where consumer surplus is given by
A1) (L) - (A(2)/2)*(FPK(4))? + u(t)*A*K(t)
and where producer surplus is given by

w(t)*K(t) - (d/20)*(K(t)-K(t-1))’

pause /ipress a key to continue with the demonstration
cla

We'll set parameter values and then compute the equilibrium by mapping the social planning

problem into a linear regulator.
pause /ipress a key to start setting parameter values
cla
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A=[100 1] ,f=[1 .1],n=1
A=
i00 1

1.0000 0.1000

d=256
d =
25
pause /press a key to set remaining parameters
cla
au=[1.2 -.3]
au =
1.2000 -0.3000
aw=[.9 0]
aw =
0.9000 0
pause ipress a key to continue
cla

We proceed to form the matrices (a,B,Q,R) for the linear regulator problem. The STATE
vector is defined as x(t) = [K(t),1,u(t),u(t-1),w(t),w(t-1)]’, and the CONTROL is defined as
v(t)=(K(t)-K(t-1)). The transition matrix is called a and created as follows.

pause /press a key to create the transition matrix a.
cla.

ff=f(1)+n=*£(2);

q=length(au);

m=2%q+2;
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a=zeros(m,m) ;

a(1,1)=1;

a(2,2)=1;

a(3:2+q,:)=[zeros(q,2),compn(au) ,zeros(q,q)];
a(3+q:m,:) =[zeros(q,2),zeros(q,q),compn(aw)];

a
a=
1.0000 0 0 0 0 0
0 1.0000 0 0 0 o0
0 0 1.2000 -0.3000 0 0
0 0 1.0000 0 0 0
0 0 0 0 09000 O
0 0 0 0 1.0000 O
pause #Press a key to create B of the regulator.

B=zeros(m,1);
B(1,1)=1
B =

o © o ©o o

pause %press a key to continue

cla
Now create R and Q of the regulator, where the regulator has the form

l o0
maxTIi_.mOIQ Ef g: { x*Q*x + v'*R*v }
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subject to the law of motion

x(t+1) = a*x(t) + B*v(t) + white noise(t+1)

state='[K(t-1),1,u(t),u(t-1),w(t),w(t-1)]"’
state =
[K(t-1),1,u(t) ,u(t-1) ,w(t),w(t-1)]
pause
cla
=-d/(2#%n);
Q=zeros(m,m) ;

Q(1,1)=-(££2)*A(2)/2

o O Q o o o
o O O o o o
o o O o o o
o o o o o o
o o o o o o

0
0
0
0

Q(1,2)=A(1)*££/2;
Q(2,1)=A(1)*££/2;
Q(1,4)=££/2;
Q(4,1)=££/2;
Q(1,4+q)=-1/2;
Q(4+q,1)=-1/2;
pause %press a key to give a and B
a
a=
1.0000 0 0 0 0 0
0  1.0000 0 0 0 0
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0 0 1.2000 -0.3000 0 o
0 0 1.0000 0 0 0
0 0 0 0 0.9000 O
0 0 0 0 1.0000 0
B
B =
1
0
0
0
0
0
pause %ipress a key to give R and Q
Q
Q =
-0.6050 55.0000 0 0.5500 0 -0.5000
55.0000 0 o 0 0 0
0 0 O 0 0 0
0.5500 0 0 0 0 0
0 0 0 0 0 0
-0.5000 0 0 0 0 0
R
R =
-12.5000
pause %Now solve the regulator problem.
F=double(a’,B’,Q,R); %Working, please wait.
% DONE.

pause %iPress a key to continue

53



The equilibrium control law for v(t) = K(t)-K(t-1) is given
K(t)-K(t-1) = -F*x(t)

The state x(t) is given by state

state =

(K(t-1),1,u(t) ,ult-1),w(t),w(t-1)]

pause #Press a key to see the optimal value of F
F=F’

F =

0.1971 -17.9206 -0.1536 0.0370 0.1158 0

The optimal “closed loop” system is given by

x(t+1) = (a-B*F) * x(t) + white noise(t+1)

pause press a key to see ABF = (a -B*F)
ABF=a-B*F
ABF =

0.8029  17.9206 0.1536 -0.0370 -0.1158 0
0 1.0000 0 0 0 o
0 0 1.2000 -0.3000 0 0
0 0  1.0000 0 0 0
0 0 0 0 0.9000 - 0
0 0 0 0 1.0000 0
state
state =
(K(t-1),1,u(t) ,u(t-1),w(t),w(t-1)]
pause /ipress a key see eigenvalues of ABF
cla
eig (ABF)
ans =
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0.8029
0.3551
0.8449
1.0000
0

0.9000

pause /ipress a key to return to menu

This is the end of the output of “longlucd”.
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Computer Example: Using the Kalman Filter to Solve
a Problem of Muth

This section reports the results of using the MATLAB program muthdeml.m. The program
maps a classic signal extraction problem of Muth into the framework of the Kalman filter.
The “doubling algorithm” is used to solve the matrix Ricatti equation that is associated

with the Kalman filter.

The output response of the computer to the command “muthdem1” is now reproduced.
muthdeml

echo on

cla

This demonstration solves a signal extraction problem studied by Muth in order to rationalize

“adaptive” expectations.

There is a hidden state variable x(t) that evolves accordiﬁg to an autoregressive process
x(t4+1) = A * x(t) + e(t+1)

where A is a scalar (which Muth set equal to one) and e(t+1) is a white noise that is

orthogonal to x(t). An agent observes a variable y(t), which is the sum of x(t) and a white

noise:
y(t) = x(t) + u(t)
where E u(s)x(t)= 0 for all t and s. The variance of e(t+1) is given by Q and the variance
of u(t) is given by R.
The problem is to find a (Wold) moving a.verag;: representation for the observed variable

y(t). We accomplish this by using the “Kalman filter”.
pause Press a key to continue demonstration
cla

We use the Kalman filter to obtain an “innovations representation” of the form

xx(t+1) = A*xx(t) + K*a(t)
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y(t) = xx(t) + a(t)

where xx(t) is E[x(t)—y(t),y(t-1), . . . , y(¢(0)),xx(0)] a(t) is the one-step ahead prediction
error in y(t), the so-called “innovation in y(t)”, and K is the Kalman gain. From the
innovations representation, which is a state space representation, we can obtain an a.r.m.a.

representation for y(t) of the form
den(L)y(t) = num(L)a(t)

where den(L) and num(L) are scalar polynomials in the lag operator L.
pause ipress a key to continue

cla

You will be prompted for values of the parameters A, Q, and R.

NOTE: To obtain Muth’s case, set A=1, so that the hidden signal follows a “random walk.”

A=input(’A= ’)

C=1;
Q=input(’give variance of state noise Q')
give variance of state noise (
Q=
1
R=input(’5ivo‘variancc of measurement noise R')
give variance of measurement noise R
R =
1
[K,s]=double(A,C,Q,R);
pause Jpress a key to continue

cla
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The value of the Kalman gain is given by

K
K =
0.6180

The variance of the innovation a(t) in predicting y linearly from past values of y is given by
8
B =
1.6180

ause YPress a key to continue
P y

cla

Now we’ll give the a.r.m.a. representation for y(t)
den(L)y(t) = num(L)a(t)

Coeflicients on L of power 0, 1, 2, . . . . [num,den|=ss2t{(A,K,C,1,1)

num =
1.0000 -0.3820
den =
1 -1
pause “press a key to continue demonstration

cla

Muth showed that for a process of the form

(1-L)y(t) = (1-bLa(t)

where a(t) is the innovation in y(t), the optimal one step ahead prediction of y(t+j) for j >

0 based on [y(t), y(t-1),. . . | is given by a geometric distributed lag
Ely(t+i)—=y(t), y(t-1), . . J= (1-b)* 3 {b** y(t-k)}
k=0
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We invite you to experiment with this demonstration by varying Q and R while keeping
A fixed (say at Muth’s value of unity). In this way you can see the dependence of the
parameters of the a.r.m.a. representation for y(t) on the ratio of Q to R.

pause '/;press a key to return to menu

This terminates the output of “muthdeml1”. You can edit this file to solve signal extraction
4

problems of your creation.
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Computer Example: Using the Kalman Filter to Extract a Signal

From a Signal Plus a Seasonal Noise

This section reports output from the MATLAB program recurseas.m. This program maps
into the Kalman filter the problem of extracting the “signal” from the sum of a signal and
a seasonal “noise”. The doubling algorithm is used to solve the Ricatii equation associated

with the Kalman filter.

The response to issuing the command “recurseas” is as follows.

recurseas
echo on

cla

USING THE KALMAN FILTER TO SEASONALLY ADJUST

NOTE: This demonstration takes several minutes, because relative to “classical” seasonal
adjustment procedures, the ones used here substitute brute force and the Kalman filter for
thought. If you have a train to catch, kill this demo by hitting “Ctrl,Break” and try another

demo.

A reference for the techniques used here is Sargent’s “Linear Control, Filtering, and Rational

Expectations.”

pause APress a key to proceed with demonstration.

cla

This program uses the Kalman filter to solve a “seasonal adjustment” problem that comes

in the form of a signal extraction problem.

An observed process y(t) is the sum of three components:

a.) A “signal” f(1) that follows an autoregressive process

f(t) = al(1)"f(t-1) + . + al(m)*y(t-m) + el(t)
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where el(t) is a white noise with variance sigl.

b:) A “seasonal noise” s(t) that follows an a.r. process
s(t) = a2(1)*s(t-1) + ... + a2(r)*s(t-r) + e2(t)
where e2(t) is a white noise with variance sig2.

c.) A “measurement error” e3(t) which is a white noise with variance sig3.

NOTE: To approximate the case in which y(t) = f(t) + s(t), set sig3 equal to a very small

positive number. The goal is to compute the linear least squares estimate
E[f(t) — y(t-1), y(t-2), .. . ].

pause 4Press a key to continue

cla

We solve the problem by mapping the system into state space notation, namely,
x(t+1) = A * x(t) + e(t)

y(t) = C* x(t) + v(t)

where x(t) is an (nx1) state vector and y(t) is a (kx1) vector of observations (in our example,
k=1). The vector e(t) is an (nx1) vector white noise with covariance matrix Ee(t)e(t)'=Q.
The vector v(t) is a (kx1) vector white noise which is orthogonal to e(s) for all t and s, and

which has covariance matrix R.

For our example, the state vector x(t) will be given by
x(t) = [f(t) {(t-1) ... f(t-m) s(t) s(t-1) ... s(t-r))’

while y(t) is simply the scalar observed variable.

pause 4Press a key to set parameters of a.r. processes
cla

ai=(.9 0 0 0 0]

al =
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0.9000 0 0 0 0
a2=[0 0 0 .9]
a2 =

0 0 0 0.9000

pause WPress a key to form A matrix of state space representation

cla

Al=compn(al);

A2=compn (a2) ;
[n,n1]=size(A1);[m,mi]=size(A2);
gl=zeros(n,m);

A=[A1,g1;g1’,A2]

A=

Columns 1 through 7

0.9000 0 0 0 0 0
1.0000 0 0 0 0 0
0  1.0000 0 0 0 0
0 0  1.0000 0 0 0
0 0 0 1.0000 O 0
0 0 0 0 0 0
0 0 0 0 0 1.0000
0 0 0 0 0 0
0 0 0 0 0 0

Columns 8 through 9
0
0
0
0
0

0.9000
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0
0
1.0000

pause

cla

0
0
0

WPress a key to form C.

C=zeros(1,n+m);

c(1,1)=1;
C(1,n+1)=1
C =
1 0 0 0 0 1 0 0 O
pause %Press a key to set variance parameters and form R and Q
cla .
Q=zeros(n+m) ;
Q(1,1)=1;
Q(n+1,n+1)=1
Q =
1 0 0 O O O 0 o0 o0
0 0 0 0 0 0 0 0 0
6o 0 0 0 0 O O 0 O
o 0 0 0 O O 0 0 O
6 o o o O O O o0 O
o o0 o0 o0 O 1 0 0 0
0o 0 0 0 O O O 0 o0
0o 0 o0 0o O O 0O O O
o 0 0 0O O 0 0 0 O
R=.0001;
pause A\Press a key to continue demonstration
cla
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Now we'll use the Kalman filter to achieve the “innovations representation”
x(t+1) = (A -K*C)*x(t) + K*a(t)
y(t) = C*x(t) + a(t)
where a(t) = E[y(t) — y(t-1), y(t-2), ... ], and K is the “Kalman gain”. The proc-:ess a(t) is
the is the “innovation” in the y(t) process and has variance given by vara=C*S*C’, where S
is the covariance matrix of x(t+1) - x(t+1). The variable x(t+1) is the linear least squares
projection

x(t+1) = E[x(t+1) — y(t), y(t-1), ... ].

pause #Press a key to compute K and S using the Kalman filter.
cla
[K,S]=double(A,C,Q,R); AWorking, please wait
pause %Press a key to see Kalman gain K
K
K =
0.4630
0.5144
0.1785
0.0422
-0.0442
0.0397
0.4856
-0.1785
-0.0422
pause “Press a key to see state estimate covariance matrix
S
S =

Columns 1 through 7

2.0743 1.1937 0.8407 0.7014 0.6891  -0.6202 -1.1936
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1.1937 1.3263 0.9341 0.7794 0.7656  -0.6891  -1.3263
0.8407 0.9341 1.2362 0.9128 0.8017 -0.7215  -0.9341
0.7014 . 0.7794 0.9128 1.2312 0.9181 -0.8263  -0.7794
0.6891 0.7656 0.8017 0.9181 1.2257  -1.1031  -0.7657
-0.6202 -0.6891  -0.7215 -0.8263  -1.1031 1.9928 0.6891
-1.1936  -1.3263  -0.9341 -0.7794  -0.7657 0.6891 1.3263
-0.8407  -0.9341  -1.2362 -0.9128  -0.8016 0.7215 0.9341
-0.7014  -0.7794  -0.9128 -1.2312  -0.9181 0.8263 0.7794

Columns 8 through 9

-0.8407  -0.7014
-0.9341  -0.7794
-1.2362  -0.9128
-0.9128  -1.2312
-0.8016  -0.9181
0.7215 0.8263
0.9341 0.7794
1.2362 0.9128
0.9128 1.2312

pause #Press a key to see variance of innovation to y.

vara=C*5x*C’

vara =

2.8268

pause %Press a key to continue demonstration

cla
Notice that the innovations representation can be written

x(t+1) = A*x(t) + K*a(t)
y(t) = C*x(t) + a(t)

This is equivalent with a Wold moving average representation for y(t), which we can represent
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in the rational form

denl(L)y(t) = num1(L)a(t)

pause 4Press a key to create numi and deni.
[numi,deni]=ss2tf(A,K,C,1,1); pause %Press a key to see numi
numi

numi =

Columns 1 through 7
1.0000 -0.3973 -0.0737 -0.1265 -0.3184 0.0000 0

Columns 8 through 10

0 0 0
pause \Press a key to see deni
deni
deni =

Columns 1 through 7
1.0000 -0.9000 -0.0000 0.0000 -0.9000 0.8100 0

Columns 8 through 10
0 0 0

pause \Press a key to continue demonstration

cla

We now calculate the spectrum of the filter num1(L)/denl(L).

pause \Press a key to continue

st='spectrum of y(t) with unit variance of a(t)’
st =

spectrum of y(t) with unit variance of a(t)
sp=show(numi,deni,256,st);

See Figure 1
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Spectrum of y(t) with unit variance of a(t)
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pause “Press a key to continue

cla

Now we shall obtain the impulse response of x(t+1) to y(t). We rewrite the innovations

representation as

x(t+1) = (A - K*C) x(t) + Ky(t)
x(t) = eye*x(t) + zeros * y(t)
We'll form the appropriate matrices, then use ss2tf to get a vector representation for x(t+1)

of the form

den(L)x(t+1) = num(L) y(t)
where den(L) is a scalar polynomial in the lag operator and num(L) is a vector polynomial
in the lag operator, with as many rows as components of x(t+1).

Notice that den(L) and num(L) contain all the -information that we need to form each
component of E[x(t+1)—y(t),...] Note that the first several components of E[x(t+1)—y(t),...]
are E[f(t+1)—y(t),...], E[f(t)—y(t),...], E[f(t-1)—y(t),...], and so on. The lower rows of
E[x(t+1)—y(t),...] thus correspond to finite two-sided seasonally adjusted series.

pause “iPress a key to form num and den
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cla

Ci= eye(n+m);Di=zeros(n+m,1);

(num,den]=ss2tf (A-K*C,K,C1,D1,1);% Working, please wait
pause %iPress a key to see num

num

num =

Columns 1 through 7

0 0.4630 0.0000 0.0000 -0.0000 -0.4167 0
0 0.5144  -0.0000 -0.0000 0 -0.4630 -0.0000
0 0.1785 0.3537  -0.0000 0.0000 -0.1607  -0.3184
0 0.0422 0.1405 0.3537  -0.0000 -0.0380 -0.1265
0 -0.0442 0.0819 0.1405 0.3537 . 0.0397  -0.0737
0 0.0397  -0.0737  -0.1265 0.5816  -0.3933 0
0 0.4856  -0.3973  -0.0737  -0.1265 0.1446
0 -0.1785 0.6462 -0.3973  -0.0737 0.0342
0 -0.0422 -0.1405 0.6462 -0.3973  -0.0358

o o o

Columns 8 through 10

0 0 0
0 0 0
-0.0000 0 0
-0.3184 0.0000 0

-0.1265 -0.3184  -0.0000

0 0 0
0 0 0
0 0 0
0 0 0
pause iPress a key to see den

den
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den =
Columns 1 through 7
1.0000 -0.3973 -0.0737 -0.1265 -0.3184 0.0000 O

Columns 8 through 10
0 0 0
pause WPress a key to continue

cla

We now construct the impulse response of the first component of x(t+1) to an innovation
in y(t). This is a representation for E[f(t+1)—y(t),...] in terms of a(t),a(t-1).... Notice from

the innovations representation
x(t+1) = A*x(t) + K*a(t)

that the spectrum of the first component of x(t+1) is proportional to that of the first com-
ponent of x(t+1). This follows from the whiteness of a(t).

pause %“Press a key to form the representation
num2=conv (numi ,num(1,:));
den2=conv(deni,den) ;
pause %Press a key to see num2
num2
num2 =
Columns 1 through 7
0 0.4630 -0.1839 -0.0341 -0.0586 -0.5641 0.1656
Columns 8 through 14
0.0307 0.0527 0.1327 -0.0000 0 0 O

Columns 15 through 19
0 0 0 0 0
pause %Press a key to see den2
den2

den2 =
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Columns 1 through 7
1.0000 -1.2973 0.2839 -0.0601 -1.1046 1.4542 -0.2555

Columns 8 through 14
0.0541 0.1841 -0.2579 0.0000 0 0 0

Columns 15 through 19
0 0 0 0 0
pause \Press a key to plot spectrum of filter
st='spectrum of E[f(t+1)|y(t),y(t-1),...]"
st =
spectrum of E[f(t+1) |y(t),y(t-1),...]
See Figure 2
Spectrum of E[f(t+1)|y(t), y(t-1),. . .]
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spi=show(num2,den2,256,st);
pause %Press key to continue

cla

We now construct the impulse response of the nth component of x(t+1) (i.e. E[f(t-
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n+1)—y(t), y(t-1),...]} to innovations a(t) in y(t}. Notice that this is a finitely two sided
signal extraction of f(t-n+1) based on past, present, and several future values of y(t}. Because
of the two-sidedness, there can occur “dips” in the spectral density of the seasonally adjusted

process.

numd=conv (numi ,numin,:));

pause %Press a key to plot spectrum
st='spectrum of E[f(t-n+1}}y(t),y(%-1),...]"?
st =

spectrum of E[(f(t-n+1) |y (t),y(t-1),...]
[sp3,ftf]=show(num3,den2,256,st);

See Figure 3

Spectrum of E[f(t—n+1)|y(t),y(t-1), . - ]
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pauss %Press a key to continue

cla

mm=[spi’, sp3’'];

st="spectra of one-sided and two-sided estimators of f(t)"
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8t =
spectra of one-sided and two-sided estimators of f(t)
semilogy (£ff,mm) ,title(st) ,pause

See Figure 4

Spectra of one-sided and two-sided estimators of f(t)
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cla

Now we calculate the zeros of the numerator polynomial in the representation
den2(L)E[f(t-n+1)—y(t),...] = num3(L) a(t)

r3=roots(num3); % Working, please wait
pause %Press a key to see the roots
cla
r3
3 =

0

0

T2



0

0

3.4504

-0.7977 + 1.2983:
-0.7977 - 1.2983i
0.9740

0.9645

-0.9740

0.0000 + 0.9740i
0.0000 - 0.9?40i
0.0350 + 0.7189:
0.0350 - 0.7189i
-0.6373

0.0001

-0.0000

pause Notice location of roots relative to one. Press key
cla

NOTE: We have calculated the zeros of num3(z(-1)), which are the reciprocals of the zeros
of num3(z). The “invertibility” condition is that the zeros of num3(z) be outside the unit

circle,or that the zeros of num3(z(-1)) be inside the unit circle.

It is possible for some of these zeros to be outside the unit circle, reflecting the signal
extraction version of the “invertibility problem” in rational expectations models discussed

by Hansen and Sargent (1980)
pause %Press a key to return to menu

This concludes the output of “recurseas”. You can edit this file to create and solve your own

signal extraction problems.
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Appendix to Chapter 2

For reference we state the following theorems about linear least squares projections. We
let Y be an (n x 1) vector of random variables and X be a (h x 1) vector of random variables.

We assume that the following first and second moments exist:
EY =py, EX = EX = px,
EXX'=Sxx, EYY' = Syy, EYX' = Syx.

Lettingz = X — EX, y =Y — EY, we define the following covariance matrices
Ezz' = %,,, E;y = By By’ =3,

We are concerned with estimating Y as a linear function of X. The estimator of Y
which 1s a linear function of X and which minimizes the mean squared error between each

component Y and its estimate is called the “linear projection of Y on X.”

Definition A.1: The linear projection of Y on X is the affine function ¥ = AX + aq which
minimized E trace {(Y — Y )(Y — Y)'} over all affine functions ag + AX of X. We denote
this linear projection as E[Y | X], or sometimes as E [Y | z, 1] to emphasize that a constant
is included in the “information set”.

The linear projection of ¥ on X, E[Y | X] is also sometimes called the “wide sense

expectation of Y conditional on X". We have

Theorem A.1l:

(A1) EY | X] = py + g2 270X - p2).

Proof:

The theorem follows immediately by writing out E trace (Y —Y)(Y —Y)', and completing
the square, or else by writing out E trace (Y —Y)(Y —Y)' and obtaining first-order necessary

conditions (“normal equations”) and solving them. |

Theorem A.2: (Orthogonality Principle):

E[(Y -EY(z))| X'| =0
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This states that the errors from the projection are orthogonal to each variable included in
X
Proof: Immediate from the normal equations. |

Theorem A.3:

(orthogonal regressions): Suppose that X' = (X1, X3,...,Xn),p' = (Bz1,..-,zn) and
that E(z; — pzj) = 0 for ¢ # j. Then

(42)  E[Y|=zi,...,an, | =E[Y |21 + E[Y | z2] +... + E[Y | za] — (n — 1)py

Proof: Note that from the hypothesis of orthogonal regressors, the matrix I, is diagonal.

Applying Al then gives (A2). |
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Chapter 3

Controllability and Stabilizability

1. Introduction.

We shall eventually end up devoting most of our attention to optimal linear t:egulator
problems that are time invariant, that is, problems for which the matrices R,Q, and W
defining returns and the matrices A and B defining the transition law are all constant over
time. For such time invariant problems, it will be of interest to have conditions that are
sufficient to assure the following two outcomes: First, that iterates P; produced by the matrix
Ricatti difference equation converge; and second, when the matrix Ricatti difference equation
does converge, that the optimal time invariant closed loop system z;4y = (A — BF)z, is
stable. |

In this chapter and the next, we introduce the concepts of controllability and recon-
structibility. [t is in terms of these concepts that the desired convergence and stability
theorems for the invariant linear regnlator problem can be obtained. Roughly speaking,
these concepts contribute to establishing stability of the optimal closed loop system in the
following way. The optimal closed loop system z441 = (A — BP)z; will evidently be stable
if it is both desirable and feastble to stablize the system through the application of feedback
control. The concept of controllability and its specialization, the concept of stabilizability,
tell whether or not A and B make it feasible to stabilize the system. The concepts of recon-
structability and detectability describe whether R, (), and W are such that it 1s desirable to
stabilize the system. As we wade through the technical discussion of these concepts, it is
useful to keep in sight how concepts will eventually be used to determine the stability of the
system under the optimal control.

This chapter discusses the concepts of controllability and stabilizability. These concepts
convey numerous insights into the structure of linear quadratic optimal control problems,
as do the “dual” concepis of reconstructibility and detectability that are described in the

following chapter.!

! The “Appendix to Chapters 3-4" lists a few theorems on linear algebra that will be used in the text.
Applied Linear Algebra, second edition, by Ben Noble and James W. Daniel is one valuable reference on
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2. Controllability

We consider the linear time invariant system
(31) Ty41 = Azy+ Buy , t2> 1t

where z, is an (n x 1) vector of states, u; a (k x 1) vector of controls, A an (n x n) matrix
and B an (n x k) matrix. The matrices A and B are assumed to be independent of time.
A solution of the first order difference equation (3.1) with a given initial vector z; = z,, at

= tg can be calculated recursively. In particular, notice that
Ti42 = Aze41 + Bugyy = A(Azy + Buy) + Bugy

or

Ty = Azxg + B‘I‘IH.] + ABE; :
Proceeding recursively to x4, ; gives
Tiyy; = Ajzg + B‘u‘.g+,'_1 + AB‘ug.;.j_z + e F Aj_lBug X j 2 1.
This can be written
. o
(32) Tiyj = Alz, + L At Buyyi-y 321
i=l

or equivalently as

t—1
(3.3) zg=A""z, + Y A"V Bu, t=to+1,8+2, ...

s=tn

It is useful to express (3.2) in the matrix form

Up4j-1
(3.4) 2e4j = Alzy+[B AB ... ai-ig)| it
Uy
Here the partitioned maf,rix (B AB --- Ai~!B]is of dimension n x jk while the column
vector [“'H-j—l ”"Hj—z -+ uy]' is jk % 1. Equation (3.4) reveals how the solution z4; to the

these and other theorems.
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first order vector difference equation is the sum of A7z, which represents the effects of the
initial condition, and a linear combination of the columns of the matrix (B AB --. A/-18),
where the particular linear combination is determined by the vectors wey .1, weyj_2, -+, u,.
To see this explicitly, let (C); be the i** column of a matrix C. Let the i*® element of the

vector ug be uy ;. Then (3.4) can be written
zerj = Alzy + (Bl verjora + (Blassjorz + - + (Bewesj_re
(3.5) + (AB)1ttegj-2,0 + {AB)avegj22+ - + (ABhugpjop---
+ (A1 BYu 1 + (AT Blaugs + -+ (AT Bl

We now define the important concept of complete controllabslity.

Definition 3.1: The linear system z,,y = Az; + Bu, is said to be complelely controllable if
the state of the system can be transierred from the zero state at any initial time ¢ to any
terminal state z;, = £ € B™ within finite time (¢; — tq).

In other words, the system is completely controllable if and only if for any £, € R™ there
exists a t; > £y and a sequence uy,, Weyt1, -+, Uy —1 such that starting from z¢, = 0, the
system moves to z; at time ¢;.

It is useful to remark that the defimition implies that if the system 1s completely con-
trollable then it can be moved from any initial state ¢ at ¢y to any terminal state £, at )
within finite time, ¢; — #g. To verify this, let zg and z| be arbitrary points in R™ and suppose
that it is desired to transfer the system from z4 at ¢ to 2, at some £; > tg. If the system
is completely controllable, it can be moved {rom the zero state to any stale, in particular,
to the state £, — A"17! Fg within finite time, {; — tg. But {rom (3.1), the same sequence of
inputs that moves the system from zero to £, — A" ~" zg at ¢ = ¢, will also move the system
from zg to Z; at t = £;.

At this point, we remind the reader of the Cayley-Hamilton theorem, which states that
- evéry square matrix satisfies its characteristic equation. That is, write the characteristic
equation

|A-A|=0
in the form
GnA™ + a1 A 4 o = 0
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where the ¢;’s are scalar constants that depend on the elements of A. The Cayley-Hamilton

theorem states that

Pa A" + ¢n—1An_l +---+ @l =0.

Solving this equation for A™ gives
n—1 .
n
J:

where the g7’s are constants that are functions of the #;’s. Next notice that multiplying

both sides of (3.6) by A gives

Artl E g;'Aj'H
j=0
Using (3.6) to eliminate A™ from the right side of the above equation gives

-1
At = n‘; g;l+1AJ'

1=0

where the g;-‘““ are again scalars. Continuing in the same fashion, it is established that

(3.7) A =ﬂ)_;‘l giA | i>n

) =0
where the gj- are constants. Equation (3.7) expresses the i** integer power of A,i > n, as
a linear combination of the matrices [/, 4, ---, A®!|. Thus, the columns of the matrices
A', i > n, are linear combinations of the columns of I A -.. A"

Post multiplying each side of (3.7) by B gives
(3.8) A'B = ")f gy A’B |, i>n,
j=0
which shows that for i > n, the columns of A'B are linear combinations of the columns of
the matrix [B AB A?B --- A™"!B].
We are now in a position to state the following important theorem, which gives a char-

acterization of complete controllability.

Theorem 3.1: The n-dimensional time invariant linear system z441 = Az¢+ Bu is completely

controllable if and only if the column vectors of the “controllability matrix”

P=(B AB A’B ... A™!B)
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span the n dimensional space that is, if and only if the rank of P equals n.

Proof: We first prove that complete controllability implies that the rank of P equals n.

Repeating equation (3.2), the solution of the difference equation can be written

. I oq
zi4j = Alzy + Z A’™" Bugyioy, 321

1=1
Suppose z; = 0, which as we saw was not restrictive when we discussed the definition
of complete controllability. With z; equal zero, the terminal state z;;; is in the space
spanned by the column vectors of the sequence of matrices (B, AB, A?B, ---). But it is an
implication of (3.8) that this equals the space spanned by columns of the n x m - k matrix
P=(B AB A’B ... A™'B).

Thus, for all j, z44; isin the space spanned by the controllability matrix. If the columns
of the controllability matrix do not span the n-dimensional space, then only states in the
linear subspace spanned by P can be reached, which implies that the system is not completely
controllable. This proves that if the system is completely controllable, then the rank of P
equals n.

To prove the other direction of implication, suppose that the rank of P is n. Let us write

the solution (3.4) with j = n and z, = 0,

Ut4n—]
z4n=[B AB ... A™'B]|"
Uy
or
Ut4n-1
rg+n=P u£+.u—2
u,

We now set z¢4, = z;, where z, is an arbitrary point in R", and we inquire whether there

exists a vector [uj,,_,u} .o, -, us) such that
Ut4n-1
Ut4n-2
#i =P :
Uy
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or

T = Pu,

where
(3.9) U NSRRI T4 1

This question is equivalent with the question of whether the n x n - k matrix P possesses an
nk x n right inverse R which satisfies PR = I,.

Notice that if PR = I, then (3.9) implies that P& = z,, and (PR)z; = P(Rz,), so that
& = Rz, is a solution of (3.9). This proves that existence of a right inverse of P implies the
existence (but not the uniqueness) of a solution % to (3.9) for every z; € R™. From a theorem
in linear algebra (Noble and Daniel [, p. 97]) P has a right inverse if and only if the rank of
P equals n. Also, if the rank of P is n, then PP’ is nonsingular (Noble and Daniel [ ]). From
this fact, it can be directly verified that one right inverse of P is R = PT(PPT)~!. Thus, if
the rank of P equal n, there exists at least one sequence of controls [u} ,_q, Uyin_g, **+, up)
which drives the system from zero to z; in n time periods. Given a right inverse R of P,

such a sequence of controls can be computed from

Ult4n—]
(3.10) AT (Ray)
u

This proves that if the rank of P is n, then the system is completely controllable. This
completes the proof of the theorem. I

We remark that more has been proved then was stated in the theorem. In particular, we
have.provcd that if the system is completely controllable, then (3.9) or (3.10) implies that
it is possible to move the system from any initial state zo at g to any other state z; within

at most n periods.

The following definition will prove useful:

Definition 3.2: The controllable subspace of the linear time invariant system z,,; = Az, +
Buy is the linear subspace consisting of the states that can be reached from the zero state

in finite time.
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We immediately have the following theorem:

Theorem 3.2: The controllable subspace of the n-dimensional linear time invariant system

z;41 = Azy+ Bu,is the linear subspace spanned by the columns of the controllability matrix

P={B AB ... A™'B}.
Proof: The proof of this theorem is contained in the proof of theorem 3.1.
We shall uge the following theorem.

Theorem 3.3: The controllable subspace of the system z,,) = Azy + Bu; is tnvariant under

A; that s, if  is in the controllable subspace, Az is also in the controllable subspace.

Proof: Let the controllable subspace be denoted by C = R[B:AB:---:A""!B] where R(D)
denotes the range space of the matrix D. If ¢ is an element of the space C, then z is in the
space spanned by the column vectors of the controllability matrix P. Notice that if £ belongs |
to C, then Az is in the linear subspace spanned by column vectors of [AB A?B ... A"B].
Equation (3.8) implies that the column vectors of A™ B depend linearly on the column vectors
of P. Therefore, Az is an element of C. |

Heuristically, notice that if z belongs to C, we can drive the state from zero to z in at
most n periods. Having arrived at = at period ¢;, we can get to Az in period ¢; +1 by setting
uy, = 0. However, we can get to Az directly from zero faster, that is in at most n steps, as
the proof indicates.

We also have the following useful theorem.

Theorem 3.4: An initial state zp belonging to C at time t can be transferred to any terminal

state 23 in C in at most n periods.

Proof: Repeating the solution (3.2) for j = n gives
n I3
Tyon = Atz + Z A" Bugyioy.
=1
Now if z, belongs to C then 4"z, belongs to C by theorem 3.3. Further, the above equation
shows that any input sequence [u;, %441,. .., %4n—1] that transfers the zero state to z; — A" zq
also transfers zp to ;. Such an input sequence exists since 3 — A™zg 1s in the controllable

subspace C. |
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3. The Controllability Canonical Form

We now proceed to the construction of the controllability canonical form. This form will
be especially important for the class of economic models that we shall consider, since many
of them are naturally specified to be in controllability canonical form.

We consider the n dimensional linear time invariant system z,,, = Az, + Bug.v Let the
rank of the controllability matrix P = [B, AB,..., A" ! B] equal m < n. So the dimension

of the controllable subspace C' equals m < n. Choose any basis for C consisting of then z 1

column vectors e, €3,...,em. Let €niy,€m42,...,€n be (n —m) linearly independent n z 1
vectors which together with ey,...,en span the entire n-dimensional space. Form
T=(Ty, To)
where Ty = [e1; 5 &m)
Tz = (em41, ***) €n)

Now introduce the transformed state vector

(3.11) Tz, ==z, .

Substituting (3.11) into the state difference equation gives
Tzy,, = ATz, + Bu,

or

(3.12) 24,y =T 'ATzi + T~ ' By, .

Now partition ! as

-1 _ Ul
S Uz]

where U) is m x n and U3 is an (n — m) x n matrix. Then we have

i [Uy _ [UTy U,TZ]_ Im 0 ]
] T‘[Uz](T‘T”“[Um e B

This implies that U; T} = 0. Recall that T is composed of vectors e;, ..., e, that span the
controllable subspace. Then the equality UT} = 0 implies that Uz = 0 for any vector =

belonging to the controllable subspace C. That is, if z belongs to C then it can be written
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as ¢ = Ty for some m x 1 vector y. So we have Uzz = U;T)y = 0, as an implication of

U,Ty = 0. Thus we have
(313) Uzz =0

for any z belonging to C.
With the prcceding' partitioning of T and U, we can write

) _ U1AT1 U]AT2]
L [UzAT1 Ua AT,
1. [B
T B_[UZB .

By construction, all columns of T are in the controllable subspace C. Since the controllable
subspace is invariant under A by theorem3.3, all columns of AT; are also in C. It then
follows from (3.13) that

U2 AT, = 0.

The columns of B are obviously in the controllable subspace, since B belongs to P. Therefore,
we also have

U B =0.

Thus, we have established that (3.12) assumes the form

Tit41 Ah A'lz] [T'n] [B;]
3.14 -
(3:34) [zzc-n] [U 22 ] LZh tlof™

or

r 1 '
Ty = Az, + By

where A}, = UyAT), Al = U1ATy, Ay, = UpATy, B} = UyB, A' = T-'AT,B'

T-1B,z!, is an (m x 1) vector and z%, is an (n — m) x 1 vector.

]

Equation (3.14) is called the controllability canonical form of the linear system z;,,
Az¢ + Bu;. The importance of this canonical form is partly due to the properties exhibited

in the following theorem:

Theorem 3.5: In the controllability canonical form (3.14), the pair (A},, Bj,) is controllable.
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Proof: It is sufficient to establish that the rank of the matrix
sof
P;I = [B;: '11 ;’ ey A’ﬁ B;]

equals m. We have
P}, = (1B, ZAT\U;B, ..., (U1AT))""'U, B]
=U,[B, AB, ..., A~ !B]
=P,
The (m x n) matrix Uy has rank m by construction, and the (n x nk) matrix P has rank m
by assumption. Since the columns of T} form a basis for the range space of P, we have rank
(P],) = rank(U; P) = rank(UT)) = rank(Im) = m. This proves the theorem. I
It is useful to note that the controllability matrix for the pair (A’, B') of the controlla-
bility canonical form is
T'=pP =[P, AP, ..., 4B
{, AL, AP
0 0 0
An alternative proof of theorem 3.5 notes that P has ranks m, and that 7! is nonsingular,
which imply that the rank of P' is m. This in turn implies that the matrix P{, has rank m.
At the cost of being redundant, we find it useful to summarize the result of theorem 3.5

and the discussion leading up to it in the following theorem.

Theorem 3.6: Consider the linear time invariant system z;4; = Az; + Bu;. There exists a -
nonsingular transformation matrix T such that the transformed state zj = T~ !z, is in the
controllability canonical form

(]
[”'u-n
Tot41

gt ' ' '
= gl o]
where A' = T7'AT and B' = T7!B, z| is m x 1 and z4 is (n — m) x 1, where m =
rank(B, AB, ..., A" 'B], and A}, is m x m and B} is (m x 1). The pair (A}, B} is
con-trollable.

From the method of constructing the controllability canonical form, it is evident that

it is not unique. This is true because T .can be chosen as any m (n x 1) column vectors
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that form a basis for the controllable subspace C. It follows also that T3 is not unique.
However, it can be proved that for any of the controllability canonical forms (3.11) produced
by selecting different admissible 7; and T, matrices, the eigenvalues of A}, are the same
regardless of the choice of T) and T3, and that the eigenvalues of A), are also independent
of the choice of particular admissible T} and T5.

We state these facts in the form of the following theorem:

Theorem 3.7: Let T be a nonsingular matrix (77 7T2) where the columns of T; form a
basis for the controllable subspace of a pair (4, B), and let (T} T3) form a basis for R".
Let T = (T1 T:) be another nonsingular (n x n) matrix whose first m columns span the

controllable subspace of the same pair (A, B). Then consider
! !
A = [AU“ ,]2] =T~ 1AT
22
and i )
A = [A{;1 {112] — 14T
The eigenvalues of A}, equal those of Ay, and the eigenvalues of A, equal those of Ags.

Proof: From A' = T~'AT and A = T~'AT, where T and T are nonsingular, we have
(3.17) A =(T'TYA(T'T) = (T™'T)A(T'T) ™!

where (T~!T) is a nonsingular matrix.

Letting T~! = [g;], we have

—1é U;] O _[Ulfl Uﬂ:"z]
T T_[Uz (173} = U: Ty U;T,

Using the above established fact that z € C implies Uz = 0, we have U, Ty = 0 because T}

is a basis for C. Therefore, we have
_15 _ [ Th Ul?z]
(3.18) T-1F = [ ; _

Similarly, we have

17 = [0171 [}'1T2]
0
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Calculating A’ using (3.17) and (3.18) gives

[Alll A'n] = [U1T1A1101T1 (UITIAnUsz + U1T1A12[72T2 + U]_Tz_Azg_Osz)
0 A 0 UsT3A2,U,T,

Thus, we have o

A\, = UyTh AU T,

Ay = UsTh AU, Ty
Upon noting that (Ulf';)'l = U;Ty and (sz‘g)‘l = fszz, the above equations imply that
Al and A, are related by a similarity transformation, and that A}, and Aj; are related by
a similarity transformation. Therefore, the eigenvalues of A, equal those of Aj;, and the
eigenvalues of A}, equal those of Az,. 1

The preceding discussion motivates the following definitions:

.

Definition 3.3 The characteristic values of A}, are called the controllable poles of the system

(4, B).

Definition 3.4: The characteristic values of A%, are called the uncontrollable poles of the

system (A, B).
4. Stabilizability

Now suppose that A has n distinct eigenvalues. Recall the eigenvalue decomposition of

A,
A=5AS"
where A = diag()\y, ..., Ap) is the diagonal matrix whose entries are eigenvalues of 4, and
S =(s1, ..., 8n) is the matrix whose columns are eigenvectors of A. Let us represent 5!
as .
fi
S_l - fZ
fa

where the f; are (1 x n) matrices. Consider the homogeneous linear time invariant difference
equation
Te+1 = Azy
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whose solution is

iy = Ajzg.
Using the eigenvalue decomposition of A, this solution can be represented
Ty = S NSz,

or

u .
(319) Tty = Z/\i.ﬁfizg.

i=1
Equation (3.19) shows how the behavior of the homogeneous system depends on the eigen-

values of A.

We now make the following definition:

Definition 3.5: The homogeneous time invariant linear system z;4; = Az; is said to be
stable if for any z,, belonging to R™,lim; .o z¢4; = 0.

From equation (3.19), the following theorem is immediate:

Theorem 3.8: The homogeneous time invariant linear system is stable if and only if the
eigenvalues of A are strictly less than unity in modulus.

If the eigenvalues of A are strictly less than unity in modulus, we also speak of A as a
stable matriz.

We now indicate that theorem 3.8 continues to hold in the case that the eigenvalues of
A are not all distinct. If the eigenvalues of A are not distinct, equation (3.19) does not hold,
but a suitable generalization of it does. We recall several facts from linear algebra. Let the
(m x n) matrix A have k < n distinct eigenvalues, Ay, ..., Ax. Let m; be the multiplicity
of the eigenvalue A;. Associated with each eigenvalue A; there can be anywhere between one
and m; linearly independent eigenvectors.

Define the matrices

M, = (A= XI)m;
and let
N; = N(M;)
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be the null space of M;. Then it follows that (a) the dimension of the linear subspace
Niis mi,1 = 1,...,k; and (b) each vector ¢ in R™ can be expressed uniquely as a sum
£ =1 +%2+...+ 2 where z; belongs to N;. (See Kwakernaak and Sivan [ p. 19]). The z;
can be expressed as linear combinations of the eigenvectors and “generalized eigenvectors”
corresponding to A;, which we proceed to define and describe how to compute.

We first define a Jordan block matrix J; as a square matrix whose elements are zero
except for those on the principal diagonal, which are all equal to unity, and those in the first

superdiagonal, which all equal unity. Thus,

A 1 00 .0 0
A, 1D 0

Ji =
A

The number A; is taken to be an eigenvalue of 4.

We now state the following theorem.

Theorem 3.9: Let A be a square matrix. Then there exists a nonsingul.ar transformation
matrix T which can be partitioned T = (T, T3,..., T}), where T; has m; columns, such

_that
A=TJT!

where J 1s block diagonal and is composed of Jordan blocks along the diagonal. In particular, -
associated with each linearly independent eigenvector of 1 there is one Jordan block in J,
with its assoctated eigenvalue. For each eigenvalue of A there are as many Jordan blocks
as there are linearly independent eigenvectors associated with it. The vectors in T} form
a basis for N; and are either eigenvectors of “generalized eigenvectors.” (If an eigenvalue
A; has multiplicity m; > 1 and there is only one linearly independent eigenvalue associated
with it, that eigenvector can be taken as the first column of T;. In this case, the Jordan
block corresponding to A; has dimension m; x m;). More generally, the matrix J can be
partitioned as

Qi 0

J =
0 Ji
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where each block J; has dimension m; x m;. Each (m; x m;) block J; is of the form
Ji 0
Ji=
0 Jit,
where each J;; is a Jordan block associated with eigenvalue A;, and ¢; is the number of
linearly independent eigenvectors corresponding to A;. This completes the statement of the
theorem. (See Kwakernaak and Sivan [ | or Nobel and Daniel [ ).

From the equation AT = T'J, Noble and Daniel describe the following method of com-
puting the columns of T. Let these columns of T be vy,...,v,. Then from the form of J

and the equation AT = TJ if follows that
Avi = dvi + 7iviey

where ); is either 0 or 1 depending on J and where A is a characteristic value of A. Partition
the block T; of T corresponding to the subpartitioning of J; as (Ty1, ..., Ti,). Then «; is zero
whenever the corresponding column v; of T is the first column of a subblock. If v; = 0, v; is
an eigenvector of A corresponding to A. Thus the first column of each subblock T}; can be
taken as an eigenvector corresponding to A, while the remaining columns follow recursively
from the above equation with 4; = 1. The remaining columns of T;; generated in this way
are called “generalized eigenvectors” of A.

It is useful to compute integer powers of an r x r Jordan block matrix J. Letting

A1 0 w0
Jk=(:],\10 |
0 p

it is readily verified that

From the representation A = TJT ™! we have that A' = TJ!T~!, In the case where gener-

alized eigenvectors are included in T, it follows that the solution z; = A'zy has components
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that behave as (:) At. Since (:))&‘ goes to zero as ¢ goes to infinity if and only if | A |< 1,
theorem 3.8 about stable matrices also holds for the case in which the eigenvalues are not
distinct.

In summary, associated with each eigenvalue A; of multiplicity of m; the n x n matrix A
there is associated a set of m; linearly independent eigenvectors and generalized eigenvectors
that span the null space N(4 — A; Ihm;.

In the text below, we shall on several occasions state and prove theorems about the
spaces spanned by the eigenvectors corresponding to particular collections of eigenvalues. -
For simplicity, in our proofs we shall assume that the eigenvalues are distinct, and so use the
eigenvalue decomposition A = SAS™!. However, the argument in each of the proofs goes
through in the case of repeated eigenvalues if we use the Jordan decomposition A = TJT !
and interpret the “space span.ned by the eigenvectors corresponding to A;” to mean the
“space spanned by the eigenvectors and generalized eigenvectors corresponding to A;.”

The following definition will prove very useful:

Definition 3.6: Consider the n-dimensional linear time invariant system =,y = Az;. Sup-
pose that A has n distinct eigenvalues, We define the stable subspace of this system as the
real linear subspace spanned by those eigenvectors of A that correspond to eigenvalues with
moduli strictly less than unity. The unstable subspace of the system is the real subspace
spanned by those characteristic vectors that correspond to eigenvalues with moduli greater
than or equal to unity.

We note that as a conséquence of this definition and of the eigenvalue decomposition

A= SAS7, it follows that any vector z; in R™ can be represented uniquely as
Ty = Tyt + Zut
where 2,, is in the stable subspace of A and =z, is in the unstable subspace of A.
The following concept is very useflul because it is instrumental in characterizing a set of
conditions that are sufficient to guarantee both convergence of the matrix Riccati equation

and stability of the closed loop system.

Definition 3.8: The linear time invariant system z;4; = Az; + Bu, is said to be stabihzable

if its unstable subspace is contained in its controllable subspace. That is, the system (A4, B)
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is stabilizable if z the condition that belongs to the unstable subspace implies that z belongs
to the controllable subspace.

The following two theorems are immediate:
Theorem 3.10: Any stable time invariant system is stabilizable.
Proof: The unstable subspace is empty. |
Theorem 8.11: Any controllable system is ;tabilizable.

Proof: The controllable subspace is R". ||

The property displayed in the following lemma is useful:

Lemma 3.1: The controllable subspace of the pair (A', B') of the controllability canonical
form (3.14) is spanned by the eigenvectors corresponding to the controllable poles, i.e., the

eigenvalues of A},.

Proof: Partitioning the eigenvalue decomposition of A' = S'A'S -1 conformably with A

gives
(3.20) [A(;“ '] [s 5 A' ][s 5;115'25‘
22

Here the eigenvectors (Sél) correspond to the eigenvalues A of A),, and the eigenvectors

(3,’) correspond to the eigenvalues A} of A%,. From the argument leading to theorem 3.5,
22

we know that any z' in the controllable subspace of (4', B') must be of the form z' = (:0')

where z| is an (m x 1) vector. Since the (m x m) matrix S}, is nonsingular, there exists an

=[]

Therefore (Sé,) is a basis for the controllable subspace of (A', B'). |

(m x 1) vector z such that for any z',

The following lemma is a consequence of the preceding one.

Lemma 3.2: Consider the system z,4y = Az; + Buy, and a controllability canonical form
for it, zj,, = A} + B'uy where A' = T7'AT and B' = T~!B, where T is chosen as is
described in theorem 3.6. Then the controllable subspace of the pair (A, B) is spanned by
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the eigenvectors corresponding to the controllable poles of A, which recall are defined as the

eigenvalues of A};.

Proof: We have A = TA'T~! where T is chosen as described in theorem 3.5. We also have

the eigenvalue decomposition of A', A' = §’AS'~!. Combining these, we have
(3.21) | A= (TS)A(TS) ™

so that (T'S") is the matrix of eigenvectors of A. Using the partitioning (3.20) in (3.21) we

have
_ Sh Sn)[AY O IS |
or
A0 _
A = (1151, T1S12 + T2S5,) [ 01 A, (T1S11, T1S12 + T2535) "

Here T\ 5], are the eigenveciors of A corresponding to the controllable poles A}, which are
the eigenvalues of A};. The (n x m) matrix T} is a basis for the controllable subspace of
(A, B,) while the (m x m) matrix S}, is nonsingular. Therefore, T} 5}, is a basis for the
controllable subspace of (4, B). 1§

The following lemma establishes that the property of stabilizability is not disturbed by

the application of a nonsingular transformation of the state space.

Lemma 3.3: Consider the system
Tey1 = Azy + Buy

and let V be any nonsingular (n x n) matrix. Consider the transformed system
Ty, = VAV Iz + V By,
or Ty = A'zy + B'uy
" where 2} = Vz,, where A’ = 1"AV~! and B' = VB. Then the pair (A, B) is stabilizable if -
and only if the pair (A', B') is stabilizable.
Proof: Consider the eigenvalue decomposition of A = SAS~!. First partition A as

(3.22) A=(5 52)[‘}]‘ fz](sl 55)"!
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where the diagonal matrix A; consists of the unsfable poles of A and the columns of S} are
the eigenvectors cortesponding to A;. Alternatively, partition the eigenvalue decomposition
of A as
(3.23) A=GE&[Y § &)

2
where the diagonal matrix A; contains the controllable poles of A and Sy is an (n x m)
matrix whose columns are the eigenvectors corresponding to A;. Evidently, the pair (4, B)
is stabilizable if and only if each of the eigenvalues of A; also appears in Aj, so that the linear
subspace spanned by S, is included in the subspace spanned by 5. Using A' = VAV we
have corresponding to (3.22) and (3.23)

(3.24) A= (VS vsz)[”{‘]l fz](vs, VS,)!
(3.25) A= (V5§ sz)[%‘ fz](vélv 57t

Since V is nonsingular, the linear subspace spanned by V' 5 is included in the linear subspace
spanned by V3§ if and only if the linear subspace spanned by S is included in the linear
“subspace spanned by 5;. This proves that (A, B) is stabilizable if and only if (A', B') is
stabilizable.

The following theorem provides a useful necessary and sufficient condition for a system

(A, B} to be stabilizable.

Theorem 5.12: Consider the linear system
z31 = Azy + Buyy

Transform it into the controllability canonical form
! f f
' B
11 12| 1
Tyl = [ ] r, + [ }‘U.g
0 ATt |0

where the pair (A, B};) is completely controllable. Then the system (A, B) is stabilizable

if and only if the matrix A}, is stable.
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Proof: From lemma 3.3, it suffices to prove that the pair (4', B') is stabilizable if and only

if A%, is stable. Partitioning the eigenvalue decomposition of A’ we have
[ 1 ':z] _ [ 11 iz Ay ] Sy 12522
0 92 0 52, 0 A% s22

]
A basis for the controllable subspace of (A', B') is formed by the eigenvectors (S”

0
sponding to the controllable poles A}. If any eigenvalue Az in A exceeds unity in modulus,

) corre-

then the system cannot be stabilizable, for then the eigenvector corresponding to A2 would
not belong to the stable subspace. Conversely, if all of the eigenvalues in A’ and less than

unity in modulus, then the unstable subspace is contained in the controllable subspace, a

Sl'
basis for which is ( 61 )
Therefore, (A, B) and its controllability canonical representation (A’, B') are stabilizable

if and only if A%, is a stable matrix. |
5. An Example

As an example to illustrate these concepts, consider the following problem. A firm wants

to maximize
o~ 4t f2 2
Zﬁ[-!:kt-ékg _Jt(k!+l—kt)] y [>8;0<8<51,
t=0 :

0 < B < 1,kg given, sg,s-) given, Jo, J_; given, where k; is the stock of a factor at time
t, J: is the relative price of capital, and s, is a shock to technology. We assume that J; and _

34 follow the laws of motion
3¢ = p18t-1 + P281-2

Jr = piJi-1 + paJi-2

where we assume that the zeroes of the polynomials

(3.26) 1—p1z—p2zt =0
and
(3.27) 1 —pyz—psz2 =0

both lie outside the unit circle; i.e. if zg solves (3.26) th;:n | zo |> 1.
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We desire to describe a state-space representation of the linear system the firm is trying

to control. We define the state vector z; and control vector u; as

kty1
St+1

Tepr=| 8¢ |, we=(key1 — k)
The system can then be written

Jis1
kit 0
-!H.] 0
(3.28) 0 81 11+ Uy
J:+1 K2
0

Ji
We claim that the system (3.28) is in controllability canonical form. First, notice that

= -
® o
K=
ococ o

oo o
== == =
oo o
-

the matrices corresponding to A and B have zeros in the proper places.
Next, we calculate the controllability matrix
Py = [By, A} By, ..., ATy By
= (1],
which is evidently of rank 1. Therefore the pair (A};, Bj) = (1,1) is controllable. So we
conclude that the system (3.28) is in controllability canonical form.

We also claim that the system (3.28) is stabilizable. To establish this claim, we must

show that the eigenvalues of A}, are less than unity, where

prop2 0 0O
1 0 0 0
3.29 Aqp =
( ) 22 0 0 u P2
0o 0 1 0o

It can be established readily that the four eiger;values of A3, given by (3.29) equal the

reciprocals of the four roots of (3.26) and (3.27). For the characteristic equation of A5, is
| Ay — AT =0
which turns out to be

(3.30) (A2 = 1A — p2)(A2 — A —u2) = 0.

96



Setting z = A~! in (3.26) and (3.27) and multiplying (3.26) and (3.27) together gives
(1—p A = A7) (1 = A7 = ppA™?) =0

or
(A2 = p1A = p2)(A? = X — pa) = 0

The last equation is equivalent with the characteristic equation (3.30) of A%,. Thus, the
conditions that the zeros of (3.26) and (3.27) lie outside the unit circle are sufficient to
assure that our system is stabilizable.

The reader should convince himself that the system (3.28) is neither controllable nor

stable.
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Appendix to Chapters 3 & 4

The following definitions and theorems are about the m x n matrix A and the equation
system Az = b where z is an n x i vector and b is an (m x l) vector. Let the rank of A be

k < max(m,n).

Theorem Bl: There exists a solution to Az = b if and only if kK = m. In this case, the

columns of A span R™.

Theorem B2: The (m x n) matrix A has a right inverse which is an n x m matrix R satisfying
AR = I, if and only if the rank of A = m.
Notice that in the case in which the rank of A is m, one solution of the equation system

is ¢ = Rb.

Theorem B3: The system Az = b has at most one solution if and only if £ = n. In this

case, the columns of A are linearly independént.

Theorem B4: The (m x n) matrix A has a left inverse, which is an n x m matrix L satisfying
LA = I, if and only if the rank of A equals n.
See Gilbert Strang [p. 71] or Noble and Daniel [ pp. 96-97) for proofs of these theorems.

Definition Bl: The null space of the (m x n) matrix A, denoted N(A), is the set of all

(n x 1) vectors z that satisfy Az = 0. The null space is a linear subspace of R".

Definition B2: The range space or column space of A is the set of al (m x 1) vectors y

such that Az = y for some z € R™. The range space is a linear subspace of R".

Definition B3: The range space of AT or the row space of A is the set of all (m x 1) vectors

c that satisfy ATz = ¢ for some z € R™. The range space of AT is a linear subspace of R™.

Definition B4: Given a subspace of V of R™, the space of all vectors orthogonal to V is
called the orthogonal complement of V.

Theorem B5: The null space of A equals the orthogonal complement of the range space of
AT,
Note that the dimension of the range space of AT is k, while the dimension of the null

space of A is n — k.
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Elementary row operations on a matrix consist of:
(a) Interchange of two rows
(b) Multiplication of any row by a nonzero scalar.

(c) Replacement of the i*h row by the sum of the i'? row and p times the j** row, (j is not
equal to i).

Performing sequence of elementary row operations on A amount to premultiplying it
by a non singular matrix. In particular, each elementary row operation on A amounts to
premultiplying by the nonsingular matrix that is obtained by performing the same elementary
row operation on the identity matrix.

The following theorem is useful to forming a basis for the range space of A.

Theorem B6: Let a series of elementary row operations transform an {(m x n) matrix A into
a matrix B. Then a given collection of columns of A is linearly independent (dependent) if

and only if the corresponding columns of B are linearly independent (dependent).

Proof: See Noble and Daniel [p. 126).

This theorem is useful in conjunction with the row echelon form in constructing a basis
for the column space of A. The row echelon form (see Noble and Daniel) is obtained from
A by a series of elementary row operations. In the row echelon form, there are & columns
(where k = rank(A)) which are the unit vectors e,.. ., e;. These unit vectors appear in the
columns number ¢y,¢3,..., ¢4, with ¢y < e3 € ... < ¢4. The last {(m — k) rows of the row
echelon form are zero, while the first k rows are nonzero. (See Noble and Daniel, p. 88, for
more details.)

The preceding theorem implies that a basis for A can be found as follows. Reduce A
to row echelon form B. Let the unit vectors in B appear in columns ¢;,...,¢cx. Then the
columns number ¢y,¢3,...,¢k in A form a basis for the range space of A.

A basis for the null space of A can be constructed as follows. First reduce A to row
echelon form by a sequence of elementary row operations, representable by premultiplication
of A by the nonsingular matrix E. Note that solutions of Az = 0 are equivalent with

solutions of EAz = 0. The row echelon form EA has & unit column vectors which can be
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chosen to be the first & columns of £4 .by suitably renumbering the variables. Then the row -

echclon form EA can be written,

[ Iy Bix(n-k) ]
Om—t)xk  Ofm—i)x(n—k)

# 210z)- 0

where 71,18 k x 1 and z3is (n — k) x 1. Let In_j be the (n — k) x (n — k) identity matrix.

and EAz = () can be written:

Then a basis for the null space of A is given by the columns of the n x (n — k) matrix

[ -B
Iyl
See Noble and Daniel {pp. 159-160] for more details.

An alternative method of constructing a basis for the null space of A builds upon the
fact that the range space of AT and the null space of A are orthogonal complements. We can
construct an orthogonal basis for the range space of A simply by using the Gram-Schmidt

orthogonalization procedure. Let a;,a3,...,a, be the n columns of the (m x n) matrix A.

Let the inner product of two vectors y and z in R™ be defined as (y,z) = Y12, yizi. Let the

norm of y be ||y|| = (y,y)%. Then we recursively form:
L3 |
vy =ay, 2=
vl
2
vz = a2 — (y1,82}- 21, T2 = ——
[[vall
v
vy =ar — (@r_1,8,) -1 = (Tro2,8,) Ty — (T1,8,) - 21, T = HGLH
r

If at some step v, is identically zero, it indicates tha.t a, is linearly dependent on the preceding
ai,...,a,_1. When a null vector v, is produced by the ﬁrocedure, omit it and continue until
k vectors have been obtained. These k vectors form an orthonormal basis for the range space
of A.

To construct a basis for the null space of A, which has dimension (n — k), we first use the
Gram-Schmidt orthogonalization procedure to construct an orthonormal basis for the range

space of AT. This is a set of k vectors, vy,...,v;, which spans a k& dimensional subspace
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of R™. Next take vectors from the m x n identity matrix. I = ey, e3,...,€n, and continue
with the Gram-Schmidt orthogonalization procedure until an additional (n — k) orthogonal
vector vg4y,...,v, are found. (This procedure will encounter k vectors that are indentically
zero, and are to be omitted.) The vectors vgyy,...,v, form an orthonormal basis for the
null space of A.

For a discussion of the Gram-Schmidt procedure, see Noble and Daniel [pp. 138-139].
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Chapter 4
Reconstructibility and Detectability

1. Introduction

This chapter describes the concepts of reconstructibility and detectability. As we shall
see repeatedly, what the concept of controllability is to the linear regulator problem, the
concept of reconstructibility is to the filtering problem and vice versa. Also, what the
concept of stabilizability is to the control problem, the concept of detectability is to the
filtering problem. Thus, the theorems stated in this chapter will closely resemble those

stated in the previous chapter.
2. Reconstructibility

Consider the linear time invariant system

(4.1) z¢41 = Azy + By,

(42) Yt = Cz:

Here z¢ is an (n x 1) vector of state variables, u; is a (k x 1) vector of inputs or controls, and
y¢ is an (€ x 1) vector of observed or output variables. The matrix A is dimensioned (n x n),
Bis (n x k), and C is (£ x n).
Given an initial condition zy,, the solution of the state difference equation (4.1) is
t-1
(4.3) ze= A"z, + Y A7 Bu,, t > to
s=tn
Using (4.2) in conjunction with (4.3), we obtain the following expression for y;,t > tg:
t-1
(4.4) yy=CA g, + Z CA*™*"! Bu,
s=tn
Let y(¢; to, zo, ;) denote the response of the output variables of the system over t > ¢ with
initial condition z4, and control vector u; = u, t > to. That is, from (4.4), we define
t-1
(4.5) y(t; to, zo, ) = CA* "z, + Y CA'"*"'Bui,.
s=to
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We are now in a position to define the important concept of reconstructibility.

Definition 4.1: The system (4.1)-(4.2) is said to be reconstructible or completely recon-
structible if for all ¢; there exists a ty with —oco < tg < ¢y, such that the condition of
identical output variables, namely y(¢; to, x4, &1} = y(¢; to, z:,o, %), o £ ¢ < &y, for all
input sequences iy, tg < ¢ < £y, implies that =y, = 3'“].

Thus, the system is completely reconstructible if, the initial state of the system can be
inferred from observations on the controls and the output vectors alone, given a long enough
history of observations. If the system is reconstructible, there exists a finite ¢y < £; such that
the initial state =, is uniquely determined given knowledge of the output y, and input v,

sequences. Once 24, is known, equation (4.3) can then be used to compute z, for all ¢ > ¢4.

Theorem 4.1: The system is completely reconstructible if and only if for all ¢; there exists
a tgp with —oo < tg < ty, such that y(t, to, z4,, 0) = 0 for ty < ¢ <ty implies that z4, = 0.
The theorem asserts that the system is reconstructible if and only if, given an input path
consisting entirely of zero controls, zero output implies that the initial state is zero.
We now state a theorem that is useful in developing necessary and sufficient conditions

for reconstructibility.

Proof: We first show that if the system is reconstructible, there exists a finite to < ¢; such
that y(¢; to, 4y, 0) = 0 implies that z,, = 0. Suppose that the system is reconstructible.

With zero input vector u, we have from (4.4) that
yr=CA g, to <t <

Since the system is assumed to be reconstructible, and since an initial condition of z,, = 0
gives rise to a zero output yy, tp < ¢t < ¢y, the above equation implies that z,, = 0. This
proves half of the theorem: if the system is reconstructible, there exists a finite tg < £; such
that y(¢; to, ¢,,0) = 0 for tg <t < ¢; implies that z,, = 0.

To prove the other half, assume that thereexists a tq < £; such that y(t; tg, z¢,, 0) = 0 for
all tg < t < t; implies that z,, = 0. By (4.4), we have that y{(¢; to, zy,, ue) = y(£; to, T, ut)
for all tg < t < t; is equivalent with CA*"%z, = CA'~'*z| for all te[ty, t1]. This is
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equivalent with
(4.6) CAt-) (2, — 2} ) =0 forall to<t<t

But, by hypothesis, there exists a ty < t; such that y(t; to, z¢,,0) = 0 for all te[to, ¢]
implies that z;, = 0. But (4.6) asserts precisely that y(¢t, to, z¢, — z},, 0) = 0. Therefore
T4y — Ty, = 0 or z4, = z,. Therefore the system is completely reconstructible. |

The following theorem states a necessary and sufficient condition for the system to be

reconstructible.

Theorem 4.2: The system defined by the pair of matrices (A4,C), where A is n x n and
C is £ x n, is completely reconstructible if and only if the row vectors of the (nf x n)

reconstructibility matrix

c
CA
Q=| CA?
O AR

span the n-dimensional space, i.e., if and only if the rank of Q is n.
Proof: By theorem 4.1, the condition that the system be reconstructible is equivalent with
Ithe condition that for each t, there exists a finite to < t; such that y(¢, to, z4,,0) = 0
implies that z,, = 0. This is equivalent with the existence of a finite ¢ < t; such that
C'A(“"O):l:gU =0 for tg < t < ty implies that z;, = 0. Writing this in matrix form gives the

requirement that the quality

¢ . 0
CA 0

’ Ty, =
CAti~to 0

for some £y < t; implies z;,, = 0. We shall show that it is sufficient to take ¢; —tg = n — 1
ortg=¢t; —n+1.

Thus, take t; —tp = n — 1, and consider the system of linear equations

Yt #;
0= ytll.+l _ C:‘"l z¢,
y!u'l:ﬂ—l CAn_l
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or
0= ngo.

Suppose that the rank of @ is n. Then it follows from a theorem in linear algebra that
Qzy, = 0 implies that z,, = 0. {Recall that the ({n x n) matrix Q has a lelt inverse
satisfying L@ = I if and only if its rank if n. Also, if Q has a left inverse, the solution of
Qz¢, = 0 is unique, if a solution exists. Since x4, = 0 is a solution, it is the unique solution
when @ has rank n.) Therefore, if the rank of @ is n, the system is reconstructible.

To show the converse, first note as an implication of the Cayley-Hamilton thecrem that
the rows of C A" are linearly dependent on the rows of Q for & > n. Therefore, for any

to < t, the rank of
C
CA
CAt.l"in
is less than or equal to the rank of @ (equal for t; — {p > n — 1). Now if @ has rank less

than n, there exists an z;, # 0 such that

tau ={.

Further, by the preceding argument, if the rank of ) is less than n, there exists an z;, # 0

which solves '

: C

C:A —
CA(t.l*"l)

for any finite to < t;. Therefore, if the rank of @ is less than n, the pair {4, C}) is not

reconstructible. |}
3. Examples

(¢) Consider the system
841 = pb + €144

ye=6+en

where (£1441,€3¢) is a white noise vector satisfying

E{EIH-I][EIHI]: Vi Vs]
L €a E2t v v
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Here 6; is a hidden state variable, and y; is the observed output. For this system, we set

z;=0;,A=p,C =1. Solong as p # 1, (A, C) is reconstructible

(b) Consider the system
41 = p10¢ + p20i—1 + €1041

vt =06y + €

where (€441, €¢) is again a vector white noise. The system can be written

(] )
—— ¢+1] [Pl ﬁ(']z][gf:l] [Eu+1

ye = (1 0)z¢ + €2

For this system, we take A = Pl ] C = (1 0). The observability matrix Q is Q =

1 i ] So long as pz # 0, the pair (A, C) is reconstructible.

(c) Consider the system
Oi41 = pbi + €1041

G141 = appy + €2041

Yo = 10y + caby + €3t

where (€1¢4+1, €2¢+1, €3¢t) is a vector white noise. For this system, define

e8] 4= [s ) o=

We then have the observability matrix
ol ot
The system is observable unless ¢y c2 = 0 or p = a.

(d) Consider the maximum problem:

ty-1
mazimize Y -z CTCzy + ul Q
t=tn
subject to z44y = Az, + Bu;. As we shall see in the next chapter, it is of interest to
determine the reconstructibiltiy status of the pair (A, C'). We invite the reader to check the

reconstructibility status of the (A, C) pairs for the following problems:

(1) The “transformed” consumption problem given above on page 2-8, 2-9.
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(i1) The capital accumulation problem given in pages 3: 25-28.
4. The Reconstructibility Canonical Form
We next define the concept of the unreconstructible subspace.

Definition 4.2: The unreconstructible subspace of the system (4.1)-(4.2) is the linear sub-

space of states zy, for which y(¢; zy,, to, 0) = 0,t > to.

Theorem 4.3: The unreconstructible subspace of the n-dimensional system (4.1)-(4.2) is

the null space of the reconstructibility matrix

g
CA

Q=| "

ca~!

Proof: This follows directly from the machinery in the proof of the previous theorem, and
from the definition of the null space of Q, N(Q), as the set of vectors z such that Qz = 0.
Thus any initial state vector z,, in the null space of @ produces an identically zero output in
response to a zero inpﬁt, while any initial state vector z,, not in the null space of Q produces
a non-zero response. ||

The following lemma describes a characteristic of the unreconstructible subspace of

(A, C) which we shall use.
Lemma 4.1: The unreconstructible subspace of (A, C) is invariant under A.

Proof: We must show that if z4, belongs to N(Q), then Az, also belongs to N(Q). By

the Cayley-Hamilton theorem, we know that there exist scalars a} such that

n—1
AP =Y oAk R > n.
k=0
It follows that
n—1
CA* = ¥ aftCA* R >n.
k=0
Now let z;, be in the null space of Q, or
C
A
C. Ty, = 0.

C A
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Since C A™zy, = Yp_g af(C A¥)zy, = 0, it follows that

c CA
2

QA:B;D = CA Atto = CA Tty = 0.
CA™! CA"

Therefore Az, is in the null space of Q. |l
The next theorem indicates that the state of the system can be determined only to within
the addition of an arbitrary vector in the unreconstructible subspace.
Theorem 4.4: Consider the system (4.1)-(4.2). Suppose y; and u; are known over an
interval tg <t <t;, witht; —tg >n— 1.
(a) The initial state of the system at time £y is determined to within the addition of an
arbitrary vector in N (Q).
(b) The terminal state at time ¢, is determined to within the addition of a vector of the form

Alti—to) Z4,, where Z,, is an arbitrary vector in N(Q).

Proof of (a): We must show that if 4, and z}, produce the same output ys,to <t < ¢y, for
any input ug, to < t < ty, then z4,—z} belongs to N'(Q). Now, y(t, to, e, u) = y(¢; to, 24, u)
fortg < t < t, is equivalent with C"ff’;{‘_“'):::t,J = CA(“‘”):;“ for tg < t < ty. This is equivalent

with CA*~to(z,, — a:',u) for all tg < t < t;. This implies that z,, — =} belongs to N(Q).

Proof of (b): The addition of an arbitrary vector z{, in N(Q) to the initial state results
in the addition to the output of CA(*~*)z} . Since z} belongs to N'(Q), the addition is zero
forallt <to. 1

The next theorem represents the structure of the system in a way that we shall find very

useful.
Theorem 4.5: Consider the n'® - order time invariant system
Tyl = Azt + B“t

y¢ = Czy

p . ; rr :
Form a nonsingular transformation matrix U = [Ul] where the m rows of U; form a basis
2

for the m-dimensional (m < n) subspace spanned by the rows of Q. The (n — m) rows of
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Uz are chosen so that, together with the m rows of Uy, they form a basis for R®. Define a
transformed state vector z} by

!
z, = Uz,

Then in terms of z} the system is represented in reconstructibility canonical form

I !
(4.7) e [A,H 0 e+ [g}] uy

21 22 2
(4.8) v = (C} 0)z,

Here A}, is an (m x m) matrix, C| is (£ x m), A}, is (n —m) x (n —m), and B is (m x k).

The pair (A};, C}) is completely reconstructible.

Proof: Suppose that rank (Q) = m < n, so that @ possesses m linearly independent rows.
This implies that the null space of Q has dimension (n —m). Let the row vectors f1,..., fm
be a basis for the m-dimensional linear space spanned by the row vectors of Q, i.e., the range
space of QT. Let fmi1,...,fa be (n — m) linearly independent row vectors that together

with fi,..., fm span R™. Now form

_ [
U= [Uz] '
;; fm+l
Ul = . ' U2'= :

fm fn
Introduce the transformed state vector z; = Uz so that z; = U~ 'z}. Then the system

(4.1)—(4.2) can be written
Uz}, = AUz} + Bu,

y = CU 'z}
or
(4.9) Ty, = UAU™ 2} + UBuy,
(4.10) y = CU™ 'z}
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Partition U~! conformably with the partition of U, so that
U™l=(T) T)
where T} has m columns and T, has (n — m) columns. We have

- U [y, ULT: I 0
UU‘:U:](Tng)z 1T ”]:[0

UTh UpTy

In-m

which implies that U;T> = 0. Now the rows of U; form a basis for the range space of Q7,
so that any vector z that satisfies Ujz = 0 also satisfies Qz = 0. (Uyz = 0 states that z
is orthogonal to the range space of QT and therefore is in the null space of Q. For recall
from linear algebra that the null space of Q is the orthogonal complement of the range
space of QT.) Since U Ty = 0, it follows that all columns of T3 are in N(Q). Because T;
has (n — m) linearly independent column vectors, and the unreconstructible subspace has
dimension (n — m), the column vectors of T; form a basis for N(Q). Therefore, Uyz = 0 for
any z belonging to N(Q).

We can write
U, U,ATy, U, AT,
Us Uy ATy U AT,

CU_l — [CT].!CTZ]

VAU~ = ] A[T\T,] =

All of the column vectors of T3 are in N(Q). Because N(Q) is invariaﬁt under A (by lemma
4.1), the columns of AT; are in N(Q). Therefore, U; AT, = 0. Since the rows of C are rows
of Q, and since the columns of T are in N(Q), we also have CT; = 0. Thus, the above

equations become

U1 AT, W0

a8 )
A =vav™ = [pAn vpan | = 4

C'=CU™! = (CTy,0) = (C},0).

Thus, the system can be written in the form of (4.7) and (4.8),

' Al 0 Bj
(4-7) tl+] = [“1';: '22 z't + {Bi uy
(4.8) y(t) = (C )z
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It remains to verify that the pair (A}, C}) is reconstructible. Recall that A}, is (m x m)
and C| is (£ x m). First notice that the reconstructibility matrix Q' for the transformed
system (4.7)-(4.8) is given by

C' cu-?
c'A CAU™!

Q' = ; =QUu~!
CI'A‘!n-I CAn—:lU—l
Since U~! is nonsingular, it follows that the rank of Q' equals the rank of Q, whichism < n

!
by assumption. From the equations C' = (Cj, 0), A' = [ n 9 ] , @' is calculated to be
22 '

21
¢l o
s CiAn 0
CiAT! 0

Since the rank of Q' is m, it follows from the above equation and the Cayley-Hamilton
theorem that the (¢m x m) matrix

'

i

ciap!
has rank m. Since Q] is the reconstructibility matrix for the pair (A},, C}), it follows that
the pair is completely reconstructible. |

The characteristic values of A}, and of A}, are independent of the particular choice of U,
and Uz. The proof of this assertion uses the same logic that was earlier used to prove theorem
4.5 and will be omitted. The characteristic values of A}, are called the reconstructible poles,
while those of A}, are called the unreconstructible poles. The unreconstructible subspace
is spanned by the characteristic vectors corresponaing to the unreconstructible poles, while
the reconstructible subspace is spanned by the characteristic vectors corrresponding to the
reconstructible poles. The proof of this assertion uses the same logic that was used to prove

the lemma 3.2 about controllable and uncontrollable subspaces.
5. Detectability

Next we have an important definition.
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Definition 4.3 The linear time invariant system (4.1)-(4.2) is said to be detectable if its
unreconstructible subspace is contained in its stable subspace.

We have the following theorems.
Theorem 4.6: Any stable system is detectable.
Proof: The unstable subSpéce is empty. |
Theorem 4.7: Any completely reconstructible system is detectable.
Proof: The unreconstructible subspace is empty. |

Theorem 4.8: Consider the linear time invariant system z,4y = Az, y; = Cz;. Transform

it into the reconstructibility canonical form

Al 0
o= [ ]
21 22
Yt = (C;1 0):;

where (A}, C}) is completely reconstructible. Then the system is detectable if and only if

A;z is a stable matrix.

Proof: Detectability requires that if z,, belongs to A(Q), then z, = Alt~%)z, — 0 as
t - oo. If 24 is in- N(Q), then it has the representation z,, = U-1 [x;l’], where U! is
the nonsingular transformation matrix defined in theorem 4.5, z5, is an (n — m) x 1 vector,
and U~ = (T}, T;) where the columns of T} form a basis for the reconstructible subspace
and the columns of T; form a basis for the unreconstructible subspace of (A, C). We have

that

_ 0
z,=U""? [ (t—tn) ]
‘ Ag, T,

Since U~! is nonsingular, z; — 0 as t — oo for all z}, if and only if Aj, is a stable
matrix. [

An alternative proof of this theorem in terms of the eigenvectors of the reconstructible
and stable subspaces, can be constructed paralleling the argument in the proof of theorem
3.12 on stabilizability.

We now describe the concept of duality, which is a very useful tool for clarifying the

relationship between control and filtering problems.
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Definition 4.4: Consider the system
Ti41 = Az + Buy

(nx1)(nxn)(kx1)

(4.11)
Vi = C =z

(Ix1)(1xn)(nx1)
The dual system is defined as
2y = ATz} + CTy;
(nx1)(nxn)(nx1)(1x1)
(4.12)
y; = BTz}

(kx1)(1 xn)

The following theorem is immediate:

Theorem 4.9: The dual of the dual is the original system.

The following theorem is also immediate:

Theorem 4.10: Consider system (4.11) and its dual (4.12). The following statements are
true:

(a) The system (4.11) is completely controllable if and only if the dual (4.12) is com-
.pletely reconstructible.

(b) The system (4.11) is completely reconstructible if and only if the dual (4.12) is
controllable.

(c) System (4.11) is stabilizable if and only if the dual (4.12) is detectable.

(d) System (4.11) is detectable if and only if the dual (4.12) is stabilizable.

Proof: (a) and (b): form the appropriate controllability matrix P and reconstructibility
matrix Q.
(c) Transform (4.11) via zj = T~ 'z, into a controllability canonical form

; I ! Bl
o= [ ][]

yt = (C) C3)zy.
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where (C} C3) = CT. If the system (4.11) is stabilizable, then (A}, B}) is controllable and
A’, is stable. The dual of the transformed system is

I - AFIT 0 I [C;T] .
Tt41 = [A?: AT zy + ciT e

y; = (B, 0)z

(4.13)

Since AY;, B} is completely controllable, AT}, B{T is completely reconstructible, as can be
verified by cheéking the ranks of the pertinent controllability and reconstructibility matrices.
Since A}, is stable, so is A%%. Therefore, system (4.13) is detectable. By the nonsingular
transformation TTz} = z* it can be verified that the system (4.13) is transformed into the
dual of the system (4.11). Therefore, since the system (4.13) is also detectable, the dual of

the system (4.11) is also detectable. The inverse is easily proved, as is (d). |
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Chapter 5
Convergence and Stability Theorems For

The Optimal Linear Regulator Problem
1. Introduction

This chapter collects the dividends we have earned by investing the last two chapters in
the ideas of controllability, stabilizability, reconstructibility, and detectability. We shall use
these ideas repeatedly in order to establish convergence and stability theorem for the optimal
linear regulator. Actually, we shall earn a double return on our investments, because by
repeated appeals to duality, the theorems established in this chapter will be used in chapter
6 to state theorems that apply to the Kalman filter.

2. The Optimal Linear Regulator Problem Again
The following lemma will prove useful:

Lemma 5.1: Consider the quantity

ty-1

J(tg(,) = Efn{ Z x?Htxf + 'rtl:Gllxh} , to < tl!

t=tn
where the Hy’s are given n x n matrices, where Gy, is a given n x n matrix, and where {z}

obeys the vector stochastic difference equation
Tegr = Az + e
Assume that £, is an n x 1 vector white noise satis{fying
EE( = {] Vi
EtéT =0 for t#s

E&eT = v, v,

Vi a positive definite matrix. Assume that £ is orthogonal to past z,, so that
E.rtf;r =0 for t<s.

Then
‘;(I‘fn) = z{,cturh: + dtn
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where Gy, and dy, are solutions for tg of the difference equations

(5.1) Gt_l = A;F_IGgAt-l + Hg_l

(5.2) di_y = dy + trV,G,

with terminal conditions Gy, and di, = 0 given.
Proof: Writing out J(zy,) we have

(5.3) J(z4y) = Evy {zhy Hiyzto + Tho s 1 Hig4 121041 + - -
| +=3:_1H:,-13:,-1 +3¢T;thxt1}-
Using the law of iterated expectations repeatedly, this can be written
J(z4,) = Ev, {24, HiyTt, + Etgr1{z0 41 Hey4121011
(5.4) + Eyyso{zh ;o Hiy4 220042 + -
+ E;Il'—l{’tl:—lﬁh-l:h—l + Egl:c}:Gglzh}}}}.
We shall “work backwards”, starting by evaluating the terms conditioned on the most infor-

mation. Since z; is assumed to be included in the conditioning set at time ¢, we have
E'tlz;‘:Gglzh = z}:G:lzg!.

Next, we have
Ey 1 {Iz_lﬁtl—lhl—l + 33;(?:13:1} = 33;-;”:,—1It1—1
+ Ey 1 {(Ay-12t,-1 + €6) TGy (A —120,-1 + €1,)}
= rz_lffn—lrcl—l + 23:..1143:_10:14‘111—11:;—1 + Etl—l(fzctlfu)
= 33;_1(1'!:;—1 + A};_1Gl;At1—l)zt:—l + trV}, Gy,
= 33;_1th~1=11—1 + dy, 1.
Continuing to work backwards leads to the result that for
to<t<t -1
Ef{eTHiz, + Evpr{zl Hizer + -+ + Bzl Gz} -1}
= I?Ggl‘t + d;
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where G, and d; are the solutions from (1) and (2). |
Let R be a (n x n) negative semidefinite matrix, Q a (k x k) negative definite matrix
and P, a given (n x n) negative semidefinite matrix. Consider the criterion

ty—1

(5.5) J(zty) = B[ 3 (27 Rze + v] Quy) + 21, Py 2y,

t=tp

where the system obeys the stochastic difference equation
(5.6) Te41 = Azy + Bug + §i

where ;4 1s a vector white noise with E&{,T = V;. Suppose that v; is set according to the

control law
(57) v = —Fg:l:g

where {F}} is an arbitrary sequence of k x n matrices. Substituting (5.7) into (5.6) gives the

“closed loop” system equation
(5.8) 41 = (A— BF)z + é41.

Substituting (5.7) into the criterion function (5.5) gives the following expression:

ti-1
(5.9) J(zt,) = Eo Y =T {R+ FTQF )z + 2], Pyzy,).
t=t

We can now state the following useful theorem:

Theorem 5.1: Consider the criterion function (5.5) and the system (5.6) operating under

the prescribed feedback law (5.7). The criterion function takes the value
J(..".'.“") = :E:,Ptnzln + df.r!

where Py, and dy, are the solutions of
Piy=(A-BF,1)TP(A- BF,_))+ R+ FL,QF,_,
di_y = d¢ + trVi P,

with terminal conditions P, and dy, = 0 given.
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Proof: Inlemma 5.1, set 4,y =(A- BF_1),Gy, = P,,Hi =R+ FtTQFg. |
We can now define an important problem.

Definition: Let R < 0,Q € 0,P,, <0 be given. Consider the criterion

ty—1
(510) ) Etn [ Z {:BTR.’B{ + v;er;} + Zg;Pglzgl] '

t=1y

where the system 1s governed by
(5.11) Ti41 = Az + Byg + €41,

Ty, given, §;41 being a vector white noise with Efgf;‘" = Vi. The problem of maximizing

(5.10) subject to (5.11) with respect to choice of
F!U;Ffu+11"'rFfl—-1

where vy = — Fyz; is called the optimal linear regulator problem.
From theorem 5.1, we know that for a given sequence Fy,, Fiy 41, -, Ft,—1, the criterion

(5.10} is given by

(5.12) z7 Pozy, + dy,

where Py, is the solutien to

(5.13) . Py=(A-BF_)TP(A-BF,_) + R+ FL,QF._,
with P, given and

(5.14) dy_y = dy + trVi Py

with dy, = 0 given. Our object is to find a sequence of control laws {F, F2 , -+, F2_}
that maximizes zg; Pz, + dy, for all z4,. We make two observations that simplify the task
of maximization. First, from (5.14) it follows from the specifications V§ > 0 and P, < 0 that
d,_y 18 a monotonically increasing function of d; and P;. It immediately follows that d4,_;.
is a monotonically increasing function of Py, Piy,---, Py —1. Second, from (5.13) it follows

that given Fy_j, Pi_; is a monotonically increasing function of F;. From these observations,
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it follows that in order to maximize ::;{;Pg,,z,u + dy, over {Fy,, Fy,41, -+, Fi;-1}, the Fy’s
should be chosen to maximize the matrices P;,t = to,---,t; — 1, subject to (12) with P,
given.! We say that F?_, is the choice of Fy_; that maximizes P,_; with P? given, yielding
maximized value P{_,, if for all other choices of Fy_y,(P2; — Pi—1) > 0. The statement
(P?_y — Pi—1) > 0 means that P2, — P,_; is positive semidefinite, which is equivalent with
the statement that zf_,Pf_lzg_; - z?_ng_l:ct_l > 0 for all vectors z;_;.

The preceding observations imply that to maximize z{lptozgo + dy, (uniformly in z4,), it
is sufficient to proceed sequentially, working backwards to produce a sequence of maximal

{PS_1,Py_y-+, Py} That is, given P,,, choose Fy,_; to maximize
(5.15) Py_1=(A-BF,_\)TP (A~ BFy,_\)+ R+ FI_,QF; 1.

Then substitute the optimizing Fy,_; = Fy,_; into (5.12) to calculate the maximized values

for P,y = Pf,_,. Next choose F},_; to maximize
Py_2=(A—BFy_3)TPy,_1(A- BFy,_3) + R+ FI_,QF\, s,
and so on. So at time ¢t — 1 we have to choose F;_; to maximize
Pioy =(A- BF_1)TPX(A- BF,_y)+ R+ FL\QF,_,

or

Py = ATP?PA - ATP?BF,_, - FL,BTP?A

+ Ff]:IBTPtDBF!—I + R+ FF_‘_IQFQ_.]

or

Py =FL\(BTP?B+Q)F.., - FL,BTP?A
- ATPPFi1 + R+ ATPPA.
Complete the square by adding and subtracting (ATP?B)(BTP?B + Q)~! (BTP?A) from
the right side of the above equation to get

Py = [FL, - (ATP?B)BTP?B+ Q)| [BTP?B + Q]
(5.16) ' [Ft:r—.l - (ATP?B)(BTP?B + Q)_I]T
~(ATP?B)(BTP?B + Q) ' (BTP?A) + R+ ATP? A.

! Note that since P; for t = to, -, t; — 1 obeying (5.12) are negative semidefinite, maximizing the P,'s
results in minimizing the absolute value of the term d,,, which is necessarily nonpositive.
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Recall that [BTP,"B + Q] is a negative definite matrix, and that F;_, appears only in the
first quadratic form on the right side of the equation. Therefore, to maximize P,_; given

P?, F,_, should be chosen so that
FT, = (ATP?B)(BTPB + Q)"

or |

(5.17) Fg,=(BTP’B+Q)'BTPA.

Notice that this choice of F;_; makes the first negative definite quadratic form on the right
side of (5.16) vanish. Substituting the optimal F{_, from (5.17) into (5.16) then gives the

following equation for P2 ,:
(5.18) P, =ATP?A+ R - ATP?B(BTP?B + Q)™ 'BTP?A.

This equation is known as the matriz Riccati difference equation.

We summarize these results in a theorem.

Theorem 5.2: Consider the optimal linear regulator problem, to maximize

-1
(5.10) By, Z {.":;FR.":: + ngQUe} + :!:3;}3:11'11

t=to

subject to zy, given, R < 0,Q < 0, P,, < 0; where the system dynamics are given by
(511) Tigp] = AI( + B‘Ug - EH-I ,

where €;41 is a vector white noise with E{;{;r = V3. The maximization of (5.10) is carried

out over the parameters of feedback rules F; in
Y= —thh t= t01t0+ 11"' i = 1.

For an arbitrary {F;} sequence, the value of the criterion (5.10) is 3’E:.Piu:tn + dy, where P,

and dy, are the solutions to the difference equation
Py =(A-BF,_1)P(A-BF,_;)+ R+ FL,QF,_,
dg-] — dg 4 fl""lr"gp:
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with terminal conditions P, and d;, = 0 given. The optimal choice of Fy's is given by

(5.17) Fe=(BTP B+ Q) 'BTP? A t=toto+1, - t;—1

where P is the solution of the matrix Riccati difference equation
(5.18) Pl ,=ATPPA+ R~ ATP?B(BTP’B + Q) 'BTP’A

with terminal condition P4, given. The matrices { P{} are negative semidefinite. When the
optimal feedback rules are used, the criterion function attains the value

T po
:I:tUP

to

T + dtn .

The matrix P maximizes P, with respect to {F},t = tg,80 + 1,---,¢t; — 1} over the class
of all matrices Py that satisfy (5.16} with terminal condition P, given. This concludes the
statement of the theorem.

Notice that the optimal feedback laws given by (5.17) depend on A, B, R, and @ (partly
through dependence on the P} sequence) but are independent of the variance matrix V; of
the white noises £;. Indeed, exactly the same decision rule would be implied if we set V; =0
for all ¢, so that there is no randomness in the system. While the noise statistics V; don’t
influence the optimal decision rules, they do influence the value of the maximized criterion

function through the dependence of d,, on 4.

3. The Basic Convergence and Stability Theorems, Which Require Controllabil-

ity and Reconstructibility

We now proceed to study the behavior of the solution of our problem as we extend the
horizon arbitranly far into the future, or what amounts to the same thing, as we drive the
initial period ¢y toward —oo, holding £, fixed. We would find the following two characteristics
desirable. First, as we drive {; — —oo, we would like P, to converge to a constant matrix
P which is independent of the given terminal matrix P;,. This is a desirable feature because
it implies via (5.17) that the sequence of optimal control laws {Fy,} also converges to a

constant as g — —oo. This has the practical implication that the feedback law {F;} that
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solves the infinite horizon problem is time invariant, so that Fy = F for all ¢, and that the

resuiting closed loop system
Tip1 = (A~ BF)ze + &t

is time invariant. Our second desideratum is, given that it is time invariant, that the close&
loop system be stable. This requires that the matrix (A — BF) be stable, that is, have
eigenvalues with moduli less than unity.

We shall state and prove several theorems that taken together give a set of conditions
that are sufficient to guarantee these two desirable features.

We first recall that as a result of theorem 5.2, the parameters of the optimal feedback
laws {F}} and of the value function matrices { P,} are independent of the matrices V; of the
second moments of the noises £. Thus for purposes of studying the behavior of F? and PP.
as £ — —oo, we can just as well study the nonrandom problem that results when we set
Vi = 0 for all £. The problem can be stated as follows: to maximize

ty—1
{5.19) | z';:Pguzgu =3y (-\“‘.,IRI! + u;‘rng) + z;‘: Py z
t=to

subject to =4, given and the law of motion
iyl = AJZ: + Btl'.g.

Here R is again a negative semidefinite (n x n) matrix, @ 15 a negative definite (k x k)
matrix, and P, a given {n x n) negative semidefinite matrix. The maximization is over
Fil—lyFtl—Z:' " an where

Uy = —ngg.
We shall study the behavior of the solution of this problem when we take the limit as
g — —oo. I
We first state the following theorem.
Theorem 5.3: Consider problem (5.19) with terminal value matrix P, = 0. Assume that
the system (A4, B) is controllable. Then the optimal P; calculated from the matrix Riccati
difference equation (5.19) converges as tg — —oo.
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Proof: The value of problem (5.19) starting from z,, = zg is onPngo , where P2 is the
solution of the matrix Riccati difference equation (5.18) starting from P,, = 0. Notice that

since fl and Q are negative semidefinite and negative definite matrices, respectively, we have

t1—1
::g‘Pg)“xa = max Z {z:;rRz:g + u?ng} , given ZTy,41 = To’
{“'}.l;:n+1 t=tg+1
-2
= max_ Y {zT Rz, + uT Qu,} , given Ty = To
{“'}:L_:: t=tp
t1—-1
> max Z z';rRxg + uf‘ng , given Ty, = Tg
fuhls, t=to
= zg'Ptozo.

In each case the maximization is subject to the law of motion z,,; = Az, + Bu,. Thus we

have that for all ¢ < ¢, -1,

(520) zg‘Pt‘:}-l-lzo Z zg‘pf?lzo

for all zge R™. According to (5.20), for any zge R", the sequence ::UTP,?]_

2oi=to—t;+1,to—
t; + 2,--- decreases monotonically with increases in the index i. Furthermore, since (A4, B)
is controllable, for every zoe R", there exists a control sequence that drives zg to the origin
in n steps. Consider using such a sequence of controls, followed by zero controls thereafter.
This set of controls delivers a value of the criterion function

ti—1

3 27 Rzy + 6l Quq

i=in

starting {from z,, = T, that provides a lower bound for the values of the problem for any ty <
t; — 1. It follows that for every zoe R™, 23 F,_izo is monotonically decreasing as i increases,
and is bounded below. Therefore, for every zge R™, him; oo :E‘:Pg,,_.-a:o = limy, -0 ngg,,xo
- exists. Since this limit exists for every zge R", it follows that every element of the matrix
Py, converges as {5 — -oo. To see this, first set 29 = (1 0 0 .. O)T, and notice that

: T p0
limg, oo 23 P

t,To equals the limit as to — —oo of the (1, 1) element of P?. Similarly, -

setting ro = e;, where ¢, is the i*M unit vector, shows that limg,— - xg‘Pflxo equals the ith

diagonal entry of F. Next, choose 29 = (11000 --- 0)7, to show that the (1, 2) element
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of Py converges as tg — ~o0o. Proceeding with this argument leads to the conclusion that
all elements of P? converge, to a limit P

im P%te) = PO. 11

tp—r—o0
We immediately have

Corollary 5.1: Under the conditions of theorem 5.3, the limiting matrix P of the value

function is negative semidefinite and satisfies the algebraic matriz Riccats equation

(5.21) P=ATPA+R-ATPB(BTPB + Q) 'BTPA.

Proof: Negative semidefiniteness of P follows from the facts that the matrix Riccati dif-
ference equation (5.18) maps negative semidefinite P; into negative semidefinite P,_,, that
Py, = 01s negative semidefinite, and that limits of sequences of negative semidefinite matri-
ces are negative semidefinite. Equation (5.21) follows by taking limits of both sides of the
matrix Riccati equation (5.18) as ¢t - —oo. §

If iterations on the matrix Riccati difference equation {5.18) from terminal matrix P, = 0
converge to a negative semidefinite matrix P as tp — -—oo, it follows from (5.17) that
1im¢,J_._m F? ewists and equals F°, say.

We desire to study the stability characteristics of the optimal steady-state closed loop
system

Tipy = (,"1 - BFO)Ig.

In particular, we would like the steady-state optimal closed loop system matrix (4 — BF)
to be a stable matrix. The following theorem states one useful set of sufficient, though not

necessary, conditions for {4 — BF'} to be stable.

Theorem 5.4: Consider the optimal linear regulator problem with Py, = 0. Let the (n x n)
positive semidefinite matrix — R be expressed as GTG where G is {rxn), r<n,and risthe
rank of R (such a decomposition of R always exists by a theorem in linear algebra). Assume
that the pair (A, B) is controllable, and that the pair (A, G) is reconstructible. Then the

optimal closed loop system matrix {4 — BF) is stable.
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Proof: From (5.17) and (5.21), the algebraic matrix Riccati equation can be written as
P=(A-BF)TP(A- BF)+ R+ FTQF.
Let D = (A — BF), and write the above equation as
(5.22) - P=D"PD+ R+ FTQF.
The closed loop system whose stability we desire to establish is
z441 = (A — BF)z,.

To establish stability it suffices to show that for any z;, = zo,lim¢~ z: = 0. To this end,

notice that
33.+1P3:g+1 =" 1'?}31:: = z;rDTPng = ::,TPm

=zl (DTPD - P)z,.
By (5.22), this equation can be written as

z:,THPng - 33‘}33‘ = —z?(R + FTQF)z,.

This implies that

T . "
Itt}+j+1 thli"‘]“‘l - xtupxtu

J
=Y zhsi R+ FTQF )2y,

1=0

Since the left-hand side is less than or equal to zero because P is negative semidefinite, and

since (R + FTQF) is negative semidefinite, it follows that
=i, 4i( R+ FTQF)ze,u
approaches zero as i — oco. Since Q is negative definite and R = —GTG, it follows that
lim Gz¢, 4 =0
1—00

im Fzy4i =0.
1=—00

Notice that

GA™!- [G(z44n-1 + L7y A 'BFzisn—io1)]
GA™? G(zt4n-2+ Lo AT BFzy1n_i_3)
GA G(zi+1 + BFz,)
G i GI‘;
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From our previous results, since lim;_,oo Gzy = 0 and limy_o Fz; = 0, the right side of
(5.23) has a limit of a zero vector as t — co. Therefore, the limit of the left hand side is also
zero. But by the assumption that the pair (A, G) is reconstructible, the (n-r x n) matrix on
the left side has rank n and therefore has a left inverse. Therefore, the system of equations

GAn—l
GA™?
: z=0
GA
G
has the unique solution z = 0. It follows from the fact that the limit of the right side of

(5.23) is zero that the limit of z; as t — oo is zero. This proves that (A — BF') is stable. |

4. Convergence and Stability Theorems That Only Require Controllability and
Detectability

The following theorem shows how the condition that the pair (A, G) is reconstructible

can be relaxed and replaced by the assumption that (A, G) is detectable.

Theorem 5.5: Consider the optimal linear regulator problem, to maximize

-1
(5.24) Y {27 Rz( + u] Qu¢}

t=ty
subject to zy, given, and z44; = Az, + Bu,. Here z, is (n x 1) and u; is (k x 1), while R is
a negative semidefinite matrix of rank r < n, and Q is negative definite. Assume that the
pair (A, B) is controllable. Further, let R be represented as —R = GT G where the matrix

G is v x n. Assume that the pair (A, G) is detectable. Then the closed loop system matrix

(A — BF) is stable. Further, the feedback law assumes the form
F = (F; 0O)U

where F] is (k x m) and where U is any nonsingular (n x n) matrix in which the first m rows
of U form a basis for the reconstructible subspace of (A, G). This means that the optimal

setting for u, is a linear combination of basis vectors for the reconstructible subspace.

Proof: Select a nonsingular matrix U whose first m rows form a basis for the reconstructible

subspace of the pair (A,G), where m is the dimension of the reconstructible subspace.
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Construct the reconstructibility canonical form by defining z} = Uz, A' = UAU!,G' =

GU™!,B' = UB, so that
2oy = A'zy + Bl

I /1!

hh =0Ty
or
(5.25) [-"’nﬂ] [-’111 ] [Eu] + B'u

. T2t+1 -"-‘z:
I
5.26 = [ 0 ["1*]

( ) Yt [ 1 ] zh,

Here z\, is (m x 1), 25, is (n —m) x 1, G| is (m x m), A}, is (m x m). In terms of the
transformed variables z}, the term zJ Rz, in the criterion function (5.24) is
T
zl Rey = ) U™} RU™ 'z,
Trr=1T AT Apr-1
=—zy U™V G'GU 'z}
In constructing the reconstructibility canonical form, it was proved that GU~! = (G} 0)

where G is the (m x m) matrix in (5.26). Thus, the term in the criterion function can be

written as
zT Rz, = — 217 GT G2},
_ 1T 'T Rll 0
= ’-'u 1131z = Ty [

where —R}; = GTG,; is an (m x m) matrix. Thus, the optimum problem posed in the

statement of the theorem is equivalent with the following problem: to maximize
t1—1
Ry, ©
G EE LR
t=ty
subject to

I
-’-"1r+1
Tors

4 4l (]

12 221 [Ty B,
Since (A, B') is controllable, it follows from theorem 5.4 that the matrix Riccati equation for
this problem starting from P;, = 0 converges. Let us partition the matrix Riccati equation

for this problem conformably with the partitioning of z;. The result is, where we omit primes
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from variables for convenience,

(5.27)

Pi1(t —1) Pra(t—-1) _ [R“ U]
| Pni(t —1) Pys(t — 1) L0 0
AT Pii(t)An + AT, Pra(t) Aa1 + A2i Poi(t) A + AT  Paa(t) A1z, AT, Pia(t) Az + ATszz(t)Azz]

A{zng(t)An + A{zpzz(t)ﬁn ; Ag‘zpzz(t)Azz

_ [ATiPu(t)Br + AL, Pu(t) By + AT Pra(t) By + A, Pra() By | (BTP(c)B + Q)_1
| AL, Py1(t) By + Azz Paa(t) By )
. [ AT, P11 (t) By + AT, Pay(t) By + AT, Pia(t) By + ATy Pyy(t)B2 1T
AT, Py (t) By + A22Pa3(t) B,

Inspection of (5.27) immediately shows that starting from P;, = 0, the solution is

Plz(,t) =0
le(t) =0
Ppa(t) =0

for all £ < t;. Substituting these solutions into the difference equation for Py;(t) gives
Pyy(t —1) = Ryy + AT, Pii(t)Any — AT, P (t)By(B Py By + Q)

(BT Piy(t)An).

This is just the matrix Riccati equation for the subsystem defined by the matrices (A, By, Q, Ryy).
Since this system is controllable, this equation is known to converge. The optimum steady

state control law is given by (restoring the primes),
(Fi, F3) = [(BT P}, B} + Q)" BT P}, B A, 0]

where F| is k x m, and F; is a k x (n — m) vector. The closed loop system is then

' y o Bl FF 0 -"l"
598 [h:n] _ [ 11— B ] [ 1:]
( ) Ty A;zl = BQF{ '22 %

The subsystem (A),, B}) is controllable, since (4', B') is controllable. Further, by the

construction of the reconstructibility canonical form, the pair (A}, G|) is reconstructible.
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Therefore, by theorem 5.4, the closed loop system matrix (A}, — By F}) is stable. The eigen-
values of the closed loop system (A’ — B'F') on the right side of (5.28) are the eigenvalues of
(Aj; — B F]) and the eigenvalues of A5,. The eigenvalues of A}, are less than unity in mod-
ulus by virtue of the detectability of (A, G) and by the construction of the reconstructibility
canonical form. Therefore the closed loop system matrix (A" — B'F"') is stable. Re.ca.ll that

A'=UAUY, B' = UB, 2, = Uz,

From the optimal control law u(t) = — F'z'(¢), we can calculate the contro! law in terms of
feedback on the original state variables, namely, uy = —Fzy = —(F'U)zy, so that (F'U) = F
or (F{ 0)U = F. Notice that (A' — B'F') = U(A — BF)U™!, where U is nonsingular. Thus,
“since the eigenvalues of (A' — B'F') are all less than unity in modulus, the eigenvalues of
(A — BF), which equal those of (4’ — B'F'), are also all less than unity in moduius. §
We can now prove the {ollowing theorem, which shows that under general conditions, the
matrix Riccati equation converges to a limit matrix P that is independent of the terminal

matrix Py, .

Theorem 5.6: Consider the optimal linear regulator problem starting from P, = 0. Assume
that sufficient conditions are satisfied so that iterations on the matrix Riccati equation start-
ing from terminal matrix P, = 0 converge, and that the associated stationary closed loop
system matrix (A — BF') is stable. Then for any negative semidefinite terminal value matrix
Py, iterations on the matrix Riccati equation converge to the same negative semidefinite

matrix P, i1.e., the limit point described in theorem 5.3.

Proof: The value of the optimal linear regulator problem with terminal value matrix P, is

ty—=1
zgf’(tg; Py )zy, = max Z {Z?TRIg + quut}

-1
{udily, =to

+ -":3; Pg1xgl
where P(to; Py,} is the solution of the matrix Riccati equation, (5.18) at ¢y with terminal

condition Py,. Because the matrix Py, is negative semidefinite, it is true that

(529) Ig;P(thU)‘tln 2 xT P(tﬂr Pt| ):!n

tn
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for every z4, belonging to R™. Notice that if us = —Fz, then

t=1 t1—1
Z [z;‘pRzg + urQut] = Z [ZE‘RIg - :l:,TFTQF:n]
t=ty t=ty
t1—1
=Y zI[R+ FTQF)z,.

t=to
Now consider applying to the problem with terminal value matrix P, the steady state control
law vy = —Fzy, where F = limy,_,_o Fy, is derived from the problem with zero terminal
value matrix. Then we have zy,; = (A — BF)zy = Dz where D = (A — BF). Let
W = (R+ FTQF). Then since z, = D(*~%)z, , we have that under this control the criterion

function attains the value

t1—1
3';:[DT(tt—tn)P(tl)D(h—lu)+ Z DT{:-—::.)WD(g_g,J)]zin

t=ty

for any z4,e R®. Since uy = —Fz; is not necessarily the optimal control law, this together
with (5.29) implies the inequalities,
z3 P(to,0)zo > z2 P(to, Pi)zo
t1—-1
(530) > zg'[DT(h—tn}P!lD(tl—tu) + Z DT(!—-tn)l_VD(twtu)]zo
f=fi_|
for every zoe R*. By assumption, we know that

(5.31) lim P(to, 0) = P.

ty——o0

Further, since the eigenvalues of D = A — BF are less than unity in modulus, we have that
limg,— 0o DT(""“}PHD{‘"‘") = 0 for every P;,. Therefore, the limit of the right side of
(5.30) is

ty—1
(5.32) ; limm zE[DT(l—fn)PtlD{f—-tn) + ¥ DT(!—!..)”/D(t—tn)]:o
p—s=—

t=in
t1—1

lim :{[Z DT(“t“')'WD“'t")]xg = rgprg

ty——oo
t=tn

for every zoe R*. Together with the inequality (5.30), the limits (5.31) and (5.32) establish
that limy,,_oo P(to, Pt,) = P for every F;,. |
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We can now state:

Theorem 5.7: Under the conditions of theorem 5.6, the algebraic matrix Riccati equation
(5.33) P=ATPA+R- ATPB(BTPB+ Q) 'BTPA

has a unique negative semidefinite solution P°.

Proof: We know from theorem that P° = lim_o P(t, 0) is a negative semidefinite
solution of (5.33). If P were another negative semidefinite solution of (5.33), we would have
from the previous theorem that

lim P(to, P) = P°.

th——o00

But P solves (5.33), implying that
P(to, P) =P

Therefore P = P°. |

5. Convergence and Stability Theorems That Only Require Stabilizability and
Detectability '

We now provide theorems that relax the assumption that (A, B) is controllable, and
replace it with the assumption that (A, B) is stabilizable. We consider the optimal linear
regulator problem, and assume that (A, B) is stabilizable. Without loss of generality, assume
that the system is in controllability canonical form, so that .

(5.34) [31:+1] _ [-4011 Al?] [1’1:] 4 [3;]1] u(t)

Z2t41 Az Lz

where z14 is (m x 1),z3¢ is (n —m) x 1, A1y is (m x m) and A3z is (n —m) x (n — m), where
m is the dimension of the controllable subspace. The eigenvalues of A,; are in modulus less
than unity, and the pair (A1, B;) is controllable by virtue of the stabilizability of (A, B).

Partition R conformably with z so that

_[Rn RIZ]
R_[Rzl Rz
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where Ry is (m x m), and Raz is {n —m) X (n — m), and Ry = RY,. Partition the value

meatrices P;_; conformably with the partitioning of x4, so that

P, = Pi(t)  Priaft)
Pyi(t) Prnlt)
where Py is (m x m), Pz is {n — m) x {(n — m). Then writing out the matrix Riccati

difference equation (5.27) in partitioned form gives

Pu(t—1) = AT, P ()A1 + Ry

(5.35) . .
- AT,P]l(t)Bl(Q + BI Pll(t)B)'_lBl P]l(t)Au
Piaft — 1) = AT Py (t) Ara + AT Pra(t) A2z + Raz

(5.36) ~ AT PL(t)B1(Q + BT Py1(t)By)~ (BT Pi1(t)Ara

+ BI Pi5(t)As2)
Pyt — 1) = AL P () A + AT Pa(t) Az + AL Pu ()AL
+ A;zpzz(f)flzz + R
(5.37)

— (AT Pui(t) By + AR Pua(t) BI(Q + B Pu(t)B1)™!
(BT Pui(t) A1z + B Prz(t)Az)
Equation (5.35) is itself the matrix Riccati equation for the optimal linear regulator problem,
to maximize

t; -1

Z {""’{1311311 + u?Quf} + 3.{:1 Pii(t)zy,
=i,

subject to
z11+1 = Anzn + Biwy

_ Tty grven.
Since the pair (A}, By ) is controllable, we know from theorems 5.5 and 5.6 that limy,, _o P11
(to) exists and is independent of the negative semidefinite terminal matrix Py(t;). Now
represent the negative semidefinite matrix Ry as — Ay = GTG where G is (r x m) and 7
is the rank of Ryy, with r < m. Assume that the pair (A}, G) is detectable. Then from
theorem 5.5, we know that the stationary closed loop system matrix {A;; — By F)) is a siable

matrix.
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From the recursive structure of the partitioned matrix Riccati equations (5.35), (5.36),
(5.37), it follows that the limiting behavior of Pi3(t) and Py3(t) as t — —oo is equivalent with
the behavior of the pair of equations derived by replacing Py;(t) in (5.36) with its limiting
value Py, and then, Py(t) and Py3(t) in (5.37) with their limiting values in (5.37), if Pj,(t)
has a limit. Making this replacement for (5.36) gives

(5 38) Plz(t — 1) = A'lrl Pi1Ap + A'lrl P]g(t)Azz + Rys
— AT P\ By(Q + BT P11 By )~ (B} P11 Ayz + BT Pia(t) Azs).

Upon noting that

[T — AT, PuBy(Q + BT P By) ' B | = (A1 - B1Fy)T
equation (5.38) can be written as
(5.39) Pia(t — 1) = (A]) — F B])Pua(t) A2z + Raz + (AT} — FT B )P Ar

Since (A11 — B1F) and Aj; are both stable matrices, it follows from (5.39) that Pys(t)
converges as £ — —oo, and that this limit is independent of the terminal matrix Py5(t,).

Again, the limiting behavior of Py;(t) as t — —oo is governed by the equation derived by
substituting the limiting values of the“forcing function” Py)(t) and Pj(t) in (5.38). Letting
Pyy and Py3 be the limiting values of Py;(t) and Py2(t), these substitutions give

Py(t — 1) = Al PriAvs + Al Pia Ay + AL Py Ay
(5.40) — (AL P By + AL P2 B))(Q + Bl P,y By) (BT Py A1z + BT Pi3A3)
+ Ryz + AL Ppa(t) Ana.

Since all the terms on the right side of (5.40) are constants except the last, and since Aj;
is a stable matrix, it follows that as ¢ — —oo, Pj3(t) converges to a matrix P;; that is
independent of the negative semidefinite Py3(t;) chosen.

By partitioning the optimal steady state feedback matrix F conformably with the par-
titioning of z, we obtain

F=(F\ F),
where Fy is k x m and Fj is k < (n —m). From formula (5.17) in partitioned form, we obtain

(5.41) Fi =(Q+ B PB)) 'BT P Ay
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(5.42) : | Fy=(Q+ BYPy1By) 'BT Py Az,

The optimal closed loop system matrix is

_[An—BiFfy Ay - BiFy
(5.43) (A- BF)= 0 Ayy
The closed loop system matrix is stable, since {A;; — B F}) and Aj; have both been shown to

be stable under our assumptions, and since the eigenvalues of (A — BF) ate the eigenvalues
of (A1; — B1F1) and the eigenvalues of Aj;.

We collect these results in the form of the following theorem:

Theorem 5.8: Consider the linear optimal regulator problem where { A, B} is stabilizable.

Without loss of generality let (A, B) be in controllability canonical form, so that

[IIH!]_[AH Alz][zu] ( )u:
Tot4) Azz) lzg

where (Ay1, By) is controllable and Aj; is a stable matrix. Write the criterion function in

the form
1 -1
Ry, Rlz] [zu] T }
z;tu {[31:-1'2:] [ Rop) lza] T™ Que
T
+[IHI P! [xlfl].
172;1_ ! L2y

Here P,, and R are negative semidefinite and @ is negative definite. Let the rank of the

negative semidefinite matrix Ry be r < m, where m is the dimension of the controllable

subspace. Let —Ry; = GTG where G is 7 x m. Assume that the pair (A1, G) is detectable.

Then

(i) Hterations on the matrix Hiccati equation (5.18) converge to a unique negative semidefi-
nite matrix that is independent of the terminal matrix B, .

(i1) The optimal closed loop system matrix

A —-B1Fy Ap-BFR
0 A

(A-BF)=

is stable.
It should be remarked that under the conditions of theorem XXXXX , the conclustons of
theorems XXXX and XXXX both hold. In particular, so long as (A, B) is stabilizable and
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(Aj1, G} is detectable {where GTG = — Ry1}, the algebraic matrix Riccati equation (5.33)
has a unique negative semidefinite solution.

The argument leading up to theorem 5.8 actually establishes more than is stated there.
In particular, for the convergence results on P; and the stability of (A — BF), all that is used
is that Ryy and Py (t;) are negative semidefinite. The above arguments establish convergence
of P, as £ — —oo and stability of (A — BF) for arbitrary Py3(¢,), Ppa(t1), Rz and Rp3. Thus,
it is not required to assume that R is negative semidefinite. This result is useful, so we

summarize it in a theorem.

Theorem 5.9: Consider the optimal linear regulator problem described in theorem 5.8.

Assumc that {4, B) is stabilizable, P;;(¢,) and R;; negative semidefinite, and (A11,G) is -

detectable where GTG = —R);. Otherwise Ri2, Rz, Py2(t1) and Pya(ty) are arbitrary ma-

trixes. Then

(¢) Iterations on the matrix Riccati equation converge to a unique matrix independent of
Pi,. (The limit matrix lim,_,_ P; is not necessarily negative semidefinite, although
limy._ o Py1(t) is negative semidefinite.)

(f2) The optimal stationary closed loop system matrix (A — BF) is stable.

| (¢12) Partitioning F' = (F) F3) conformably with the partitioning of z, Fy is independent of

Ry2 and Rj; , while F; is independent of Rj,. )

Proof: Parts (i) and (it) follow from our preceding remarks and the argument leading to
theorem 5.8. Part (iif) follows directly from inspection of equations (5.41) and (5.42), along
with recollection of the recursive structure of (5.35), (5.36), and (5.37). 1

It is useful to collect the results of the previous theorems in the form of the following

summary theorem:

Theorem 5.10: Consider an optimal linear regulator problem of the form, maximize,

(5.44) tlz_] [ro:]r [Ruo Ros] [rm] + uTQu
- Soollzael LR Rasllza P
subject to
zoe+1 | _ [ Aoo Aoa] [Io:] [30]
(5.45) [r:sm] - [ 0 Aggd Lz Tlo ™
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hete z; = [:::] is an (n x 1) vector, partitioned into an (m x 1) component z¢; and an
(n — m) x | component z3;, where | < m < n. Assume that the pair (Ago, By) is control-
lable, so that (5.45) is a controllability canonical form. Assume that {4, B) is stabilizable, so
that the eigenvalues of A;; are bounded in modulus by unity. Assume that Rgo is negative
semidefinite, that @ is negative definite, but that Ro3, R30, R3s are unrestricted as to defi-
niteness. Let Ryg be factored according to Rgg = —GTG where G is an r x m matrix, where
r is the rank of Rgo. Assume that the pair (Agg, G) is defectable but not reconstructible.

Under these conditions, the problem can be transformed to one of the form, maximize

] ] 13 ]
(5.46) 3 Za (,] l? 2| | Za
»i=to | 1y, 31 flzp flaz ] [ =3
subject to
] ] ] 1] ]
e DR At B b B B
(5.47) -'“"'2t+1 = 12 22 23 -"-"2: + | By | w
Tyt 0 0 Ay |73 0

Letting Ry; = —G'T G, the pair (A4}, = G') is reconstructible. To achieve this reformulation

of the problem, the vector zg, is partitioned into zg = :;:], where z)y is a p x | vector ,

where 0 < p < m is the dimension of the reconstructible subspace of {A;,,G) and z,. is
(m —p) x 1. Form an m x m nonsingular matrix U, whose first p rows Uy form a basis for the
row space of the reconstructibility matrix for the pair {A;;,G). Then define z} according to
the transformation

' i U o
zm}: Y :[0 I]

I
Tt

(5.48)

l‘o:]
I3t

' '
where here [ is the (n—m)x(n—m)identity matrix. Then in (5.46), [R'”] = U~ Roy, (Ry, RY,) =
: 23

B
B,

from a terminal value matrix F,, = 0, iterations on the Riccati matrix difference equations

RsoU",[ ] = UBy, A}y = U Aoy, Ay = UsAgy, and R, is a (p x p) matrix. Starting

converge as tg — —oo. The stationary optimal feedback rule is of the form u, = - F|z|,,

while the stationary optimal closed loop system is of the form

I i 1] t I [ 1 I
’3}:+1 - ’11 —B}F} ? 1‘3‘31'1:3 ::”
. ]
(5.49) Zasr| = | 12 —ByF] Ay —Ay n By Fy T
T3i+1 0 0 33 T3t
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We note that the eigenvalues of the optimal closed loop system are the uncontrollable poles
(i.e. the eigenvalues of A}y), the unreconstruciible poles (i.e. the eigenvalues of A),), and the
optimally controlled controllable poles (i.e. the eigenvalues of A}, — B F})). The eigenvalues
of A}, are less than unity in modulus by assumption. The eigenvalues of (A}, — B{ F}) are
less than unity in modulus because it is both possible and optimal to set them this way. The
eigenvalues of (4%, — B, F;) can be located arbitrarily in the complex plane, subject to the
condition that complex eigenvalues appear in conjugate pairs. It is possible to locate the
eigenvalues of (A}, — B3 Fy) arbitrarily in the complex plane, Because (Ago, Ba) is controliable.
However, because eigenvalues of A, are all unreconstructible, it is desirable and optimal to

set F; =0, and so not to tamper with the unreconstructible eigenvalues,

Proof: We ask the reader to prove this theorem, which involves only a repackaging of our -
earlier results. The reader should use the state transformation (5.48) and trace through its

implications.
6. Examples
The following three examples have structures that illustrate aspects of theorem 5.10.

Ezample 1. A firm chooses its capital stock to maximize

t1-1

Z {(fo+ fike — d/2(kyyy - kt)z — Jik,)

=t

fo, i,d >0

subject to ky, given and J; obeying the law of motion
Jigr = Ay [ A< L

Here k; is the stock of capital, and J; its rental tate at time ¢. Define the state vector and

control vector as _

ky
zp= |Ji|,uy = (kt+1 - kt)
1

Then we have that A, B, R, and Q are given by

0 0 ]
A nl,B=1{y
0 1 0

|
(}
0

A=




Jo ~1 A/
R=|-3 0 0 |,Q=-d/2
fif2 0 fo

Letting Agp = 1, Ba = 1, we see immediately that (Ago, Bp) is controllable, and that G = 0
where ~GTG = Rop = 0. Thus the pair (Ago, G} = (0,0) is not reconstructible. Further,
the pair {Ago, G) = (0,0} is already in the reconstructibility canonical form indicat‘ed by the
theorem, there simply being no part of the state that is both controllable and reconstructible.
Theorem (5.10) then implies that the eigenvalues of the optimal stationary closed loop system

equal those of A, namely (1,A,1). (To see how these results can be achieved by classical

methods, see Sargent {1987, Chapters 1X and XIV}).

Ezample 2. We now consider a rational expectations equilibrium model of an industry

consisting of m identical firms that face demand schedule
(550) P = AQ — AiQh AgAi >0

where P is price at ¢, and @y = mgqi, where g is output of the representative firm. Let

output be given by the production function

(5.51) g = fike+ fane, F1>0,f2>0

where k; and n, are capital and employment of the representative firm, respectively. The

firm maximizes

ty—1
(5.52) Z{P:Q: —e(nepr, e, kepr ke, Jo, wi)}

i=iy

subject to the cost schedule

(5.53) c(neg1,ne, keat, ki, Jo, we) = Jokgteng + (d/2) (kg1 — ke)2+
' (e/2)(nsy — ) d > 0,e> 0

with k; and n, given at £, and subject to the laws of motion for the rentals on capital J; and
labor wy,

Jo=pdir, i<l
(5.54)

we = Awy-g, A<t
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We define market wide stocks of capital and labor as K; = mk; and N; = mn;.
A rational expectations competitive equilibrium is reproduced by a social planning prob-

lem which is to maximize

t1—-1

(5.55) 25 {[-40 - % Qt]Qt — me(nyyy, ne, ket ke, Jhwt)}
=ty

subject to Q¢ = mq; and (5.53) and (5.54) (see e.g., Sargent [1987, Ch. XIV]). We shall
proceed to analyze the equilibrium as follows. We shall apply the results of theorem (5.10)
to show that the eigenvalue of Aj; is 1, this being a controllable but unreconstructible pole
of the system. We shall argue that K; and N; are “borderline unstable” being governed by
the unit pole, and shall explore what this means for their behavior. We shall also show that
Q¢ is asympototically stable.

Substituting (5.51) and (5.53) into (5.55) gives

t1—1

S {40 - SHAK+ ANIAK: + F2N) = So(Kear - KoY

t=ty

e
- %(NHI - Nt)2 - Jth - tht}

Writing out this objective function gives

t1—1 A
> {[AaflK: + Ao falNi] — ?‘[ffo + [3NE +2f1 f1 K Ny
(5.56) t=to

d

5 (K1 — Bl — 5

e
Zrﬁ(

Neyr = No)? = S K, - tht}

Define the state vector and control vector as

K,
N,
—_— J: oy = KH—l_Kt]
on 'Nl+l_Nt
1
The transition equation is
Wit 1 00 0 0] [K k: (1}
Nit1 01 0 0 0 Ny
0 0 —
J‘+1 = 0 0 j 0 0 Jf_ + 0 0 ﬁt+l_]KVt]
Wi 00 0 XA O wt i )
1 0 0 0 0 1 | 0 0
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or
(5.57) z¢41 = Azy + By

The objective function can be written as
t1—1

> (zf Ree + u{ Quy)
t=ty
where )
-4 Anf -1 o0 —%"fl.\
-Bhf -5 0 -} -%Ph
R=| -} 0 0 0 0
0 -1 0 0 0
$h %2 0 0 0
d
=% B8
o-[F 4]
0 -

which is to be maximized subject to (5.57).
We can partition the matrices A, B, R, @Q and the vector z; to deliver a controllability
canonical form of the type called for in (5.44) and (5.45) of theorem (5.10). Thus, in terms

of theorem (5.10), we set
(1 0 1
A=y 1] Bo=|

1 0 1
o 4 .
R00= _"A_zlfl2 __ilflfz
| =5 hha —A;‘fzz ]

It is straightforward to verify that the pair (Ao, Bo) is controllable, since the rank of By
itself is two. Next we need to “factor” Rgg. Let GT = \V Azl(fx f2). Then we have that
~GTG = Ryo.

Examining the reconstructibility structure of the pair (A, G), we must calculate the

rank of
gm0 | A BVE
Gl | ny4 myA)

which is evidently unity. Therefore, the pair (.dgo, G) fails to be reconstructible.
To produce a reconstructibility canonical form for (4o, G), we set Uy = (fy f2),U2 =
(1 -0), letting U = (g;) be our nonsingular transformation matrix. Evidently, U is a nonsin-

gular matrix whose first row is a basis for the row space of Q. We find that

vt = [I/Ufz fljfz]
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Following the construction of theorem (5.10) we form

An Al!]_ -1_[1 0]
[Au A =UAwlU™ = 0 1

GU™! = (A2 0),Rn =-GTG =-4,/2
] =veu= [} B3 vm=[F £]=[E]

T
We note that zy; is output, while z, is capita] stock. Thus, output is in the reconstructible

subspace, but the capital stock is not (neither is the stock of labor).

The transformed system corresponding to (5.47) of theorem (5.10) assumes the form

Qt+1 1 00 0 0][Q:
Kt 01 0 0 Of|K,
Jg+1 =10 0 H 0 0 Jg
Wisl 00 0 A 0] [w;

1 0 0 0 01 1

+[f1 fz] Kiy1 —
1 0J | Ny - N!

Letting F| be the (2 x 1) vector [E ] we have that the optimal closed loop system can be
21

represented as

Qt+1 1_(f1F;l'| fZle) 0 *‘B'IF:: Qt
K1 —F“ 1  —BLF! K,
Je+1 0 u 0 0 Ji
w;“] [ 0 0o 0 - A 0 wy
1 0 0@ o 1] |1
or ' :
Qi nw=BiFi 0 -BiF;] [Q
K| =| -ByF 1 -ByF || K,
T3141 0 0 Az T3

where 2, = (Jy, wy, 1), and where Fj is a (2 x 3) matrix giving the optimal feedforward
part of the controls on the uncontrollable states (J;, wy, 1). Theorem (5.10) implies that the
controls feedback on output, but not on capital and labor separately. It also implies that
the eigenvalue 1 — (fy F}, + f2F3,) = A}, — B} F] is strictly less than unity in modulus.

The above closed loop system implies a law of motion for Q; that can be represented as

(5.58) Qe+1 = Qi = —(fiFyy + f2F3)Qt — (f1Fi3 + f2Fy3)za:
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. t
where F3 = [g: ] , where F{; and Fj; are each (1 x 3) vectors, and where —(fi F{, + foF},)
is less than zero by theorem (5.10) .

To illustrate the behavior of this system, suppose that z3; 1s constant over time. Then

(5.58) tmplies that @, converges to the stationary value

_ =(fiFis + f2Fn)
(5:59) ' 9= fitFy+ f2Fn

The laws of motion for capital and labor can be represented as
Kip1 — Ky = ~F}1Qs — Fiyza
Nt+1 - Ny = —Fz'th - szazlit

Substituting the steady state value of @ given by (5.59) into these equations and rearranging

gives
. H(Fy Fiy — Fi, Fy3)
K - K, =
1 t (fiF11 + faF3)
W . = PRl = L)

(hFly + 1o F)
Only in the singular case in which Fj; F3, — F3,F|; = 0 do capital and employment converge.
In general, each diverges in opposite directions at equal rates, governed by the unit eigenvalue
that corresponds to the controllable but unreconstuctible pole.

We now use classical methods to show that the sign of (£}, Fy; — F3, F];) equals that of
(J/fi —w/f2), where J is the constant value of J; and w, the constant value of w, that is
assumed in this experiment. Notice that in this experiment, in general either capital or labor
becomes negative in finite time even though the parameters can be selected to guarantee that
output @; converges to a positive value. We shall use classical methods to help us interpret
this outcome. We shall study an infinite time, discounted version of the problem. The social

planning problem is to maximize with respect to sequences for (K, V)

iﬁ‘ {[Ao - él (fiKe + faNi)l[1 Ko + fa Ve
t=0 :

d
= 5 (e = K)? = £ (Nes = NP = JiKe - wiVe),

given NgKp, and given sequences {J;, w¢}.
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(5.63) Qur1 = AQ: +co +

The Euler equations for K and N are

BAg — fL — BJy - AiBfilfiKe + faNe} + dB Ky

(5.60)
~d(B+ 1)K +dKe_y =0

BAof2 — Bwe — AiBfo 1K + aNi] + efNiy
{5.61)
- e(ﬂ + I)Ng + CNg_l = 0

This system is a matrix Euler equation in (K;, N;) that can be solved usihg the matrix
polynomial factorization methods of chapter 1 or Hansen and Sargent [1981]. However, in
effect because of the existence of a nonreconstructible uncontrollable state, the following
alternative approach is available for this special problem. Multiply the Euler equation {5.60)
for K by ef, multiply the Euler equation (5.61) for N by df; and add them. After rearranging

one obtains

defQii1 — (A1Bfle + AiBFRd + ed(B + 1)Q: — deQe—y
= efiJ + dfswe — (BAofle + BAcf1d),
which is a univariate Euler equation in @, = (f, K¢ + f2N;) only.
Let [def — (A8 fle+ AiBfd+ed(B+ 1)L +del?) = deB(1 - (AF)~'L)(1 — AL}, where A

(5.62)

is less than unity in absolute value. That a unique A less than unity in absolute value exists
that satisfies this operator equation follows from Sargent [ch. 1X, figure 4]. The solution the

the difference equation (5.62) that maximizes social welfare can be represented as

C[L_’]

VI {efiJe + dfaun}

where cp and ¢; are constants. Evidently, from (5.63) output Q is asymptotically stable. In
particular, let us assume that J, = J for all £ and that w; = w for all ¢{. Then output @

converges eventually, since A < 1. In the undiscounted (8 = 1) version of this problem, A

precisely equals the pole corresponding to the reconstructible, controllable part of the state

in the transformed version of example 2.
To investigate how capital and labor are behaving in the vicinity of a steady state for

output, return to the Euler equation for capital, which can be represented as

[dBL™' ~ d(1 + B) + dL]K, = BJy + A1Bf1Q¢ — BAofr.
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Factoring the polynomial in L on the left side and solving as in Sargent, (1987, ch. XI;

Interpreting|, we find

i AL Jt
(5.64) (1-L)Kep =7, o [Ao — - A1Q1]
Following a similar procedure for N, we find that
fa BL! wy
i l1-L)Nyy=~——[Ap—— - A
(5.65) (. Wesr = = l—ﬁL—l[ "~ % 1Qt)

Now suppose that w; = w and J; = J, which we know implies that @y converges, say to Q.
Then except for the singular case in which w/f; = J/ fi, capital and labor are both diverging,
one toward +o0o, the other toward ~oco. If J/f} > w/fy then K; —» —o0, N; — 400, while
if J/fi < w/fz, then K; — 400, Nty - —o00. The economic interpretation of this situation
1s straightforward. The firm can hire or sell all of the labor and capital that it wants at the
rentals w and J, respectively. The linear technology Q¢ = f Ky + fa N; permits firms to use
one factor to produce the other. It is only the costs of adjusting capital and laborlwhich

prevent the firms from immediately exploitinglthis opportunity without limit.

Ezample 3. We now consider a variant of the model of example 2. The model is identical
~ with the previous one, except that the supply of labor to the industry is less than perfectly

elastic. In particular, we now assume that
wy = Co + C1 Ny, co,c1 > 0.

All other aspects of technology, preferences, and competitiveness remain the same. The
tational expectations competitive equilibrium now implicitly maximizes social planning cri-

terion

-1 A d e
(5.66) > {40 — Sl — o= (K - Ko -
566 t=tIy

.
(Nuws = N = JiKq = CoNe - 5 W2},
where the term (CoN; + C—ZLN,Z) is the area under the supply curve for labor to the industry.

This social planning criterion is the interiemporal sum of consumer surplus minus net social

costs of production.
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For this problem, we define the state vector z; and control u; as

Ky
_ | N _ [ Kt+1 = K
“a=lg = N:+1—N1]
1

The transition equation is now

where

A=

OO -

0
1
0
0 0

The R and Q matrices for the linear regulator problem corresponding to the social planning

problem are

=2 -&hh -1 -85
o _4_42_1f1f2 _%1 22%'1 0 ;Anfzz—Cl!
S -3 0 0 0

_%‘_‘fl u%ﬂl 0 0

Here the partitions are again designed to match the partition required by (5.44) and (5.45)
of theorem (5.10).

Notice that Rgg is now of full rank, since ¢; # 0. A factorization of Rpg is —GTG where

_ 1A A fa
G‘\/: 0 C,/A.]

The reader is invited to verify that (Ago, G) is now reconstructible. Thus, our optimization _
problem is automatically in the form of (5.46)~(5.47) of theorem 5.10 with the understanding
that z; is empty.

Application of theorem 5.10 now implies that the optimal closed loop system has all of
its controllable poles placed at values less than unity in modulus, while the uncontrollable
eigenvalue u is less than unity in modulus. Only the uncontrollable unit eigenvalue corre-
sponding to the constant state 1 lies on or outside the unit circle. These facts imply that
both capital and labor are asymptotically stable, as is output. If we performed a version of
the experiment studied in the last example, S;f.'ttil'lg Jy = J for all t, we would find that both
Ki and N; converge, and that it is possible to select the parameters of the model so that the

stationary values of K and V are both positive.
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This example exhibits the important technical role played by a positive C; in elemi-
nating the unreconstructible, uncontrollable, and unstable pole whose presence causes the

divergence of capital and labor in (the constant J and w version of) example 2.
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Computer Example: Interrelated Factor Demands

With Adjustment Costs

This section reports the output from issuing the MATLAB command “dynfac”. The program
dynfac.m computes the equilibrium of a linear quadratic industry model with interrelated
costs of adjustment for capital and labor. The equilibrium is computed by mapping a
fictitious social planning problem into a linear regulator problem. The output from issuing

the command “dynfac” follows.

dynfac

eche on

cla
This program calculates the equilibrium of a two-factor version of Lucas and Prescott’s 1971
model of investment under uncertainty. The model is linear quadratic, and constant terms
are omitted. The model is a version of one described by Hansen and Sargent in 1981 and

Sargent in Macroeconomic Theory, 1987.

The model illustrates a way of modeling dynamically interrelated demands for factors of
production, and also illustrates some technical aspects governing the “stability” of solutions
of linear optimal control problems. In particular, the first model analyzed below is one in
which imposing the “transverality conditions” does not imply stabilizing the system. See
Sargent, “Linear Control, Filtering, and Rational Expectations,” U. of Minn. manuse., for

technical details.

pause APress a key to continue demonstration

cla

There is a single representative firm producing one good with two factors of production,

capital k(t) and labor n(t). Demand for output in the industry is given by
p(t) = -Al * Y(t) + u(t)

where p(t) is output price at t and Y(t) is industry output,and where Al ; 0 and u(t) is a

random shock to demand with autoregressive representation

u(t) = lam * u(t-1) + eu(t)
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where eu(t) is a white noise.

Output of the representative firm, y(t), is given by
y(t) =1 * k(t) + 2 * n(t)

where k(t) is capital of the representative firm and n(t) is employment.
pause %Press a key to continue demonstration
cla

The firm rents capital and labor at exogenous rental rates of J(t) and w(t), respectively.

These rental rates follow the autoregressive processes
w(t) = rho * w(t-1) + ew(t)
J(t) = rhol * J(t-1) + rho2 * J(t-2) + eJ(t)
where ew(t) and eJ(t) are white noises.
pause Press a key to continue demonstration

cla The rational expectations equilibrium of the industry is a pair of contingency plans

for k(t),n(t) that maximize the social welfare function
; 1 &
Th—.rr;o 7 g { Consumer surplus at t - C(t)}

where
consumer surplus = -.5 * A1 * Y(t)? + Y(t)*u(t)
C(t) = J(t)*k(t) + n(t)*w(t) + v(t)*Q*v(t)
where v(t) = [k(t+1) - k(t), n(t+1) - n(t)]’ and Q is a (2x2) positive definite matrix of
“adjustment” costs.
pause APress a key to continue demonstration
cla

We shall proceed by mapping the optimum problem into the undiscounted linear regulator
problem. The state vector is [k(t),n(t),w(t),u(t),J(t),J(t-1)]’, which we denote x(t). The

148



control vector is the (2x1) vector v(t) = [k(t+1) - k(t), n(t+1) - n(t)]’. The linear regulator

problem is to maximize

i = f { x(t)*R*x(t) + v(t)"*Q*v(t)}

T—o T t=0
subject to x(t+1) = A * x(t) + B * v(t) + e(t)
where e(t) is a vector white noise.

We proceed to set some sample parameters for our problem and to map our problem into

the linear regulator by filling out the matrices A,B,Q,R.

pause iPress a key to see the matrix B for our problem.
cla

B=[10; 01; 00; 00; 00; 0 O]

B =

o O o o o
o o o o

pause APress key to set parameters of the a.r. processes.
cla

rho=.9

rho =

0.9000

lam=.8

lam =

0.8000

rhoi=1.3; rho2=-.4;

pause APress a key to set parameters governing costs.

cla
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fi1=1,£2=3

f2 =

3

Q=[25 5; 5 10]

Q =
25 5
5 10
Q=-Q;
pause %Press key to set demand curve parameter
cla
A1=4;

NOTE: You can edit this final to set the parameters of the model at whatever values you

want.

Now we move on to create the matrix A of the linear regulator.

pause YPress a key to see A.
cla
A=[1 00000; 01 0000; 00rho 00O 0;000 lam 0 0;...

0 000 rhol rho2; 000 0 1 0]

A=
1.0000 0 0 0 0 N
0  1.0000 0 0 0 0
0 0  0.9000 0 0 0
0 0 0  0.8000 0 0
0 0 0 0 1.3000 -0.4000
0 0 0 0  1.0000 0
pause %Press a key to create R.
cla

R=[-.5%A1%£22 - Sxfi«f2%«A1 O .5%f2 -.5 0;...
- .5%A1*f1*f2 - 5*A1*f12 - 5 5%f1 0 0;0 -.5 00 0 0;...
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.5*f2
R =
-18.0000
-6.0000
0
1.5000
-0.5000

pause

cla

-6.0000
-2.0000
-0.5000
0.5000
0

0

%Press a key to solve the social planning problem

-0.5000

0

0
0
0

1.5000
0.5000
0

0
0
0

-0.5000
0

o o o o

0
0
0
0
0
0

.5*£1 000 0;-.500000;0000 0 0]

(k,S]=double(A’,B’,R’,Q’); %Working, please wait.

Warning:
Results may be inaccurate.

(The warning is related to a unit endogenous eigenvalue that is present in the system. The

warning will disappear when we reformulate the system to “cure” the unit eigenvalue below.)

The optimal value function for our problem is given by

where S is given by

S
S =
-31.5793
-10.5264
1.4768
2.2866
-1.4450
0.3827

state=’[k(t),n(t),w(t),u(t),J(t),I(t-1)]1";

-10.5264

-3.5088
-4.5077
0.7622
1.1850
-0.5391

1.4768
-4.5077
11.2912
-0.0306
-2.7646

1.3113

x(t)"*S"x(t)

2.2866
0.7622
-0.0306
0.1678
-0.1058
0.0452

-1.4450
1.1850
2.7646
0.1058
0.8342
0.3898
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0.3827

-0.5391

1.3113
0.0452
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pause i\Press a key to see optimal decision rule

cla

The optimal decision rule for the social planning problem (i.e., the rational expectations

competitive equilibrium decision rules for [k(t+1) - k(t), n(t+1) - n(t)] are
v(t) = -F*x(t)

where F is given by

F=k’

F =
0.5029 0.1676  -0.1547  -0.0291 0.0683  -0.0290
0.2012  0.0671 0.4781 -0.0117  -0.1527 0.0684

state

state =

[k(t),n(t),w(t),ult),I(¢),l(t-1)]

pause iPress a key to see optimal ‘‘closed loop’’.

cla

The optimal “closed loop” system is
x(t+1) = (A - B*F) * x(t) + e(t+1)

where A - B*F = ABF is given by
ABK=A-B*k’
ABK =

0.4971  -0.1676 0.1547 0.0291  -0.0683 0.0290
-0.2012 0.9329 -0.4781 0.0117 0.1527  -0.0684

0 0 0.9000 0 0 0
0 0 0 0.8000 0 0
0 0 0 0 1.3000 - -0.4000
0 0 0 0 1.0000 0
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state
state =
[x(t),n(t),w(t),ult),I(t),I(t-1)]
pause iPress a key to continue
cla
Let’s look at the eigenvalues of the “feedback part” of ABK, namely, the (2x2) upper left

submatrix. First we form this matrix, call it ABK11:

ABK11=ABK(1:2,1:2)
ABK11 =
0.4971 -0.1676
-0.2012 0.9329
pause i\Press a key to continue demonstration

cla

Now calculate the eigenvalues of ABK11:

eig(ABK11)
ans =
0.4300
1.0000
Notice that there is a unit eigenvalue, so that the closed loop system fails to be “stable”.
This will be so regardless of how you set the parameters - you can convince yourself of
this by editing this file and setting alternative parameter values.. Can you figure out why
the optimal closed loop system is always unstable for this model? What is the economic

interpretation?

pause \Press a key to continue demonstration

cla
We now alter the problem by changing the specification of the wage for labor. Instead of
assuming that it is exogenous to the industry, we now assume that the industry faces an
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upward sloping supply curve for labor
w(t) = 50 + 51 * N(t)

where N(t) is total labor supplied to the industry, and S1 > 0. (Since we are ignoring

constants in this problem, i.e., working in deviations from means, we set S0 = 0).

The rational expectations competitive equilibrium under this altered specification can be
computed by altering the social planning problem so that costs properly account account for
producer surplus. In particular, we should add to our previous definition of C(t) the term
.5*S1*n(t)?. (Remember that there is a single representative firm, so that we can equate

n(t) to N(t) in the social planning problem.) So C(t) becomes
C{t) = J(t)*k(t) + w(t)*n(t) + v(t)*Q*v(t)
+.5*S1*n(t)%

pause “Press a key to continue demonstration

cla

We now proceed to alter the linear regulator to accommodate the upward sloping supply

curve for labor.

The state space must be altered by dropping w(t) as a state variable, and S1*.5 must be
substracted from the (2,2) element of the old R matrix, and the A, R, and B matrices must

be made conformable with the new state vector. The new state vector is equal to

x(t) = [k(t),n(t),u(t);J(t)J(¢-1)]".

pause Press a key to set value of St
cla '
51=1
51 =

1

Now we alter the R,A, and B matrices to accommodate the altered social planning problem.

pause #Press a key to see R
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R=[R(:,1:2),R(:,4:6)];
R=[R(1:2,:);R(4:6,:)];
R(2,2)=R(2,2)-.5#51

R =
-18.0000  -6.0000 - 1.5000 -0.5000 O
-6.0000  -2.5000  0.5000 0 0
1.5000 0.5000 0 0 0
-0.5000 0 0 0 0
0 0 0 0 0

state=’[k(t),n(t),u(t),J(¢),J(t-1)]’
state =

[k(t),n(t),ult),i(t),I(t-1)]

pause #Press a key to see A
A=[A(:,1:2),A(:,4:6)];
A=[A(1:2,:);A(4:86,:)]

A=
1.0000 0 0 0 0
0 1.0000 0 0 0
0 0 0.8000 0 0
0 0 0 1.3000  -0.4000
0 0 0 1.0000 0
pause 'f.Pfoss a key to see B
B=B(1:5,:)
B =
1 0
0 1
0 0
0 0
0 0
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pause %Press a key to compute the equilibrium.

cla

[k,s]=double(A’,B’,R’,Q’); Y%Working, please wait
The new statt;. vector is

state

state =

[k(t),n(t),u(t),I(t),I(t-1)]
The new optimal control law is

F=k’

F =
0.5231  0.1095  -0.0298 0.0372  -0.0143
0.1383  0.2523  -0.0096  -0.0578 0.0239

pause WPress key to see new closed loop system matrix
cla
The optimal closed loop system matrix ABF=A-B*F is
ABF=A-B»*F
ABF =

0.4769  -0.1095 0.0298  -0.0372 0.0143
-0.1383 0.7477  0.0096 0.0578  -0.0239

0 0  0.8000 0 0
0 0 0 1.3000  -0.4000
0 0 0 1.0000 0

The “feedback part” of ABF is

ABF11=ABF(1:2,1:2)
ABF11 =
0.4769 -0.1095
-0.1383  0.7477
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pause /Press a key to see the eigenvalues of ABFi1
cla
eig(ABF11)
ans =
0.4294
0.7952

Can you explain why the eigenvalues are less than 1 now?
HINT: The answer has something to do with the linearity of the production function in n(t)
and k(t).
To learn more about the algebraic and economic structure of this example, see Chapter V of
Sargent’s “Linear Control, Filtering, and Rational Expectations,” Unpublished U. of Minn.
manuscript.

pause Press a key to return to menu.

This ends the output from the program “dynfac”.

157



7. The Stochastic Optimal Linear Regulator Problem

Suppose now that we return to the optimal linear regulator problem under uncertainty.

The following theorem is useful and immediate:

Theorem 5.11: Consider the optimal linear regulator problem, to maximize
t1—1
E,, { Z (z;rR::g + u,Tng) + ztl)Pha:gl}
t=1p
subject to:

Ti41 = Azy + Bup + €141

where £, is an (n x 1) vector white noise with E¢¢7 = V; and where V; is a positive
semidefinite matrix. Assume that (A, B) is stabilizable, and without loss of generality that
the system is in controllability canonical form. Let R be partitioned conformably with the
partitioning of z for the controllability canonical form, and let —Ry; = GTG where G is
(r x m),r < m. Assume that (A, G) is detectable. Assume that R;; is negative semidefinite

and @ negative definite. Consider the criterion,

tj—=1

. 1 T T
(5.67) !Ul_l.rllm(h = zo)E‘U tgn(z‘ Rzy + uTQuy).
The optimal steady state control law u; = — Fz; maximizes the criterion (5.67), subject to

the law of motion 441 = Az, + Buy+ §41. When V; = V for all ¢, the maximal value of the
criterion (5.67) is tr[PV| where P is the stationary solution of the matrix Riccati difference
equation starting from a negative semidefinite terminal matrix P;,. This completes the

statement of the theorem.
8. The Transofrmation Between Discounted and Undiscounted Problems

We now consider a simple transformation that permits the preceding body of results to

apply to discounted problems. Consider the problem to maximize

t—1
(5.68) lim By 3 ¥ {7 Rzi + v Qui},0<b< 1
t=0

subject to zg given and

(569) Tip] = A.‘.Cg + BU: + fg.;.]
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where E¢; = 0 for all ¢t and E¢i¢7 = V;. Here b is a discount factor which is strictly less
than unity in absolute value. For convenience, we have set initial time ¢ = 0.

Now define the transformed state variables
ig = bl’mrg

f.'g = bl'fzvg

so that

Iy = b_uzig,vt = b_t‘(‘zﬁg.

Substituting these expressions for z; into the criterion function (5.45), and transition law
(5.46) gives the alternative representation of the criterion function

““r T
(5.70) hli_r.nw Eo g(i, Rz + 9, Q)

with the alternative representation of the transition law
(5.71) Fip1 = b1 AZ, 4+ b1Bo + b8 €0y

or

Typy = ;h-:g + Bi’g + b%ifgq.l, where A = bé.‘l, B= biB

Now let the eigenvalues of A be Aj,Az,...,A,. Further, suppose that the original system
(5.68) is in controllability canonical form and that the dimension of the controllable subspace

is m. So we have that

_ [An -*’hz]
Aﬂ[ 0 Axnl’

where Ay) is an m x m matrix. Let the eigenvalues of 4y; be Ay,...,, A;x, and those of Aj,
be "m-!-lr' ":’\uo

At this point, the following lemma is handy.

Lemma 5.2: The eigenvalue of biA are bif\l,biz\z, SREIN 1 D

Proof: From the definitions of the eigenvalues of A and A 1
Now consider the undiscounted problem of maximizing (5.70) subject to (5.71). For

convenience, let the rank of R;; be m. Suppose that the transformed system (5.70) is
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stabilizable. Theorem 5.8 guarantees convergence of the matrix Riccati difference equation,
the existence of a steady state feedback law F, and the stability of the closed loop system.

The optimal control law of v is

where
F=(BTPB+Q)'BTPA
or
F=b00bBTPB+Q) 'BTPA
and where P is the solution of the algebraic Riccati equation associated with the transformed

system (5.70) and (5.71). In terms of the original variables, we have
vy = -F z,.
The closed loop system for the transformed variables is
Teql = [béA — b3 BF|2 +bF g4,

which is asymptotically stable by theorem 5.8. The closed loop system in terms of the

original variables is then
(572) T4l = [."l - BI‘“]::; + EH»I-

Let the eigenvalues of [A'— BF] be (g1, 42, .., ptn). Lemma 5.2 implies that the eigenvalues
of [b%A - b:liBf"'] are b:l‘,ul,. .. ,b:lrp,... Theorem 5.8 then implies that b%pl,. e ,b;un are all
less than unity in modulus. This in turn implies that

1

|,u.'|<*—,-£~ t = Lavea
v
1 »

Thus the closed loop system (5.72) is “of exponential order less than " 4
Since the original system was assumed to be in coﬁtrollability canonical form, so is the
transformed system. Writing out the state difference equation, we have

i’u+1}= Ajppb? Alzb% [5"]
Tt+1 0 Agzbz | [T2e

1
G (B]bz) ﬁ'f + btlﬂ‘ft_‘.I_

0
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The transformed system is stabilizable if the pair (A;;, B)) is controllable, and if the eigen-
values of Azzbi are all less than unity in absolute value. This last condilion is equivalent

with the eigenvalues of Aj; all being less than \/1’5 in absolute value.
9. Solving the Linear Regulator Problem Via Stochastic Lagrange Multipliers

We return to the nonstochastic optimal linear regulator problem: to maximize

t1—1
y. {z;‘rRzi + u,TQu‘} + =£Pt13l1 subject to z44y = Azy + Buy.
t=ty

subject to 441 = Az; + Bu; where R and P, are given negative semi-definite matrices and
A is negative definite. We now solve this problem using Lagrange multipliers. This will give
rise to the discrete time mazimum principle.
We form the Lagrangian
t1—-1 :
(5.73) J =Y {27 Rzy + u] Qu¢ + 20T, [Azy + Buy — z041]} + =F, Py 24,

t=ty

Here {A,t = to + 1,...,t1} is a sequence of (n x 1) vectors of Lagrange multipliers. We
obtain first-order necessary conditions by differentiating the right side of (5.73) with respect
to {uy, t = to,...,t;—1} with respect to {z,, t = tg+1,...,t;} and equating these derivatives

to zero. Differentiating the right side of (5.73) with respect to u; and equating to zero gives
2Qu¢ +2BTA 41 =0

or

(5.74) ue = —Q BT Ay,

Differentiating with respect to the z,’s and equating to zero gives

(5.75) M=Ree+ ATAyq,t=tg+1,...,4 —1

(576) ’\ti = thh:
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Equation (5.75) is called the “co-state equation”. Substituting (5.74) into the transition

equation z441 = Az¢ + Bu, gives
(5.77) £141 = Azy — BQ7'BT Ay

Combining (5.77) and (5.75), we have the homogeneous vector difference equation in the

pair (Z¢, At+1)

(5.78) z:\Tl] = [A T IBT] [/\t+1]

The system (5.78) is to be solved jointly for (x4, A¢y1;¢t = tg,...,¢;) subject to the two
boundary conditions
T4, given
(5.76)
'\11 = Ph::t!
We shall describe two ways to go about solving this system.
a. The Riccat: Equation Again

The first method involves guessing that a solution can be found of the form
At = Pizy forall t <t,,

where P;’s are matrices to be determined. Substituting this guess into the first equation of
(5.78) gives
241 = Az~ BQT'BT Priizin

or

ze41 = (I + BQ7'BTP ) Az

Substituting this and A; = P;z, into the second equation of (5.78) gives
Pizy = Rzy + ATPiy(I + BQ7'BT Pyy) ! Az,

which must hold uniformly in z,. This requires that the following difference equation in P
be satisfied
Po=R+ATP (I + BQ 'BTP,;) A
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This can also be written
(5.79) - P,=R+ AT(P7} + BQ'BT)'A.

Equation (5.79) is simply an alternative form of the matrix Riccati difference equation. To
see this, first let (a,b, c,d) be matrices with d~! and a~?! existing, and recall the formula (see

Noble and Daniel | p. 29] or Fortman [ ] )
(a=bd~'c) ' =a ! —a"'b[d - ca='b]  ca™?
Use this formula with a=! = Pyyy,b= —B,d = Q,c = BT to get
(P + BQ™'BT)"' = P4y — P41 B[BTP 1B + Q| 'BTP,,
Substituting this into (5.79) gives
(5.80) Pi=R+ AT[Piyy - Piy1 B(BTPy1 B + Q)™ BT Py | 4,

which is the form of the matrix Riccati difference equation that we have usually utilized.
So with A; = Pyzy, where Py obeys (5.80) subject to the terminal condition P;, given, we
have generated a solution to the difference equation system (5.78) that satisfies the terminal
condition Ay, = Py, z4,. Since the initial condition for z,, is also satisfied, we have produced a
solution of our system subject to the appropriate boundary conditions. We have a sufficient

number of boundary conditions (2n) to make the solution unique.

b. Vaughan’s Method

The second method of solving the system avoids the need to solve the Riccati equation
iteratively, but obtains it as a function of the eigenvectors of the state-co-state transition
matrix of (5.80). The method is due to Vaughan.?

As a preliminary, using the lag operator L, we can write (5.55) as

[}
Lo

? Vaughan, David R., “A Nonrecursive Algebraic Solution for the Discrete Riccati Equation,” IEEE
Transactions in Automatic Control, October 1970, pp. 597-599.

(L] - A) BQ*‘BT] 4

(5:81) R (LI=A) [rens
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The dynamic behavior of the system is governed by the zeroes of the characteristic polynomial
of the system, namely the solutions of

(71—~ A) B@BT

R @xr-a)="

(5.82) det [
Recall the formula for the determinant of a partitioned matrix

(5.83) det ('z 3) = det ddet(a — bd~"c) = det a det (d — ca=b)

Applying the identity (5.83) to (5.82), we immediately find that if 2y is a zero of (5.82),

then so is zg .

So the zeroes of (5.82) come in reciprocal pairs. Thus the characteristic
polynomial in (5.82) has en “Euler-equation like” structure. We shall study this structure
further below.

For the infinite horizon problem that emerges when (¢; — tp) — oo, suppose that condi-
tions are met such that there is a stable asymptotic closed loop system matrix (A — BF).
Under these circumstances, the optimal solution of (5.81) for the infinite time problem is to
solve the “stable roots backwards” and “the unstable roots forwards.” Following Vaughan,
this insight permits deriving a convenient formula for the limiting value P of the matrix
Riccati equattion.

To proceed, we follow Vaughan and assume that A is nonsingular. Then rearrange system

(5.78) to

(5.84) (it) = (RAf;jl (RA‘fJ{;é??BBTT+ 41”)) (im) |

t : t+1
Using (5.82), it can be verified that the zeroes of the characteristic polynomial of (5.84)
equal those of the characteristic polynomial of {5.81), which must be true because (5.81) and
(5.84) describe the same system. These zeroes also equal the eigenvalues of the matrix on

the right side of (5.84), call it M, so that we have

(5.85) ()= ()

Assume that the eigenvalues of M are distinct. Since the eigenvalues of M come in reciprocal

pairs, we can represent M as

(5.86) M=wDw"!
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where
A 0
D= (0 A-‘)

where A is the (n x n) diagonal matrix whose diagonal elements are the eigenvalues of M
that exceed unity in absolute value, and W is the matrix of eigenvectors corresponding to

the eigenvalues in D. Inverting, (5.62), and using (5.86), we have

T4l —1yr-
wD lw-! ]
At+1 ] At

The solution of this system is

' eyi] _ A~ 0}] Viize + Vig
(5:57) '\l+j] =l [ 0 A | | Vayzy + Vaa Ay
where

_ [Wn le] -1 _ [V sz]
(5.88) = [Wn Was W= Va1 Vg

and W;; and V;; are each (n x n).

For the infinite time problem, we have already seen that the shadow price A; must obey
(5.89) X = Pz,

where P is the limit point of backward iterations on the matrix Riccati difference equation. -

Substituting (5.89) into (5.87) gives

(590) z¢+_"] - n}. [A J(V]]Ig -+ Vlzp-"‘.-t)

At+j A Vzlz‘t + V22 Pzy)

Under the condition that the optimal closed loop system is stable, we require that lim;_, oo z¢4; =

0. Since the diagonal elements of A exceed unity by construction, this requires that
(5.91) (V21 + V2 P)zy = 0,
which implies

(5.92) P = -V;'Va.
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Equation (5.92) expresses the limit point P of iterations on the matrix Riccati difference
equation in terms of the partitioned inverse of the eigenvector matrix of M. To get an even

handier formula, substitute (5.91) into (5.90) and use Ayy; = Pzyyj to get

Ti4j ] _ [Wu irV]z] [A_j(Vn::t + V12 Pzy)
Pz ; Wa Wi 0 '

Multiplying the first n equations by P and equating to Pz, gives
PWiA™ (Vi1 + VizP)ze = WA~ (Viy + Viz P)zy,

which implies that

(5.93) P =Wywg!

This is Vaughan’s formula for the limiting value of P in terms of the partitioned matrix of

eigenvectors of the state-to-state transition matrix M of (5.85).

c. The Stochastic Version
We can briefly describe the minor modifications of interpretation required to use the
above procedures to solve the stochastic optimal linear regulator: to maximize
-1
E,, {tz; (=T Rz, + uT Qu) + :c;‘: P, zy, }
=to
subject to

Typ1 = Az + Bug +e(t + 1)

where €(t) is a vector white noise with
Ee(t)e(t)T = Vi > 0,

and where E, is expectation conditioned on z;. The relevant Lagrangian becomes

t1—-1
J = Efu{ Z [:':;rR:t + u;‘rng + )63;_1[141:: + Buy + €441 — EH.]]] o 33; .Pgl:l:h }

t=1tn
The first order necessary conditions can be obtained by using the calculus described by

Sargent [1987, ch. XIV] to be

(594) uy = —Q—IBTE‘(AH,] = to, wrece ,tl -1
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(595) ’\t = R:Ez + ATEp\H.l

(5.96) By 1Ay, = Py By, 134,

From the form of (5.96), it is natural to guess a solution for E4A;4; of the form E\; =
Py 1Ezy4 for all t < t). Using essentially the same mathematics as above, this guess can

be verified, and the matrix Riccati difference equation for P; can be derived.

d. Relationship to “q” Theories of Investment

We can write our solution for A; in the form
Eidis1 = P Bz

or
(5.97) Eidi+1 = Piy1(A - BF )z,
In the case of an infinite time problem in which P; converges to P we have
(5.98) EiA¢+1 = P(A— BF)z,
Substituting (5.98) into (5.94) gives
(5.99) uy = -Q 'BTP(A - BF)z,

The form of (5.99) and our earlier result that u, = — Fz, where F is the asymptotic feedback

law (the limit point of F}) implies the indentity
(5.100) F=Q 'BTP(A - BF)
Solving (5.100) for F gives

F=(Q+BTPB)"'BTPA

which is by now a familiar formula. So (5.94) can be viewed as a reinterpretation of our

earlier result that u, = — Fr,.

e. Cross-Products Between States and Controls in the Criterion Function
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We now consider the following optimal linear regulator problem: to maximize

t1—1 :
E {::tTR::, + 23?‘VU¢ + utTng} + a:;‘:Ptlzh

t={,
subject to

Tiy1 = A:Bg + But.

We solve this problem by forming the Lagrangian

t-1
J = Y (2T R2y + 22T Wy + ul Quy + AT [Aze + Bue — 2444} + zg;Pgl:ngl.

t=ty

Proceeding exactly as above on page 7?7, we obtain the first-order necessary conditions |

(5.101) uw=-Q 'BTAL - Q Wk,
(5.102) M=ATAy 1+ Rey — Wugt =tg+1,... ¢, — 1
(5103) . Agl = thtl

Substituting (5.101) into the state transition equation and (5.102) and rearranging gives the

system

[.‘cg+1] A-BQ-'wT —-BQ BT H z,]
A JIR-WQWT AT —wQ-'BT| )]

(5.104)
Proceeding exactly as above, it is straightforward to show that the zeroes of the characteristic
polynomial of the homogeneous difference equation (5.184) come in reciprocal pairs. (Notice
the link to the transformation that we described in Chapter 2 to show how to transform a
problem with cross-products in states and controls in the objective function into an equivalent

problem without cross products.}

As earlier, it can be verified that A; obeys
Atgr = Prorzes

where P, is the solution of the pertinent matrix Riccati difference equation, in ths case.
equation { } of Chapter 2. This form of the Riccati equation can be derived using the guess
At+1 = Piyizis to solve (5.104), proceeding exactly as above on pp. ?777.
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For the stochastic optimal linear regulator problem, (5.100), (5.101), (5.102) are replaced
with
w=-Q 'BTEA ;1 — Q7 'Wx,

At = ATEA41 + Rzy — Wy
Eh—l’\!l = Pil Eh—]zh

Because of the presence of the term Wz,, the controls u; are permitted to be an inexact

function of the shadow price EjA 4.
10. The Inverse Optimal Linear Regulator Problem
We now consider the following problem:

Problem: Given the nonstochastic time invariant system
T4l = A-‘Bg + B‘H.(

and the stationary feedback rule

w=—-Fzy = u;
find a return functional of the form
. ) -1
(5.105) J(t1 —to) = 27 Pz, — 3. || GTzy + DT, |2
=ty

with —DDT = Q < 0, such that u] is the optimal control law for the asympototic return
functional J = limy, _¢)—~0 J(t1 — to) for every P, = P}; < 0, and such that the maximum
taken on by J for uy = u{ is independent of the choice of F,,.

Note that DDT = Q is nonsingular. The matrix Q can be regarded as given or as chosen
arbitrarily. Thus, the problem is, given A, B and the closed loop system z4,; = (A~ BF)z,,
to find an infinite time optimization problem (i.e., a G and D in (5.82)) such that F is the
optimal feedback law for any negative semi-definite terminal value matrix P;,. Mosca and
Zappa® formulate this problem and prove the following:

3 See Edoardo Mosca and Giovanni Zappa, “Consistency Conditions for the Asymptotic Innovations
Representation and an Equivalent Inverse Regulation Problem,” IEEE Transactions on Automatic Control,
Vol. AC-24, No. 3, June 1979.
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Theorem 5.12: (Mosca-Zappa) The inverse optimal regulator problem has & solution if and
only if (A — BF) is a stable matrix.

Proof:

(a) First, we show that if (A— B F) is stable, the problem has a solution. Begin by setting
Q < 0 arbitrarily. Choose D = DT :(—Q)é Then set GT = DTF. With this choice of
G, || GTzy + DTu, ||? = || DT Fz, — DT Fz, ||*= 0, so that J(t; —4o) = 7 Pi,zy,. Since the
closed loop system is asymptotically stable, we have that for all z4,,limg, ;) 21, = 0,
which in turn implies that limg, _y)_ o J{t1 — to) = limgy, _45)uco T4, Py, = 0O for any
Py, £ 0. Since the return functional (5.82) is nonpositive, we know that a feedback law that
achieves limg,, 3.0 J(t1 — to) = 0 must be optimal for the infinite time problem.

() Now we assume that u; = —Fzy maximizes J = limgy, )00 J(t1 — to) for all
Py, <0, and that the corresponding maximum of J, call it J*, is independent of P;,. Thus

t1=-1
. 2 T
J'= lim  {x; Pyz; — Y || Gz, + DTu; |1} = 2] Pz,,
(t1—tp)— oo =ty .
where

L3 : . L] - * .
T,y = Az + By, with =z, ==z, given,

and where P is the limit of the matrix Riccati difference equation, which by assumption

exists for all P, < 0 and which is independent of Py,. In particular, choosing P, = 0 gives

-1
im - Y |G Tz, + DT} ||*= T Pzy,.

(fi-to)—oe S5

Therefore, we must have that lim¢,, _,y_e Z2. Pi, z;, exists and equals zero for all P, < 0.
(ti-tn)—oo *2; Tt %y q 1

But limg,, ¢ )~oo z;;‘"Pglr;l = 0 for all z,, implies that limy, _y . z; = 0 for all zy,.

t
Therefore the system is stable, and the closed loop system matrix (A — BF) is a stable
matrix. §

We reiterate that given an A, B, and F, we can solve. the inverse optimal control problem
as follows. Pick any Q@ < 0 Set D = DT = (—Q)%, and then set GT = DTF. We note

that the solution to the inverse optimal control problem is not unique, since wecan select

arbitrarily.

a. Two Eramples
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We ask the reader to solve the following two inverse optimal control problems.

1. The law of motion of capital at ¢, k, is
ki1 = ky + 14
where 1 is investment during ¢t. The observed closed loop system for & is
kiy1 = .9k;.

Determine whether the inverse optimal control problem has a solution, and if it does, find
one. (Hint: set A=1,B=1,F = .1,Q = 1 and proceed.) Then formulate the resulting
problem as a classical optimization problem (use the calculus of variations) and solve it by

factoring the characteristic polynomial of the Euler equation.

2. The law of motion for capital k; and its rental are

EARHRIREHN

Wil
The observed closed loop system for (k;, w;) is
wl=lo Wl
wy - 0 8 wy

Determine whether the inverse optimal control problem has a solution. If it does, find one.

Exercises

1. Consider the problem of a firm that tries to maximize

(1) EOZ ﬁt {flﬂt = %ﬂ? - d/2(neyy — n:)z - wlnt}| f1,f2,d >0

t=0
0<pB<1

subject to (n¢, w;) given at ¢, and

1
Wi = Awg + g1, [ A< /|

where §;11 is a white noise for wy. Here n; is employment of a factor at t, wy is its rental at

t. The firm is imagined to maximize (1) over linear contingency plans of the form

neyr = L(1, e, we).
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Assume that £, is orthogonal to w; for s > ¢.

(a) Formulate the problem as an undiscounted optimal linear regulator problem, defining
the appropriate state variables, controls, and matrices 4, B, Q, R.

(b) Prove that the system is not controllable. Find a basis for the controllable subspace.
Find a basis for the uncontrollable subspace. |

(c) Find a controllability canonical form for the system. Prove that the system is stabilizable.

(d) Use our convergence and stability theorem to prove that
(¢) Iterations on the matrix Riccati equation converge, and
(12) the closed loop system matrix (A — BF) for the original system has eigenvalues

bounded by 715 in modulus.

(e) Write down the matrix Riccati difference equation, and partition it conformably with
the partitioning of (A', B') in the controllability canonical form. Write the difference
equation for the Py; submatrix, and argue that it is itself a matrix Riccati equation. For
what problem is it the matrix Riccati difference equation?

(f) Show how the algebraic Riccati equation satisfied by P;; (i.e., the equation resulting
from taking the limit as {5 — —oo on both sides of the Riccati difference equation) can

be solved analytically using the quadratic formula of high school algebra.

2. Consider the problem of a consumer who seeks to maximize

(1) E()Zﬁl{u]c!—%cf}, uy, up >0 0<ﬁ(1
i=0
subject to
|
Yer1 = Ay + €es1s | A€ 4
va

Apr = (14 r)[Ar + yt — <]
(yt, A¢) given at ¢, (yo, Ag) given at 0, (14 r) < ‘71-3. Here ¢, is consumption, y; is income, A,
is assets, r > 0 the interest rate. The random process §; is a white noise that is orthogonal
to y, for s < ¢.
(a) Formulate this problem as an undiscounted optimal linear regulator problem, defining
the state, control, A, B,Q, R. (The term B'u,c in (1) might cause you a problem. Try
using the budget constraint to express ¢; in terms of A4, Ay, and y;, and rearrange the

sums in A¢4y and A; into a single sum in A4;.)
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(b) Prove that the system is not controllable.

(c) Find a controllability canonical form. Prove that the system (A, B) is stabilizable. Prove
that when written in the controllability canonical form, the pair (A;1,G)) is detectable
but not observable. Here —Ry; = G] G; where G is r x m, where r = rank (R;;) < m.

(d) Argue that the matrix Riccati equation converges and that the associated clésed loop

system matrix (A — BF) for the original system has eigenvalues of modulus bounded by
1

W.
(e) If (14+7) > +/B)7}, is the pair (A;1,G)) detectable? If (1 +r) > /B)™!, do you think

that iterations on the matrix Riccati difference equation will converge?

3. Consider the optimum problem, to maximize

t1 -1

Y —(nes1 — 2my)?,

t=to
subject to ny, given.
(a) Using the dynamic programming algorithm, compute the optimal controls in feedback
form, i.e.,

nt+l=Llnh t=f'0:t0+1)"'1t1_1-

(b) Prove that iterations on the matrix Riccati equation converge as tg — —oo.

(c) Is the asymptotic closed loop system
Myl = (’Er_“m Ls)ﬂt

stable? If not, what parts of the sufficient conditions for stability from our convergence

theorems fail to be met?

4. Consider the optimum problem, to maximize

ty -1
3 —.000005 n? — (ne4y — 2n,)?

t=ty
starting from n,, given.
(a) Prove that iteration on the matrix Riccati equation converge as tg — —oo.
(b) Write down the algebraic matrix Riccati equation. Argue that the asymptotic optimal

closed loop system is approximately nyyy = in,.
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(c) Why does such a “small” difference in the objective functions in this problem and the

preceding one lead to such a “big” difference in the optimal rules?

5. Consider the following two-player, linear quadratic dynamic game. The (n x 1) state

vector z; evolves according to the transition equation
(0) ze41 = Aeze + Brune + Barvar + {41

where £,y 15 a vector white noise with E§; = O,Efgf;r = Vi; uje 18 a (kj x 1) vector of
controls of agent j. Agent | maximizes

t)—1

(1) Ey 3 (3TR13t + uf,Quure + 43,51 uzz)

t=ty
where R; and ) are negative semidefinite, @} is negative definite. Agent 2 maximizes

) t1—1
(2) Ew Y (27 Roze + vd,Qouzy + ul,Souye)
t=t,

where Ry and 57 are negative semidefinite and Q3 is negative definite. We define a Nash

equilibrium as follows. Agent j 1s assumed to employ linear control laws
up=—Fuzy, t=14g,. .., 41 -1

where Fj; is a (k; x n} matrix. Agent i is assumed to know {Fj;;¢t = fg,...,¢; — 1}. Then
agent one’s problem is to maximize (1) subject ot the known law of motion (0) and the-
known control law 1y, = —Fyx, of agent two. Symmetrically, agent two’s problem is to
maximize (2) subject to {0} and uy, = —Fyyzy. A Nash equilibrium is a pair of sequences
{F1¢, Fas; ¢t = to,t0 +1,...,¢; — 1} such that {F},} solves agent one’s problem, given {Fy},
and Fy, solves agent two’s problem, given {Fy,}.
(a) Show how agent one’s problem can be written as, maximize

-1 :

E,, Z {J:tT(Rl + Fé‘:Sl Fa)re + u{,Qluu}
t=tn

subject to

Ter1 = (A¢ — BaFo)x + Brupeéaetr.

Argue that this is a standard optimal linear regulator problem.
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(b) Pose agent two’s problem as an optimal linear regulator problem.

(c} Prove that the solution of agent one’s problem is given by

()

(3) : Fyy = (BYPus B + Q1) ' B], Priy1(As — BayFay)

t=tp, o+ 1,...,¢5; —1

where Py, is the solution of the following matrix Riccati difference equation, with terminal

condition Pyy, = 0:
Pie = (At — B Fo)T Prys1 (A — BuFyy + (Ry + Fy)T 8 Fyy)

~ (A — BZtF‘Zt)TPlHlBlt(B;";Pit-!-lBlt + QI)‘IB;‘:P“H(At — Byt Fy)

Prove that the solution of agent two's problem is given by
(5) Fa¢ = (B3, Pas1Ba + Q2) ™' B Py (At — By Fay)

where Py, is the solution of the following matrix Riccati difference equation, with terminal

condition Py, = 0

Py = (Ay— BreFT)Pysa(ae ~ BuFie) + (Ra + FiS2Fu)

= (A¢ = BuF10)T Py Bau( BE Paev1 Ba + Q2) ' BE Paey1(A¢ — BuiFy).
Describe how the equilibrium sequences {Fyy, Fpq;t = dg,20 + 1, .. .-,tl — 1} can be cal-
culated. Hint: use (3), (4), (5), and (6) and “work backwards” from time ¢; - 1. Notice
that given Py, and Pyyy, equations (3) and (4) are a system of (ky x n) + (k) x n)
linear equations in the (k7 x ») + (k) x n) unknowns in the matrices F}, and Fa,.
Notice how j's'control law Fj, is a function of {Fy,,s > ¢, # j}. Thus, agent 1’s choice
of {Fiy;t = tp,...,t; — 1} influences agent ;'s choice of control laws. However, in the
Nash equilibrium of this game, each agent is assumed to ignore the influence that his
choice exerts on the other agent’s choice. In the Nash equilibrium of a Stackelberg or
dominant player game, the timing of moves is so altered relative to the present game

that one of the agents called the leader takes into account the influence that his choices

exert on the other agent’s choices.
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Computer Example: A Linear Quadratic Dynamic Game

This section reports the output from the MATLAB program “judd”, which computes the
Nash feedback equilibrium of a linear quadratic game proposed by Kenneth Judd. The
MATLAB program nnash.m is used to compute the equilibrium, as will be seen below. The
equilibrium is computed by iterating on a pair of Ricatti equations that is defined by the -

choice problems of the two agents (firms) in the model.

The output from “judd” follows.

judd
echo on

cla

This program computes the Nash feedback equilibrium of a linear quadratic dynamic game.
Each of two players solves a linear quadratic optimization problem, taking as given and

known the sequence of linear feedback rules used by his opponent.

The particular game analyzed is a price-quantity setting game suggested by Ken Judd.

pause %#Press a key to continue
cla
There are two firms. There is no uncertainty. Relevant variables are defined as follows:
Ii(t) = inventories of firm 1 at beginning of t.
qi(t) = production of firm 1 during period t.
pi(t) = price charged by firm i during period t.
Si(t} = sales made by firm i during period t.
Ei(t) = costs of production of firm i during period t.

Ci(t) = costs of carrying inventories for firm i during t.
It is assumed that costs obey

Ci(t) = ci{1)} + ci(2)*Ti(t) + .5* ci{3)*Li(t)?

Ei(t) = ei(1) + ei(2)*qi(t) + .5* ei(3)*qi(t)?
where €i(j) and ci(j) are constants.
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It is assumed that inventories obey the laws of motion

li(t+1) = (1 - del) * Ti(t) + qi(t) - Si(t)

pause iPress a key to continue

cla

It is assumed that demand is governed by the linear schedule
S(t) =d *p(t)+ B

where S(t) = [S1(t),52(t)]", d is a (2x2) negative definite matrix, and B is a vector of

constants. Firm i is assumed to maximize the undiscounted sum
lim Z { pi(t)*Si(t) - Ei(1) - Ci(t)}
by choosing a control law of the form
ui(t) = -Fi * x(t)

where ui(t) = [pi(t),qi(t)]’, and the state x(t) is given by x(t)=[I1(t),12(t), 1].

pause \Press a key to continue

cla

Firm i is assumed to solve its control problem taking the (sequence of) control laws uj(t)
= -Fj(t)*x(t) as known and given.
The program computes the limiting values of the control laws (F1(t),F2(t)) as the horizon

is extended to infinity.

pause %Now the program will set some parameters. Press a key.
cla
del=.02;
d=[-1 .5; .5 -1]
d =
-1.0000 0.5000
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0.5000 -1.U000
B=[25 25]’
B =
25
25
pause Press a key to set more parameter
cla
c1=[1 -2 1]
cl =
: i i |
c2=[1 -2 1]
c2 =
1-21
ei= [10 10 3]
el =
10 10 3
e2= [10 10 3]
e2 =
10 10 3
deli=1-del
dell =
0.9800
pause %Press a key to continue

cla

Now we'll create the matrices needed to compute the Nash feedback equilibrium. We will
proceed by iterating on pairs of “Ricatti” equations. Player 1 has a regulator problem with
matrices rl,wl,ql,s1,ml in the objective function (see the explanation of these quantities
when Nash is called shortly) and matrices a,bl,and b2 in the law of motion (again, see the

explanation when nnash is called).
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a=[dell 0 -deli*B(1);0 deli -deli*B(2);0 0 1]

a-=
0.9800 0  -24.5000
0 09800 -24.5000
0 0 1.0000

bi=deli*[1 -d(1,1); 0 -d(2,1); 0 0]
bl =

0.9800 0.9800

0  -0.4900
0 0
pause i\Press a key to continue

b2=deli*[0 -d(1,2); 1 -d(2,2);0 0]

b2 =
0 -0.4900
0.9800 0.9800
0 0

ri=[.5%c1(3) 0 .5%c1(2); 0 0 0;.5*c1(2) 0 c1(1)]

rl =
0.5000 0 -1.0000
0 0 0

-1.0000 0 1.0000
r2=[0 0 0;0 .5*c2(3) .5%c2(2);0 .5%c2(2) c2(1)]
r2 = |

0 0 0

0 0 -1.0000

0 -1.0000 1.0000
pause %“Press a key to continue
ri=-r1;r2=-r2;
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qi=[-.5%e1(3) 0; 0 d(1,1)]

qi =
-1.5000 0
0 -1.0000

q2=[-.5%e2(3) 0; 0 d(2,2)]

q2 =
-1.5000 0
0 -1.0000
pause #Press a key to continue

mi=[0 0; 0 d(1,2)/2]

mi =

0  0.2500

m2=mi
m2

0 0
0 0.2500

si=zeros(2);s2=s1;
pause APress a key to continue

wi=[0 0;0 0;-.5%e1(2) B(1)/2]

wl =
0 0
0 0

-5.0000  12.5000

w2=[0 0;0 0;-.5%e2(2) B(2)/2]

w2 =
0 0
0 0
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-5.0000  12.5000
pause %Press a key to call nnash to compute equilibrium
nm‘u:h
echo on
cla

This program computes the limit of a Nash linear quadratic dynamic game

Player 1 maximizes
Sum {x*ri*x + 2 x"*wi*ui +ui’*qi*ui + uj’*si*uj + 2 uj’*mi*ui}
subject to the law of motion
x(t+1) = a*x(t) +b1*ul(t)+b2*u2(t)

and a perceived control law uj(t)= -fj*x(t) for the other player

i1s nxn; bl is nxkl; b2 is nxk2;
rl is nxn; r2 is nxn;

ql is klxkl; q2 is k2xk2;

sl is k2xk2; s2 is klxkl;
wlisn x kl

w2 is n x k2

ml is k2 x k1; m2 is k1 x k2;

pause APress a key to compute the equilibrium
n=length(a);

[x ki]=size(bl);

[x k2]=size(b2);

vi=eye (k1) ;

v2=eye(k2);

pi=zeros(n);p2=zeros(n);
fi=rand(ki,n);f2=rand(k2,n);
dd=1;to0l=.000000000001 ;
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ti=clock
t1 =

1.0e+003 *

1.9880 0.0120 0.0120 0.0050 0.0150 0.0236

33=0;
while dd>tol;
£10=£1;£20=£2;
g2=(b2’*p2+*b2+q2)3;
gl=(b1’*pis*bi+q1)i;
h2=g2*b2’*p2;
hi=gixbil’*p1;
f1=(vi-(hi*b2+gi*mi’)*(h2*b1+g2*m2’)) ((hi*a+gi*wi’)-...

(hi*b2+gi*mi’)*(h2*a+g2*w2’'));
£2=(h2*a+g2+*w2’)-(h2*b1+g2*m2’)*£f1;
a2=a-b2*£f2;
al=a-bi*f1;
pl=a2’*pil*a2+ri+£f2’*s1*f2-(a2’ *p1*bl+w1-£2’'*m1) *£f1;
p2=al’*p2*al+r2+f1’*s2*f1-(al’*p2*b2+w2-£f1’'*m2)*£2;
33=3i+1;
dd=max (abs(£f10-f1))+max(abs (£20-£2));
end
t2=clock;et=etime(t2,t1);
pause iPress a key to see time it took to compute equilibrium
et
et =

6.8100

£1;
£2;
pause %Press a key to see number of iterations on Ricatti needed
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. 33
3=
20
pause #Press a key to see Firm 1’s feedback rule
f1
f1 =
0.2437  0.0272 -6.8279
0.3924  0.1397  -37.7341

Firm 2’s feedback rule is

£2

£2 =
0.0272 0.2437 -6.8279
0.1397 0.3924 -37.7341

pause /Press a key to compute closed loop control law
aaa=a-bi*f1-b2*f2
aaa =
0.4251 0.0287 0.6810
0.0287  0.4251  0.6810
0 0 1.0000

Recall that the state is x(t)=[I1(t),I2(t),1)’ So the equilibrium law of motion is
x(t+1) = aaa * x(t)

or

x(t+1) = (a - b1*F1 - b2*F2) * x(t)

pause #Press a key to continue
cla
pause /Press a key to calculate the optimal stationary values

of the inventory levels [I1(t),12(t)].
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aa=aaa(1:2,1:2);
tf=eye(2)-aa;
tfi=inv(tf);
xbar=tfi*aaa(1:2,3)
xbar =
1.2469
1.2469
pause Ypress a key to return to menu
This terminates the output of judd. You can use the program nnash.m to compute a nash

equilibrium for a game of your design.
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Chapter 6
The Optimal Observer
1. Introduction

This chapter heavily exploits duality and the theorems of chapter 5 to state conver-
gence and stability theorems for the Kalman filter. The chapter begins with a derivation of
the Kalman filter in the style of Luenberger’s optimal observer system. This presentation
provides interesting perspectives on the Kalman filter. The chapter also describes the “sepa-
ration principle” of linear optimal control theory, which states how regulation problems with

hidden state variables can be solved.
2. The Optimal Observer Problem

We now define an auxiliary system whose behavior is designed to mimic the behavior of

another system

Definition 6.1: The system

(6.1) 2141 = Az + Biug + Cuy
is a full order observer for the system

(6.2a) T4y = Ay + By
with measurement equation

(6.2b) | vi = Cioe+ Bins

if setting 24, = 4, implies that z; = z, for all ¢ >ty and for all uy, ¢t > ¢to.

Theorem 6.1:  The system (6.2) is a full order observer for the system (6.1) if and only if

.‘-‘1( = Ag - Kl Ct
(6.3) B, = B, - K, E;
C. = K,

where {K;,t > to} is an arbitrary sequence of matrices.
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Proof: Substituting (6.2b) into (6.1), gives
#41 = Avgy + Boug + Ci[Cize + Eyuy).

Subtracting (6.2a) from the above equation gives

- B4 — Bep1 = Ag(2 — zf) + [fa‘ + CCy — Az
+ By + C{E¢ — Bi]uq
Evidently from (6.4), z,, = z4, implies z; = z; for t > tg for all {uy,t > to} if and only if
Ay = A, - C,C; and B, = B, — C,E;. This is true for any arbitrary sequence of matrices
Ci=Ki 1
Substituting formulas (6.3) into (6.1) establishes that the full order observer can be

represented

(6.5) Ze41 = Aize + Byuy + Kiye — Cizi) — Equy
or

(6.6) Ti41 = A1y + By + Kilye — 94

where ¥ is the “previously predicted” value for y,
yt = Cizy + Equy.

The sense in which g, is the previously predicted value for the measurements y; will become
clear shortly. So (6.5) or (6.6) expresses the “prediction” z,4, for z,4; as a function of
the “lagged prediction,” the control, and the error just realized in predicting the observable
variables y;.

Define the reconstruction error in estimating the state as z;, — z, = e;. We can then

state the following theorem.
Theorem 6.2:  Consider the full order observer for the nonstochastic system (6.2a)-(6.2b).

The reconstruction error e; = ry — z; satisfies the difference equation

et+1 = [Ay — K(Ciley for t > to.
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Proof: Subtract the state difference equation (6.2a) from (6.6) to get
T4l — 41 = [Ar — Ky Ci)[ze — 24). |

If the reconstruction error in this nonstochastic system has the property that e; — 0 as
t — oo for all initial errors ey, the full order observer is said to be asymptaticaﬂg; stable.
Notice that the asymptotic stability of the observer depends on the behavior of the matrices
[A¢ — K(C}] as t gets large. For the case in which A; and C; are time invariant, we shall
presently study the limiting behavior of this matrix.

The following simple lemma is useful in our study of the stochastic linear observer prob-

lem.

Lemma 6.1: Consider the system
Teyy = Az + Biwgyy, t2> 1t
where w; is a white noise vector with
Ew, =0

Ewtw;‘r = V.

Define the mean vector and covariance matrix of z,, ¢ > ¢y
my = E:t
B = E(zy — my)(zy — my)T.
Let z4, be a random variable with given mean vector my, and covariance matrix }_,,. Assume

that =, 1s uncorrelated with w; for ¢ > ¢9. Then
(6.7) ' Ez,4i = ¥(to +1,t0)my,

where ¥(¢t,tp) is the transition matrix

oy din Ko
Weto) = { A Ao 2

Further, ; is the solution of the difference equation

(6.8) Tea1 = AZA] + BV BY
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with initial condition ¥, given.

Proof: Equality (6.7) follows from taking the mathematical expectation of each side of

the solution of the state equation

Equality {6.8) follows from writing
Tep1 — Mey1 = AiZe + Biweyr — AiEzy
ot
Tipy — My = Ay + Exy + Bowyy.

Multiplying each side of this equality by its tranpose and taking mathematical expectations
implies equality {6.9). 1
The preceding discussion is extended in a straightforward manner to cover the case of a

stochastic system.

Definition 6.2: Consider the stochastic system

(6.92) rop1 = Az + Biuy + wies

(6.95) yr = Ceze + Epug + woy

where wy;,1 and wq, are vector white noise random errors satisfying Ewyyq = 0, Ewgy =0

[w1t+1}r = [Vlt 0

E[wtt+1 )]
Wy 0 b

Wae

and Ewuw’{, = 0 for all t and 5. Let the system start at time ¢g, and let =, be a random

variable with mean vector 4, and covariance matrix Lg. Consider the auxiliary system
(6.10) 241 = A+ By + Coye.

The system (6.10) is said to be a full order observer for the system (6.9) if setting 4, = E'xy,
implies that 2y = E=x, for all ¢ > ¢y and for all us,t > {o.
We immediately have the following theorem, whose proof mimics the proof of theorem

6.1.
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Theorem 6.3:  The system (6.10) is a full-order observer for the system (6.9) if and only if

A = A - KiCy
B, = B, — K,E,
C¢=K¢

where {K¢,t > to} is an arbitrary sequence of matrices.
We leave the proof as an exercise.
We now consider the stochastic linear optimal observer problem whose solution leads us

to a version of the celebrated Kalman filter.

Definition 6.3: Consider the discrete time system

(6.9a) Ty = Azy + Bug + wigqr t >ty

(6.9b) Yyt = Czy + Euy + woy

Wit+1

] is a serially uncorrelated random process with mean zero and contem-
wat

where w; = [

poraneous covariance matrix

Wy41 T .1_ [Vie O
E [ way ] [wyes1wze] = 0 Vil

We assume that Ew“ng}H = 0 for all s, so that w; and wj are orthogonal at all leads and
lags. In (6.9a) and (6.9b), z; is an underlying state vector that is not directly observed, u,
is a vector of controls, y; is a vector of variables that is directly observed, wi¢4; is the error
process driving the “hidden” state variables, and wy, is a process of “measurement errors.”
We assume that z,, is a random vector with
E::-h, = Tg

E(z4, — Zo)(z¢, — 0)T = Zo.

We assume that z4, is orthogonal to w¢,, for all s > 0. Consider the observer system

(611) Tip) = Azy + Buy + Kt[yg - Czy — E'u¢|.

Let Wy, be a given positive definite “weighting” matrix, and let ¢; > tg be fixed. The stochas-
tic linear optimal observer problem is to find a sequence of matrices { Ky,, K¢ 41,..., Kt;-1}
and an initial condition z;, that minimizes

E {83; “Vh Egl}
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where e; = ¢4 — z; is the reconstruction error at time ¢.

Definition 6.4: If V3 > 0 for all ¢t > ¢g, the problem is called nonsingular.

We shall restrict ourselves at this point to considering the nonsingular observer problem.
We further restrict ourselves to the time invariant or homoskedastic case in which Va; = V}
18 independent of time. |

We proceed to solve the optimal observer problem. Subtracting the observer equation

(6.11) from the state equation (6.9a) gives
Tiy1 — T441 = [A — KC(z¢ — ¢ + wigs1 — Kywae)
or
(6.12) ei+1 = [A— KCley + wigy1 — Kyway.
Let 3", be the covariance matrix of e; and let & be the mean of e;. Then
E etef =3 + élétT.

Further, we have
E {ef Wiet} = E {(er — 2)TWi(er — &)}
+ E {eTW,e}
= fr LV:E {(e; - ég)(&g - ég)T}
+ BT Wi, .
It follows that
(6.13) E efWie, = tr W\, + &l Wie,.

Applying Lemma (6.1) to the difference equation (6.12) for e; for an arbitrary sequence

{Ki t =to,...,t1 — 1} gives

(6.14) g, = W (¢, to) &y,
and
(6.15) D1 = [A — K C|T[A - KiCJF + Vi + KVo KT
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where the transition matrix ¥(t,to) is given by

- - o (A= t >t
(¢, to) = {(A K. 1C)(A K:;zc) ( K,C) titn
. =t
First note that for given Ky, (6.15) implies that £, is a monotonically increasing function
of I;. Next notice that I, is independent of the choice of the initial conditions ég&. To see
this, write
Lty = E (eto — &to)(e1o — Eiu)T
= z _ _ T
= E [(zt, — #1t5) = E (21 — #00)| [(2t0 — Zt0) = E (210 — 2t)|
=F [I!to = io][zto = io]r = Eﬂ.
Thus, we have that £;, = Iy independent of the choice of z;,. Clearly, since from (6.14)
& = B(t, 1)y, the term &T)W, &, is minimized for any positive definite W, by choosing

&y, = 0, from (6.14) this choice of &, implies that & = 0 for all £ > to. Setting &, = 0 is

accomplished by setting
(6.15) ign = Ip.

Further, since I; is given by the solution of the difference equation (6.15) starting from
initial condition £;, = Iy, and since I,, is independent of the choice of z,, if follows from
(6.13) that setting &4, = Zo is the choice that minimizes £ el Wiey = tr W, S, + &T Wiz,.

It follows that our problem is reduced to that of minimizing the first term of (6.13)
for some t = t; > t5. We must choose a sequence of matrices {th,, Kotiyoens Ky-1} to

min_imize tr Wy, Z¢,, where E;, solves
(6.15) Tes1 = [A - KC)Z[A - K.C)T + Vi + KVaKT

with initial condition

Eln — 20

given. Evidently, this is equivalent with minimizing £,, with respect to { K;,t = to,...,t;—1}
subject to (6.15) and the initial condition £, = £g. In solving this problem, the following

theorem is useful.
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Theorem 6.4: Consider the difference equation
P,={A-BF})TP{A-BF}+ R+ FQF,
(6.17)
t=1to,to+1,...,t1 —1,t; > tg
with terminal condition P;, = P; and where {F},t = to,...,t; — 1} is an arbitrary sequence
of matrices. Let P; be the solution of this difference equation with boundary condition

ﬁ’h = P,. Consider the difference equation

G(s) = [A— BH,1|TG,-1[A— BH,_;] + R+ H_,QH,_;
(6.18)
J=tg+1,tg+2,...,t1

subject to the boundary condition Gy, = P;, and where H,_; = | J TR Then the

solution of the difference equation (6.18) is
Gl = P(h-l-fn—a)'

Proof: Define t; +to = t*, and s = (t; + top) — t. Note that t = ¢, implies s = tp and
t = to and t = to implies s = ;. Then note that equation (6.17) can be written
Piy—s = [A = BFe-_,)T Py _(4-1))(A = BF(s-_,))

(6.19) + R+ F_QFe_,

s=to+1,t0+2,....4
where the boundary condition is P« ¢, = P,. Define G(s) = P,,—, and Hy_y = Fy,—,. Then
(6.18) can be written

G,=|A- BH,4)*G,_1[A- BH,_,] + R+ HY_,QH,_,
(6.20)
s=ds ¥ 1t # 2,5
where the boundary condition is now Gy, = P;. Therefore, if P,,t = to,to +1,...,¢; — 1 is
the solution of equation (6.17) with P, = Py, it follows that G, = P-_, is the solution of
(6.18) with Gy, = P; given. 1l '
We also have the following corollary:

Corollary 6.1:  Consider the problem of maximizing G;, subject to G,, = P, given
and the difference equation (6.18), where the maximization is with respect to {H,_;,s =
to+1...,t1}. The maximizing values of H,_; are

Hj_y = (BT'G;_B+Q|"'BTG;_, A
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where the optimized value G of G, obey the “forward” matrix Riccati equation

Go=ATG°_ A+ R+ ATG3_,B(B"G2_,)B
(6.21)
+Q'BTGY_,A.

Proof: We leave it as an exercise for the reader to show that theorem 6.4 ad theorem
XXX (matrix Ricatti equation) readily imply the corollary. |
Now rewrite the difference equation (6.15) Z;4; as
~Zy1 = [AT - CTK]|T(-2,)(AT - CTK]]
(6.22)
+(=V1) + [K7 1T (-Va) (X7,
subject to £;, = Iy given. Evidently maximizing —Z,, with respect to {K,,s = to,to +
1,...,t; — 1} is equivalent with minimizing Z;,. It immediately follows from corollary 6.1
that the optimal choice of K, is given by
KT = [c22CT + vy ~'CEoAT,
(6.23)
s=to,tg+1,...,¢; -1
where I is generated from
o1 = ADIAT + 1 — AxgCT
(6.24) [cz2e? + v tereat
s =tg,lo+1,...,4; -1,
with £ = 37, given.
3. Duality
It is useful at this point to recall the equations that describe the solution of the optimal

linear regulator problem:

(6.25) Fo=(BTP41B+ Q) 'BTP A

P_y=ATPA+R-ATP,B(BTP,B + Q) 'BTPA
(6.26)
t =to,to+1,...,¢ — 1.
The concept of duality is the key to characterizing the relationship between the two problems

and their solutions. Thus, suppose that we have a time invariant linear optimal regulator

193



problem with given matrices, A, B,Q, R, and P;, and that the parameters t; and {g are
given. Let P, and F; be the solutions for this problem that obey (6.25) and (6.26), for
t=to,to+1,...,4 — 1.

Now consider creating the optimal linear stochastic observer problem for the system

* T .+
zt+1 = A 31 + Wit+1

(6.27)
ys = BTz} + wy
where
E[“’uu] [MH]]T: R 0 ]
way way 0 -QJ

Further, suppose that the optimal linear stochastic observer problem is to be solved for the
time period starting from ¢y and ending at ¢; > to. Let — 3, = P; be given, where P,
is the same negative semidefinite matrix used as the terminal value matrix in the optimal
linear regulator problem. It follows immediately from equations (6.23), (6.24), on the one
hand, and (6.25), (6.26), on the other hand, that the solution to the optimal linear stochastic
observer problem is given by

_Etr):P!]:Pl:_EU

~Bio41 = Poymy
(6.28) ~Zin+2 = Pz
-3, = P,
Ktl: = Fi],—'l
(6.29) gt = e
K?["!'l = F‘l'

This claim can be established directly by verifying that the solutions (6.28) and (6.29) satisfy
(6.23) and (6.24) with the correct boundary condition £;, = —P;. Thus, the solution of an
optimal linear regulator problem can always be reinterpreted as the solution of a specific
optimal linear stochastic observer problem for the dual (6.27) of the system for which the

regulator problem is solved. These interconnections are usefully summarized in Table 1.
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Table 1

Object in Optimal Object in Corresponding
Regulator Problem . Optimal Observer
A AT

B cT

R -

Q -Va

Py —Zy,

Py 41 —Zty-1

Py —Zu+1

By T,

P -Zo

Fy, Kl

Fi 41 KI_,

Fe KT

A - BF,, . AT=C0VK{
A-BFy,_, AT - CTKT
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4. Convergence and Stability Theorems for the Optimal Observer

For systems that are time invariant, two properties of the limiting behavior of I, and
K, given by (6.23) and (6.24) are desirable. First, it would be desirable if for any initial
Lo = Iy, limyeo I; exists and is independent of the initial covariance matrix 3. Where
this property obtains, it follows from (6.23) that lim;_, o K exists and is independent of 7.
Given that lim;_.o Ki = K exists, a second property would be desirable, namely that the
matnx (4 — KC) be a stable matrix. The steady state observer is given by

i1 = (A - KC)z¢ + Ky
{6.30) or

Loy = Az + Ky — Ciy).
Notice that the system (6.30) has the solution

: J .. ‘
(6.31) Zo91; = (A~ KCY ey + Y (A— KCY ' Kyryyi-i.
i=1

If the eigenvalues of (A — KC} are bounded in modulus by unit, (6.31) expresses 4,4 as
a matrix distributed lag of yy,4;-1,--., ¥, With an initial condition whose eftect approaches
zero as j — oo. The steady states observer is said to be asymptotically stable if (A — KC)
is a stable matrix.

The fact that the stochastic linear optimal observer problem is dual to the linear optimal
regulator problem, means that we can simply reinterpret the sufficient conditions for P, to
converge as {y — oo in order to deduce sufficient conditions for 3., to converge as t; — oo.
Similarly, from the conditions on the linear regulator problem sufficient for the steady state
closed loop system matrix (A — BF) to be stable, we can immedialely deduce conditions on
the observer problem sufficient for (4 — KC) to be stable.

We proceed to state several theorems for thé stochastic linear optimal observer problem
that follow by duality from corresponding theorems for the optimal linear regulator problem.

Corresponding to theorem — we have:

Theorem 6.5:  Consider the stochastic optimal linear obsetver problem with Lo = 0. As-
sume that the pair (A4, C)is reconstructible. Then the reconstruction error covartance matrix

¥, calculated from the Riccat: equation (6.24) converges as {; — oo.
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Proof: The pair (A4, C) is reconstructible if and only if the rank of the reconstructibility

matrix

r C
CA
Q= '
[C A1

is n. Consider the linear optimal regulator problem corresponding to the optimal observer
problem (see Table 1). In the corresponding linear optimal regular problem, the controlla-
bility matrix is (CT, AT,CT,... AT, CT*-!], which has rank n. Thus the pair (4, C) =
(AT, CT) is completely controllable, implying by virtue of theorem — that starting {from
Py, = 0,limy,._ o0 Py, exists. Therefore, by virtue of duality limy, o Z(¢1) = Hmyges_oo P,
exists. 1

Corresponding to theorem — we have

Theorem 6.6:  Consider the stochastic optimal linear observer problem with T, = 0. Let
the (n x n) positive semidefinite matrix V} be expressed as GTG where G is (r xn), r < n
and r is the rank of Vj. Assume that the pair (A4, C) is reconstructible, and that the pair
(A, G) is controllable. Then the steady state matrix (A — KC) is stable.

Proof: It is readily verified that (A, C) is reconstructible if and only if (4T,CT) is con-
trollable, and that (A,G) is controllable if and only if (AT,GT) is reconstructible. Set
A= AT B =0T G =CGT,-R = Vi,and - Q = V3 Consider the optimal regulatot
problem for the system G, B, G, R,and Q with P(¢;) = 0. From theorem it follows that
the steady state closed loop matrix (A — BF) is stable. By virtue of duality, we have that
KT = F and (A~ BF) = (AT — CTKT). This implies that (4 - KC) is a stable matrix. §

By utilizing theorem (), the hypotheses of theorem 3.6 can be weakened from assuming
that the pair (A, G) is controllable to assuming that the pair (A, G) is stabilizable. Under
this assumption it remains true that the steady state matrix (A — KC) is stable.

We also have the following counterpart to theorem — :

Theorem 6.7:  Consider the stochastic linear optimal observer problem. Assume that

sufficient conditions are satisfied so that iterations on the Riccati equation {6.15) starting
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from Iy, = converge, and that the associated steady state matrix (A — KC) is stable. Then-
for any positive semidefinite initial covariance matrix X, iterations on the matrix Riccati
equation (6.24) converge to the same positive semidefinite matrix £, i.e., the limit point

described in theorem 6.5.

Proof: Exercise.

By this time the reader will have understood that by virtue of duality, all of the theorems
stated for the optimal linear regulator problem have interesting counterparts for the optimal
linear stochastic observer problem. We invite the reader to state and prove the counterparts

to theorems — — — .

5. An Example: (Muth [], Friedman (|, Cagan (] )

An agent is interested in making inferences about a random variable #; which obeys the

first-order autoregressive process
0141 = pOy + €141,

where €, is a white noise with Ee; = 0, Ee? = ¢? for all t. The agent observes at time ¢ the

record of noise corupted signals z;, z;_, ..., z4,, where
zy = 0y + uy

and where u, is a serially uncorrelated random process with Eu; = 0, Eu} = o2. We also
assume that Eue, = 0 for all ¢ and s. The agent desires to estimate 6;4; on the basis of
information he possesses at t. At time tg,8,, is (believed to be) distributed with mean 6,
and variance Lp.

This problem fits into the stochastic linear op;tima.l observer problem with the following

identifications. We set
Iy = 9;

Wi+l = E4+1, Yt = 24
war = Uy

T 2
_ wigr1 ] [wiesr]” _[oe 0] _ [V O
v=rg["]| - 1% aiJ*[o %)

W Wat+1




A=p
C=1
6, = E(6: | 21, 2:—2,---,2tn).

T = E(8; - 6,)
The recursive equations defining the filter are
Ly = Pzzt 2 0'3

(6.32)
-8, + 027!, with 3, = Z,.

(6.33) Ki=pZe [+ 0]
The optimal observer is
(6.34) Be+1 = (p— Ki) 0y + Kyze.

We can readily verify that the pair (4,C) = (p,1) is reconstructible, and that the pair
(A,G) = (p,0c) (where GGT = Vi) is controllable. Therefore from theorems 6.5-6.7, we
know that lim;_,. X; exists, that lim;_,, K; = K exists, and that the steady state matrix

(A— KC) is stable.

The steady state observer is
éH..] = (p— K)ég"f- KZ;

or

= it J :
Beoti = (1= K + K 3(1 = KV~ 2pquic.

t=]

where recall that @goﬂ' = Eby4j | (2,8 =to,...,to+j — 1].

6. The Optimal Linear Regulator Problem with Hidden State Variables

We consider the problem of maximizing the criterion

ti-1
(6.32) E [Z {zT Rz, + uT Qu} + 33: P2y,

t=1in

subject to the law of motion

zi41 = Azy + Bug + wig4
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where w41 is a vector white noise with Ew“w'{t = V1. The state vector z; is not observed

by the problem-solver. Instead, at ¢ the problem-solver sees {y,,u,;s < t} where
Yo = Czy + wae

whete wy, is a vector white noise with covariance matrix Ewq,w], = V4. We also assume

Via, t=a31
Ew11+1w£={ 62 t£s

The criterion (6.32) is to be maximized over feedback laws making u; a function of (y,, u,.1;
s < t).

We shall show that the solution of this problem can be obtained in two steps. First,
solve the standard optimal linear regulator problem that results from assuming that z; itself
is observed, obtaining the sequence of linear feedback rules vy = — Fyz;. Second, from the

linear-least-squares estimator &, of the hidden state z, using the Kalman-filter
zyp1 = (A - KiO)2 + Koy

Then the optimal solution for the problem (6.32) is to use the control law

(6.33} uy = —Fy2y

i.e., to feedback on the optimally reconstructed state as though it were the actual state.
This structure of the solution indicates the sense in which the optimization (linear regulator)
problem and the state reconstruction (Kalman filtering) problem can be solved separately
in solving the general linear regulator problem (6.32) with hidden state variables. This
structure of the solution is said to mean that it satisfies a separation principle.

To prove the separation principle property, we begin by noting that for the optimally
reconstructed state 24

Ezl Rzy = E [zy — &1 + 21| TR[z1 — 2, + 24}
(6.34) ‘ = E {[z: — 2T Rz, — 2.]}
+2E {lz. — &))" Rz} + Ez! Rz,

Letting £y = E(2¢ — 2)(zxy — )7, recall that

E(zy — zT)R(z, — ;) = trRE,.
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Further, by the orthogonality principle, we have

E (z¢— )T Réq = tr[a(ze — 2)TR] = 0.
Therefore, we have
(6.35) E zT Rz, = trRE, + E] Rz,.

Using (6.35) and the analogous expression for E z] Py, 74, in (6.32) gives the criterion function

t—-1 t1—1
E | ¥ {s7Rie+ulQui} + 5T Py, +tr{ 3 RE
t=ty

t=tp

(6.36)
+ Py, EEtl}]

The last term in braces is independent of the controls uy, since the problem solver is assumed

to see current and lagged controls, so they don’t confound his reconstruction problem. The

last terms in braces evidently depends only on the statistics of the optimal reconstruction

problem, and furthermore is maximized by the optimal observer, since the I; sequence is

minimized. Our problem is now to maximize (6.36) subject to the following law of motion

for the reconstructed state:
(637) £t+l = (A:C: + Bug) + K; [y; - Ctgl

It was established above that (y; — Cz;) is a vector white noise, so that maximizing (6.36)
subject to (6.37) is a standard stochastic linear optimal regulator problem with state vector

z; known, with system matrices (A, B, R, Q), and with noise statistics given by
KE(ye — Czy) (v — Cz)TKT
The optimal solution of this problem is of the form
uy = —Fizy.

This concludes the proof that our problem possesses the separation principle property.
Next we study the behavior of the system under conditions in which both F; and K,
converge to limiting values. The asymptotic closed loop system governing the (2n x 1) system

of variables (zy, Z;) is then

,-h:, = BF";'!: + Wit+1

Tis)

(6.38)

(A= KC)zy — BFz, + KC(z4) + Kwas.

3"-'!+l
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It is useful to express this system in terms of the variables z¢,2; ~ ;. (This can be accom-
plished by subtracting the second equation from the first.) In terms of these variables the

system 18

(6.39) [ Tty ] - [_A - BF

Tip1 — Tigi 0 A- KC] [-‘ﬂt—zt]

[ Wyggy ]
_ witsy ~ Kwae
Since the system matrix of (6.38) is related to that of (6.39) by a similarity transformation,
it shares common eigenvalues with that of (6.39). From the block triangular structure of the
system matrix in (6.39), it follows that its eigenvalues are the eigenvalues of A — BF and

those of A — KC. This property is known as the eigenvalue separation theorem.

Theorem 6.8 (Eigenvalue Separation):  The variables [zt] are governed by a linear system
t
with a transition matrix whose characteristic values are those of (A — BF) and (A — KC)

jointly.
7. Econometric Estimation

We now consider the problem of estimating the free parameters of a model of the form

{6.38), namely,

| Ti+1 | _ A -BF Iy
(6.40) [5.-,“ = [KC A—-KC- BF [it]
Wig4]
* [szt]
where

[wIH-l] [wlt+1] _ [ 11 KT ]
= Kwy | | Kway Kvih KWwKT
The model is subject to the extensive cross-equation restrictions

(6.41) F=(BTPB + Q)"’BfPA

(6.42) K = (ASCT(CECT + vp)!
where P is the unique negative semi-definite solution of

(6.43) P=(ATPA+R-ATPB(BTPB+ Q) 'BTPA
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and X is the unique positive semi-definite solution of
(6.44) T = AZAT + 1) — axcT(czeT + vy)-1caT

Equation (6.40) is a vector first-order linear difference equation in the variables (z, 2;), some
subset of which we assume that the econometrician observes. The econometrician’s problem
is to estimate the free parameters of agents’ objective functions and constraints. From the
econometrician’s viewpoint, the free parameters of the model are the free parameters in
¢ = (R,Q,A B,C,V1,V2,V3). The parameters of ' and K enter the “closed loop” law
of motion {6.40), but are not free parameters, instead being functions of the deep free
parameters in the list 8. Thus, the model (6.40) to be estimated is linear in the vanables
but highly nonlinear in the deep parameters of agents’ objective functions and constraints.
These nonlinear restrictions are characterized by equations (6.41), (6.42), (6.43) and (6.44).

The general theory of estimation can be stated compactly and simply. The model formed
by (6.40)-(6.44) determines the second moments of the joint (z,z) process as functions of the
free parameters. The idea behind all alternative estimators 1s to choose the {ree parameters in
# so that the sample moments of the data on which the econometrician has observations fits
the theoretical moments implied by the model as closely as possible. Alternative estimators
differ in implicitly choosing different measures of fit. We turn briefly to the maximum
likelihood estimator, which is straightforward to describe.

First, we rewrite equation (6.40) as
(6.45) Ye+r1 = f-jlyt + €y

where

Vi =

Tt c — {1 ¥n
é! 18841 ) Kth

1_[A -BF
*=|KC A-KC-BF,

We assume that sufficient conditions are met that the eigenvalues of A, which equal those -
of A— BF and A — KC, are less than unity in modulus. We define the matrix covariogram

of the y, process as the sequence of (2n x 2n) matrices

Ry(r):EygytT_,, integer .
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The z-transform of the covariogram is defined as
(6.46) S(z)= 3. Ry(r)”
e —o0
where R(r) is recoverable from Sy(z) by the inversion formula

Ry(r) = 52 [ Sil2)z

T 2w

-r 42
z

“where the integral is a contour ihtegral and I' denotes the unit circle. For a model! of the

form (6.45), the z— transform of the autocovariogram can be shown to be
S,(z) = (I ~ Az)7V (I - ATz 1)1

Let the eigenvalues of A be A1,..., A, where r = 2n. We have assumed that | A; [< 1 for
all 7, and assume also that the A;’s are distinct. Then by using a matrix partial fractions

representation of 5,(z), it can be shown that

_ r W T H!T/\,z—l
47 =y —I Yy L
(6.47) 54(2) ) — Az + il D
i=1 J i=1 !

Expressing Sy(z) as

. 1
T det(] - Az)det(I — ATz-1)

Sy(2) adj(I — Az)Vadj(I — ATz71)

We note that Sy(z) has poles at the zeroes of det(] — Az), that the zeroes of det(] — AT2T) are
the eigenvalues of A, and that the zeroes of det(] — Az) are the reciprocals of the eigenvalues
of A. Writing det(] — Az) = Ag{l — Ay2),... (1 = A;z) we have

1 |
AT (1 — Ajz)OG_y (1 - Agz?)

(6.48) 5,(z2) = adi(1 — Az)V adj(] — ATz7Y) |

Now seek a matrix partial fractions representation of the form

(6.49) - S,(z) = Z idi

i=1

V;z~1
+ 7
l—Ajz l—z\jz'l'

Equating (6.48) and (6.49) and multiplying both sides by A%H;=l(1 ~ A )G (1= Aez™t),
then taking limits as z — )‘_,'_l and z — A;, respectively, gives
Wi = (MTazji(1 — M AT Doy (1 = Ad;))7Y) adj {T — A7} Vadj {1 - ATAj}
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T
Substituting these formulas into (6.49) gives formnulas equivalent with (6.44) and () of the

text. Where
(6.50) W; = lim (1-)z)[(J - A2)"'v(I - ATz71)7))

z— AT

]

From (6.47), the covariogram can be immediately obtained as
Tima WA, 120
S whall <o
Equation (6.47), (6.50), and (6.51) give the theoretical second moments of the vector process

(6.51) Ry(r) =

ye = (zT,2T) as a function of the free parameters that underlie 4 and V.
Now suppose that the econometrician has data on some subset of p variables §; = Dy,
where p < 2n, and where D is a (p x 2n) matrix. Then it is readily verified that the matrix

covariogram of , call it Rj(r) = E§§7_,, is given by
Rj(r) = DRy(r)DT

- . i, DW;DTAT £ >0
(6.52) (7) = g, pwIDTall <y
Equation (6.52) gives the covariogram of the variables on which the econometrician has data
as a function of D and the Wj’s, A;’s, which in turn are functions of the deep parameters of
the model.
Now define the stacked vector of observations
3
Y2
Yo = )

yT
Define the theoretical covariance matrix of jr,

r(8) = Egrdr,
whose elements are components of Ry(r) and can be filled in as functions of the deep pa-

rameters 6 of the model by using (6.52). Then the normal likelihood function of the sample

yr 1s given by
1 1 b e s
(6.53) Lt = —§Tp log 2w — Efog det 'r(8) — EyTTFTl(S)yT
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Estimation proceeds by choosing the free parameters of  to maximize (6.52) subject to the
cross-equation restrictions given by (6.40), (6.41), (6.42), (6.43), (6.144), (6.45), (), (6.50),
and (6.52).

Exercises

1. The “true” money supply follows the stochastic process
M| = AMi_I + Uz

where Eu; = 0,uy = [My — EM, | My_,, ...], u, has finite variance , and u; is serially
uncorrelated. But “true” money is reported only with a two-period lag; what is reported

immediately is a preliminary estimate of money m; , governed by
mg = M: + Et,

where €; has zero mean, is serially uncorrelated, has finite variance, and Euse, = 0 for all
t and s. Suppose that the system has been operating for a long time, so that it is a good
approximation to assume that A and the variances of ¢; and u; are known.

(a) Show how to compute the linear least squares estimators of m¢y; and m, given
‘information know at time t; i.e., compute Eym;y; and E;m; where E is the linear least
squares projection operator. Hint: use the Kalman filter or full order observer algorithm,
and define z4,y:, A, B, C.

(b) Is V, positive definite? If not, does this create problems with the algorithm you
outlin_ed? Can you think of a way of coaxing the full order observer algorithm of class to
give a good approximate answer? (Hint: think of a way of approximating the true V3 by a
positive definite V). What is the interpretation of your approximate solution?

(c) With V; positive definite, prove that for the approximate system

(¢) Iterations on the matrix Riccati difference equation for 3°(¢) converge as t — oco.

(iz) The steady state matrix (A — KC) is stable, regardless of the value of A.

2. Consider the state space system
Te41 = Ay + Brug + wien
yt = Cizy + way
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as described in the text. Describe carefully how the following examples fit into the state

space framework (i.e., for each example, you must define z;, Ay, By, u¢, w141, i, Cy, and

tUQg).

(@) An autoregressive process

Zg = @a124—1 +az4-2+ -+ + An2Zt—n + €4

where ¢ is fundamental for {z;}, and the roots of (1 — a1z — a22° — ... — an2z") = 0 are

outside the unit circle.

(b) A moving average process
Zy = CoEt + C1E¢—1 + *+* + CrEt—n

where €; is a white noise that is fundamental for z;. (Hint: define the state vector as

T = (E:, €i—1,""" 5!—1))'

(¢) A mixed moving average autoregressive process
zy =a1z4-1 + €4 + by

where | a; [< 1,| b1 |< 1, and & is fundamental for z;.

(d) A regression model
Yi= X8 + ¢ ¢t =1;-,T

where €, is a white noise, X, are fixed regressors, and 3 is a vector of regression coefficients.

(e) A moving coefficients regression model
Yi = XiBt + €t

where B; = B¢=1 + u¢, where u; is a white noise and the other symbols are as defined in (d).
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Chapter 7

Linear Dynamic Equilibrium Models

1. Introduction

This chapter discusses two alternative ways of solving linear dynamic equilibrium models.
The first, which we dub the Kydland-Prescott method, is a recursive method that works even
in the presence of dynamic externalities and other distortions. The second method, which
is Lucas and Prescott’s, exploits the equivalence between equilibrium and optimality. This .
second method will not work for environments with some distortions that can be handled
by the Kydland-Prescott method.

We describe these mthods in the context of a concrete model, namely, a version of Lucas
and Prescott’s model of investment under uncertainty with a.djustment.costs. We go on to

apply these methods to a two sector mode! of “corn-hog” equilibrium dynamics.
2. The Kydland-Prescott Method

This is a model of an industry in which n identical competitive firms employ a single
productive input, capital, to produce a single output. The industry demand curve for output

at time ¢ is
(71) pt=A0—A1Y¢+u¢, A0>0,A1 >0

where p; is output price at t, ¥} isindustry output, and u; is a shock to demand. The output of
each firm is yy = fgk; where k; is the firm’s capital stock at time ¢ and ko > 1. The industry-
wide capital stock is K; = nky, and the industry-wide output is Y; = ny; = nfok: = foK,.
The firm pays a rental w; per unit of capital at time t. The rental process uy 18 assumed to

follow the law
(72) ‘ wy = /\0 + Ay + /\2K¢_1 + ayt

where a,,; 15 a serially uncorrelated random process with mean zero. It is important to note
that with A; # 0, (7.2) permits feedback or Granger causality from the market-wide capital

stock K to the rentals process w. At time ¢, the market wide capital stock K, is assumed to
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follow the linear law of motion.

(7.3) Kis1 = b + R Ky + hywy + hiu,,

where notice that the coefficients in (7.3) are permitted to depend on time. We suppose that
the demand shock u; follows the autoregressive process |

(7.4) Ugy] = QU + Byi4]

where ay;4 is a serially uncorrelated random process with mean zero that is fundamental
for u.

The individual firm is supposed to maximize

ty
Ey Y plt-te) {Ptfﬁkt — wiky —

t=1p

d
(ke = k)7

d>0, 0<pB<1
subject to k. given, and subject to knowledge of the laws of motion (7.2), (7.3), and (7.4),

(7.5)

and the demand curve (7.1). In (7.5), %(kt“ — k¢)? represents costs of adjusting the capital
stock rapidly, while 3 is a discount factor. At time ¢, the firm is supposed to choose k¢4,
as a function of the state variables it knows, namely {k;, K;,w¢,us}. In (7.4) By, (-) =
E(- | kty, K¢y, wty, U, ), where E is the mathematical expectations operator. The solution of

this problem will be a sequence of linear contingency plans

kg+1 = d?) -+ dikg 0 i d;w; + d;‘ug + d:Kg,
(7.5)
t= t0|t0+l! A ttl !

where the coefficients d} are in general dependent on time.
Equilibrium requires that the choice (7.6) of the representative firm imply the aggregate

law of motion (7.3) assumed by firms in maximizing (7.5). Multiplying both sides of (7.6)

by n gives
(7.7) Kip1 = ndh + (4% + ndi) K¢ + (nds)wy + (nd})u,.
Since (7.7) must be identically equal to (7.3), we have the equilibrium conditions
hé = ndj
= df 4 nd
(7.8)
hy = nd
Y = nd}
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Formally we can define a rational expectations equilibrium as follows.

Definition 7.1: A rational ezpectations equilibrium is a pair of sequences h(to,t1) = {hb, ht,
ki, hY; t=to,...,t1} and d(to,to) = {dh, d},d}, d8,d§; t =to,...,t1} such that
(a) Given h(to,t;) as the law of motion in (7.3), d(to, t1) in (7.6) maximizes the representative
firm’s expected present value (7.5).
(b) Market clearing and the firm’s choice of d(to, 1) imply that h(to,t1) gives the aggregate
law of motion, i.e., equations (7.8) hold.
Let us substitute (A9 — A; foK: + u¢] for p; in the objective function (7.5). Then the
firm’s problem is equivalent with finding a sequence of value functions Vi(ke, we, uq, Ki, 1)
that satisfy Bellman’s functional equation

V(e weyue, Ky 1) = max { (4o = AsfoKo + ud foks — wiky
(7_9) d . t+1
=3 (kesr — k)2 + BEV ™ (kesr, wesr, wesr, Kes1, 1)}
where the maximization is subject to the given laws of motion
Kiy1 = h(‘, + h;’Kg + héw; + h§u¢

(7.10) wis1 = Ao+ Arwe + A2 K¢ + auis

Ut4] = QUt + Qyt4]
In (7.9) it is assumed that v''*! (kg 41, we, 41, ve+1, Kiy41, 1) = 0. This is a linear reg-
ulator problem that can be solved by standard methods. Define the state vector X4 =

[ke, we,u, K¢, 1)', and the control vy = keyy — ki. Then the law of motion is
ket 1771 0 0 0 07k I 0

wigr [ |0 Ay 0 Az Ao | [ we 0 Qe+
U1 0 0 a 0 0 Uy + |0 vy + | ayi—
K1 | |0 RS Ry hRY A | | K 0 0

1 0O 0 0 0 1 1 0 0

or

Xegr = Ae Xy + By + ag4).

Define the quadratic form X7 RX, as

1 A flz Ao ]
ky T 01 T2 + ‘gj - ‘2 @ 2 ‘ ky
Wwe -3 0 0 0 0 || w
ug L 0 o 0 0 || w
2
Kl f-28 0 0 0 o ||
nzAn 0 0 0 0
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Define @ = —%. Then the firm’s problem is the discounted optimal linear regulator problem,

to maximize

31
Ey Y. B4 %) (2T Rzy + o] Quy),

t=tp

subject to

Ti41 = Az + By + ai

The maximization is over linear contingency plans of the form
vy = —Fizy, t=to,t0+1,...,¢.
Since vy = ki1 — k¢, we have that
(7.11) Fy =1 -di,—dj, —d}, —df, —df]
For this problem with A; matrices taken as given by the firm, the solution is given by
(7.12) F, = B(BB'Pis1B 4+ Q) 'B'Py 1 A,
where {P;} is computed from the matrix Riccati difference equation,
(7.13) Py = BAPry1 Ay + Ry — B?A,P.B[BB'Pi11 B + Q7' B' Piy1 Ay,

starting from the terminal condition P, 41 = 0. It is revealing to use (7.11) in (7.12) and to

write out A, explicitly to get

_[(l - d% )! "d121 —d;, _dfla _df)] =

1 0 0 0 0
0 A 0 Ay Ao
(7.14) B(BB'P, 1B+ Q) 'B'Py1 |0 0 a 0
0 hY Ay RY, A
0O 0 0 0 1
Recalling (7.8) we have
hé = ndé
(18) ki = &% + nd}
. h: = nd®
2 2
hy = ndj



Given Py, equations (7.14) and (7.8) are nine linear equations in the nine variables dj), d}, dj,
&, db, b, B, b, B,

Equations (7.13), (7.14), and (7.8) provide the recursive algorithm used by Kydland and
Prescott. At t;, the nine linear equations (7.14) and (7.8) are solved jointly for the nine
variables {h, h{', h3', hYl, dgt, dY, d3', dg', di'}, with P, 1) = 0. The solution for the A}'’s

determines the matrix A;,, where recall that

1 0 0 0 0
0 A1 0 Ay A
A=[0 0 a 0 0
0 kY kY Rt A
00 0 0 1

Given Ay, Py, is calculated from the Riccati difference equation (7.13). Then (7.14) and
(7.8) are used to solve for {h;‘“l, d*~1'j=1,2,3; i=1,...,4}, Ay -1 is formed, and P, _;
is computed with (7.13). The recursive process is repeated until the h} and d}’s have been
computed for all t = tg,...,1;.

Like Prescott and Kydland, we are actually interested in using this algorithm to compute
a rational expectations equilibrium for the case of an infinite horizon for the firm, in which
case there obtain time invariant laws of motion both for the firm’s capital stock and the
industry’s aggregate capital stock. The firm’s problem is to maximize

3

(7.15) Jim By, 3

d
ﬁ(!_t"){Pt foke — weky — 5 (kg1 — kt)z}
t=tn
subject to the laws of motion
Ky = ho -~ h]K; + h2w¢ + h;;h‘.g
(7.16) wery = Ao + Arwe + A2 Ky + awyy,

u!+1 = aul + au¢+1

The solution of this problem for the firm is a linear contingency plan
(71?) ki :d0+d1kg+d2w;+d3u;+d4h’¢,

which is now time invariant. A rational ezpectations equilibrium is a pair of {h;}, {di}, j =
1, 2, 3; ¢=1,...,4 such that (a) given the h;’s, the d;’s in (7.17) lead to maximization of
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(7.15), and (b} the di’s imply the law of motion for K assumed by firms in their maximization

problem, which means that

ho = ndo

hy = dy + ndy
(7.18) ~

hz = nd;

hsy = ndy

If the Kydland-Prescott algorithm converges, then it converges to the infinite-horizon, time-

invariant equilibrium. That is, set

d,-:tﬁg_lmd;" j=1,...,4
(7.19) o , _
h,-:tllm R t=1,...,3
-

If the limits on the right sides of (7.19) exist, then it can be proved directly that the A; and
d; defined by (7.19) constitute a rational expectations equilibrium for the infinite horizon
setup.

In general, in the presence of feedback from K to w, that is, with A3 not zero, there is
no guarantee that an infinite horizon equilibrium can be calculated using (7.19). The limits
in (7.19) may or may not exist in the presence of feedback from K to w. At present, it is an
open question whether, when the limitsin (7.19) fail to exist, there still exists an equilibrium
for the infinite horizon setup, even though it cannot be calculated by the Kydland-Prescott
algorithm. |

With A3 = 0 and with | a |< 1/y/8 and | A; [< 1/, it can be proved that a time
invariant equilibriﬁm exists for the infinite horizon setup.

Under conditions delineated by Lucas and Prescott, the rational expectations equilibrium
for a model like ours can be computed by solving a particular social planning problem,
namely, by maximizing the expected discounted consumer surplus minus t.he total costs of
production. The Kydland-Prescott algorithm is designed for computing rational expectations
eqﬁilibriain circumstances in which the equivalence between the social planning problem and-
the competitive equilibrium does not obtain. In our model, the feedback from market-wide
capital K to the rental w manifested in equation 7.2 produces an éxtemality that renders

the Lucas-Prescott method tnapphicable.
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3. The Lucas-Prescott Method

An alternative to Kydland-Prescott’s algorithm is to represent the feedback from current
market wide phenomenona to future w’s in a way that preserves the Lucas-Prescott equiva-
lence between the competitive equilibrium and the social planning problem. In the context
of the present example, this can be done by introducing feedback directly from u to w, and
suppressing the explicited dependence of w on lagged K exhibited by (7.2). This \;l-fould be
accomplished, for example, by replacing (7.2) with

(7.2") we = Ag + Ajweo1 + Aguo] + Tt

This change restores the equivalence between competitive equilibrium and the social planning
problem.

The advantage of the alternative formulation is that by solving the social planning prob-
lem, the competitive equilibrium can be calculated more quickly and much more nearly
in closed form than by the Kydland-Prescott method. Thus consider the infinite horizon
problem, to maximize

> d
(7.20) Ey, ::;n 6(t_t”) {Ptfokt — wiky - 2 (ft41 — kt)z}

with k;, given, and subject to

(7.21) pe= Ao — A}y + uy
(7.22) Yy = nfoke
(123 el S L] = e

where ¢i;(L) = T2, «L*, and all zerces of det c(z) lie outside the unit circle. Here
[v1t, vae,| are jointly fundamental for [wy, uy, |, 1.e. they are serially uncorrelated, have means
of zero, obey Evyvs, = 0 for all £ and s, and one step ahead linear least squares errors in
forecasting (wi, u¢) by linear functions of lagged w’s and u’s are linear combinations of vy,

and vy.
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Following the procedures in Hansen and Sargent ] and Sargent [], we first solve the
certainty version of the above problem, then use the Wiener-Kolmogorov prediction formulas
to find the solution under uncertainty. For the certainty version of (7.20), differentiating

(7.20) with respect to k; yields the Euler equation

dBkiyy — d(1 + B)ky + dki—y = Bwy — B fop

At this point, but not before, we substitute for p; from p; = Ag — A1n foks + u¢. Substituting
at this point and not before is what guarantees that the firm is behaving as a competitor

with respect to the output price p;. Upon substitution we get, after some rearrangement

1 Afiny, 1 1 fodo f
(7.24) kiy1 — (1 + ] + %) ki + Ekt-l = Jwe = % - fu

As in Sargent [], it can be shown that this equation itself is the Euler equatlion associated -

t-

with the social planning problem, to maximize
= o 1
Wi = Blt=to) {[Aofunkt - §.f11(f§n2k:)2] + fonugk]
t=ty,

- nw;k; - %ﬂ.d(ku.l - kg)z}

The term in brackets is the area under the demand curve since
Ye 1., .4
fo (A0 — Arz +u)dz = Ao¥i — , AY2 + Yiug

The Euler equation (7.24) can be written as

1w _fn-“uﬂfnu
d ' d d "

2
where (1 — AML)(1 — A2L) = (1 — (1 + }, + é*'é”:)[. + 3 L?), and where BA; = A;', and

(1 = A L)1 — AgL)kess =

where A\ < 1< é < Az. The solution of the Euler equation that satisfies the transversality

condition for the firm’s and for the social planning problem is (see Sargent [] )

B _ =B {1 fodo  fo
(7.25) (1 = Ny = =iy | 3o = 2 = du,}
For the problem under uncertainty, the solution is
A8 (fvo)
— ML) kg = —
(1 1L) kegy W, d
L#l
MB foBA -AL-1 Wt
+ [ ==, |Ey 3
d d L
1-A,8L-1 Ut
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Given (7.23), we have that

m"’;a%r wy L-! .
(7.27) B | = [l—jgf:l IC(L)) + v
1-ABL-1 Ut :

Using the method of appendix A of Hansen and Sargent [1980], it is readily establisﬁed that

L—l
—_— L
[1-“AlﬂL_lIC( ”4‘
(7.28) L Cn(L)-Cpy(BM)]  L7YCia(L)-Cra(BM)]
I*AiﬂL'l 1-M\8L-1
0 L™ [C3(L)-C33(BM1)]
1—-:\1;’3[;'1

Substituting (7.28) and (7.27) into (7.26) gives the equilibrium

(7.29) (1= ML) key = | _‘f 3 f"f" + 61(L)vie + 02(L)vay
where
_=M8  L7NCn(L) - Cu(BM)]
by == 1—ABL!
MB LT 1[C'lz(L)— Cr2(BA1)]
(7.30) 82(L) = ¥ 'lﬁL 1
+ foBA L™ l[szz(L) = C22(BA\))
d 1 - /\,ﬁL 1

Expressions (7.30) can be made to yield explicit formulas for the distributed lag coefficients.
Let 4(L) = J 0‘7,LJ and | § |[< 1. Then following the same procedure as in Hansen and

Sargent [], it can be proved that

1y 7(E) -

] [1~6L1]

Yo L' + (vg-1 + 67) L9 +

+(m+n+.. +87y)LO).

(7.31)

Repeated use of (7.31) in (7.30) converts (7.30) into explicit formulas in terms of lag distri-
butions.

Substituting (7.27) into (7.26) gives

_ MB fodo
(L =mL)kes = WY
[-,\,ﬁ foﬁr\ll ( L I
d d 1-MBL-!

(7.32)

C(L)]+‘Ug
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It is useful to consider the case in which [wy, u¢| has an autoregressive representation
An(L) Az(L) ] [ ] _ [vu]
(7.33) [ 0 Axn(L) ~ Loz

or
wofz)-[2]
() [ Uy V2t
where A(L) = C(L)~'. Sometimes it will be convenient to parameterize the model in terms

of the autoregressive parameters of (7.33). In this case, (7.32) can be written

)« A
(1 - By = —2p__ o8
-M8 d .
(7.34) ﬁ fﬁ)« -1
- MB - foBM - -1 e
Using
) _1_ . - :A]Z(LJ e
C(L) = A(L)™ = [411(5) AII(L}IA::(L)] ,
0 A;z(Li
together with (7.34) and (7.28), we obtain the equilibrium in the form
__MB fodo _lﬁ foBM
(7.35) (1 =MDkesr = 75 =5 + = 5
| Ay [ 1 l =L= [ __Apa(L) A12(M18) ]
1-BA LT Au(L) ~ An(MB) 1-8AL-T Au(L)Azz(L) — An(MB)Az22(M18)
L™
0 l—ﬂz\lL‘l[An(f-) - An(lhﬁ)]
- [A“(L) .412(L)] [w
0 A2(L)
Performing the indicated matrix multiplications gives
A A
kev1 = Ak + : —lf;ﬁ‘ f_od_o + by(L)we + ba(L)uy
where
A8 An(L) 1
bi(L ! { i }
(L) =-~ ' An(L)(MB)1 = \BL!
ba(L) = '\15{ | Ar2(L)A(MB) - Alz('\lﬁ)4422(L)] . 1 }
A11(A18)A22(M1B) 1-X\0L-!
_1_‘3@{ p-ipp . An(l) 1
L = a0y 1= 3 BL- 1}

217



4, A Corn-Hog Model

This section describes a simplified model of the “corn-hog cycle”. We have adopted the
most rudime.ntar}' specification of technologies, retaining only those elements that are essen-
tial to exhibit what we believe are the key features such a model must have. A more realistic
specification of the technologies would involve more state variables and more complicated
dynamics, but would not involve any essential analytical complications.

There are m identical corn farmers, each of whom maximizes

— d
(7.36) Ey, !go gle-to) {pc, et — wike, — ;5 (kets1 = kc,)'*’}
where p., is the price of corn, ¢t is output of corn, k., is the capital stock of the corn

producers, and wy is the rental rate on capital. Qutput of corn obeys
(7.37) C! = fkt,‘(r f > 0

The corn producer faces the stochastic processes for p.; and wy as a price taker. The rental
is assumed to be the first element of a (p, x 1) stochastic process z; which obeys the ¢**

order autoregressive law
(7.38) {I—p1L—.. . —pgL%% 2y =v] or p(L)z =vf

where the zeroes of det {I — p1z — ... — pqz?} lie outside the unit circle. Here v} is a serially
uncorrelated vector process with mean zero. We assume that v} is fundamental for z,. The
assumpticns about the stochastic process for p,; will be filled in later. .

The hog industry consists of n identical producers each of whom maximizes

>, _ e
(3.4) E, Y Bt {Phtht =~ rekae = S{knesr - kni)? - Pc!cht}

=ty
where pp, 1s the price of hogs, cx; the consumption of corn by hogs, ky¢ the number of hogs,
h; sales of hogs, r ks, 1s miscellaneous expenses to maintain ky; hogs. The technology is

assumed to be

Che = Yhkne vy>0

he = (1 + d)kny — knerr, ¢ >0
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where ¢ is governed by the reproduction rate of pigs, which is assumed exogenous here but
would be a decision variable in a more realistic analysis. In (7.39), the term (e/2) (kpyy; —
ky:)? represents costs of adjusting the number of pigs.

The price r; is the first element of a (p, x 1) vector z; which follows the ¢'M order

autoregressive process

(I —61L - 8oL = oo 6qL%)zy = v
or
(7.41) §(L)z, = v§ ,

where the zeroes of det((z) lie outside the unit circle and v} is a fundamental white noise

vector for ;. The demand for hogs is given by
(7.42) pht = Ao— A Hy+upy, Ao, A >0

where Hy = nhy, and where uy, is a stochastic shock to demand that obeys the autoregressive

law

{1-a1L —...— a,L*}uy, = v:'
or
(7.43) (LYot =

where the zeroes of a(z) lie outside the unit circle and v} is the fundamental white noise for

Upt-
The demand for corn is the sum of the demand derived from hog production, Cj; = ncy,

and the demand for final consumption, Cc;. The demand for final consumption obeys
(7.44) Cet = Bo — B1Pet + et Iﬁo > 0,6 >0,
where u; is a demand shock that obeys the autoregressive law
{1-mL—...— L% =vf
or

(7.45) Y(L)uer = v
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where the zeroes of 4(z) lie outside the unit circle, and vf is the fundamental white noise for

2. The total hog-derived demand for corn from (7.39) is
Cht = 7Kt
where Kj; = nkn; and K¢ = mke. The equilibrium condition in the market for corn is
Cet + Che = fKet

or

ﬁD == ﬁlpct + uet + ']’KM = chl

which implies

1
(7.46) Pet = EhK“‘ + Bo + et — fKet).

At this point it is convenient to define the vectors

2o =2t 2010y Ze—qa1]

By = (24 2oy - el
Uhe = [Uht—1, - > Uht—ss1]
et = [tees Mot JUet—st1] -

The farmers in each market need to form expectations about future prices of corn and
hogs in order to solve the maximum problems (7.36) and (7.39). Since future corn and hog
prices will depend on future state variables in each market, including the capital stocks in
each market, farmers in each market need to form a view about the laws of motion of the
market wide stocks of capital in both markets. We assume that farmers views about these

laws of motion are correct.. It will turn out that the laws of motion for the market wide

capital stocks in the two industries will have the forms

(7.47) Kets1 = Ge(2t, 24, The, Ket, Kney 1)

(7.48) Knier = Gir(Z, T¢, upgtict, Kty Kne, 1)
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where both G. and G, are linear functions. Notice that (7.47) and (7.48) share a common
set of arguments, so that any state variable for one market is also a state variable for the
other.

We are now in a position to state well posed optimum problems for firms in each industry.
Firms in the hog industry maximize

B 3 A4 {40 — Ai((1+ 8)Kne = Khewr) + undl - [(1+ @kne = ki

t=tp

(7.49) = rekne — g(kmﬂ — kne)?
1
- ‘7&;“ . [E(‘TKM + ﬂﬂ + U — cht)]}

Firms in the corn industry maximize

o0

Ey, Y 5“4"){[%(71{“_ + Bo + uet — fKet)| fket
(7.50) ¥to .

d
— wiket — i(kc”l - kct)z}
Here it should be noted that p, = 51(1}(5, + Bo + vt — fKet) and ppy = Ag-—
A1[(1 4+ ¢)Knt — Knt41) + upe, and that these expressions for p; and pp, have been sub-
stituted into (7.36) and (7.39) to obtain (7.50) and (7.49), respectively. The maximization

in (7.49) and (7.50) is subject to the following laws of motion, which the firms in each

industry take as given:

(7.38) ¢(L)ze = vf

(7.41) 5(L)z, = v}

(7.43) a(L)tng = v}

(7.45) 3(LYer = v

(7.47) Ketst = Ge(Ze, B, Bay icts Koty Kty 1)
(7.48) Knt+1 = Gn(2t, 24, int, Ket, Knt, 1)
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The optimizations in (7.49) and (7.50), respectively, are over linear contingency plans of the

forms
(7.51) kne+1 = gn(Ze, e, The, ety Koty Khe, 1, kng
(7.52) kcl+l = 9:(211 Ty, Upy, Uet, Kch Kkt: 8 kc!)

where both g; and g, are linear functions.
We are now in a position to define a rational expectations equilibrium for this pair of

industries.

Definition 7.2: A rational ezpectations equilibrium is four linear functions (7.47), (7.48),

(7.51), and (7.52) such that

(a) Given the aggregate laws of motion (7.47) and (7.48), the contingency plans (7.51) and
(7.52) maximize the expected present values, (7.49) and (7.50), respectively.

(b) The contingency plans of the representative firms in each industry (7.51) and (7.52)
imply the aggregate laws of motion (7.47) and (7.48), so that '

Gc(zhih Erhh Urh Kch I{uh 1) =
(7.53) o
mgc(z’hih Urlh Uch Kct: Kﬂh 11 kct)

Gu(Zt, Zt,Une, Uet, Kety Knty 1)
(7.54)
ngn(Ze, Z¢, Bne, ety Ket, Kne, 1, knt).
Let us indicate how the Kydland-Prescott algorithm can be used to compute the equi-
librium. Write (7.38), (7.41), (7.43) and (7.44) as
Zt41 =PI+ viyy
.‘7'_,.H_] = a':l-:g + Uf+l
Tpe1 = gy + Uiy
Ueg4+1 = YUct +.U§+1
where p = [p1p2...pg), & = [0172.. . 0g),& = [m1az .. .ay), 7 = [1172 "+ 7s]. Further, let Gy,
and G.; be the partial derivatives of (7.48) and (7.47), respectively, with respect to their :'"
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and j*® arguments. Then from the point of view of the corn industry, the state transition

equation is

P By 5 0 0 0 0 0 0 077z
Tig 0 .4 0 0 0 0 0 0 T,
degq1 | | O 0 0 5 0 0 0 0 T
Kuw1| |G G Giy Gy Gis Gl Gy G Kt
Kheer Ghi Gh, Ghs Giy Gis Ghs Ghr Gig Kt
1 0 0 0 0 0 0 1 0 1
L kts1 ] L O 0 0 0 0 0 0 1 1 L ket |
0] [via
0 Vi
n Vi1
O [+
ol vt |
0 0
0 0
[ 1] t
or
(7.55) Net41 = ActXet + Bever + €ce41
For the representative hog producer the state transition equation is
. . A O 0O 0O 0 0 0 0 5
241 0 g 0 0 0 0 0 0 £,
i o 0 & 0 0 0 0 0 ipy
Chtb1 ) 10 0 0 0§ 0 0 0 0 ey
;:ft“ -~ |Gy G, G Gy Gis GY G GYy K
ct+1
Kniss . Ghi Ghy Ghy Giy Gis Gis Ghr Gig Knt
1 0 0 0 0 0 (0] 1 0 1
Lo 0 0 0 0 0 0 1 1 L kpe
0] [via)
0 Ut:+1
(: utcH‘
( Vit
+ 0 Uht‘l‘ U
0l 0
] 0
|1 0
or
(7.56) Nht+1 = AptXny + Brvpg + €t
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Now the corn producer’s problem (7.50) can be expressed as the maximization of
o0

(7.50) Ep Y BY™") {XER Xet + v5iQcvet}
t=tp

subject to

Xet41 = ActXet + Bever + €ct41

where R. and Q. are matrices conformable with X.; which make (7.50)' equivalent to (7.50)".
Similarily the hog producers’ problem (7.49) can be cxpressed as the maximization of
o
(7.49) Ew 3 BU=*) (X, RaXhe + vi Qnvac}
=to
subject to
Xht41 = ApeXne + Brvne + €nes1
The Kydland-Prescott algorithm can be used simultaneously to compute the parameters
of G! and G}, that appear in A.; and Ay, as well as the optimum decision rules g; and gj.
The equations for the optimum decision rules can be written, as in section 1:
~[=gh1, —9h2» —9h3) —har —Fhs, —Fhe, —9h1, (1 — ghs)] =

(7.57)
B(BB),Pre+1Bn + Qn) ™' Ape

—~ [~ 961, —9c2, —9c3 — 9 —9esr — 96, —9er, (1 — 9is)] =
ﬁ(ﬁB;PcH-ch = Qc)—l-‘lct
where P.; and Py, are obtained from the matrix Riccati difference equations

Pct = ﬁA'chH-lAct + Rct

(7.58)

(7.59)
- ﬁ2'4::tPCSBc[ﬂB;Pct+IBc ¥+ Qc]—lB:;PcHlAct

Py = BA} Pris1Ane + Ray
— B2 A} Prt Ba (BB} Prts1Bn + Qn) ™' BIyPres1Ane

starting from Pey 41 =0, Pryy41 = 0.

(7.60)

The equilibrium conditions (7.53) and (7.54) supply us with the linear equations
(7 61) G:“.l = mgct‘l‘ G:'z = mgé;‘ Ggg = mg:':,! qu = mgég

t t t t t t t
Gc; =mg. + Geg» GCG = My, Gc: = mg.,
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69} G, =ngh,, Gh, =ngh,, Gh, =ngh,, Gi, =ngi,
Ghs =nghys Ghs =1n0hs + by Ghg = ndhs, Gh, = ngj,

The reader can verify that equations (7.57), (7.58), (7.61) and (7.62) are 2(2s + 2q + 3) +
2(2s + 2q + 4) linear equations in the same number of unknowns, where the unknowns are
the g},j,g,:j,G}l‘_Gi‘., forj=1,...,8,1=1,...,T.

As in section 1, the computation strategy is to solve (7.57), (7.58), (7.61), and (7.62)
jointly, starting from P, 4y = 0, Preqyy = 0. Equations (7.59) and (7.60) are used to “back-
date” P.; and Pj;. The idea is to iterate on these equations and take the limits of the

Gl G, 680, 10's 28 to — —o00.
5. Solving the Corn Hog Model a la Lucas-Prescott

This section shows how to calculate the equilibrium of the corn-hog model by using the
methods of section 2. As in section 2, the idea is it obtain the Euler equations for the
representative firms’ problems, then to substitute into those Euler equations expressions for
equilibrium prices in terms of market wide stocks of factors, and then finally to solve the
resulting system of difference equations subject to the transversality conditions for firms’
problems.

Taking the hog producer’s problem first, recall that the hog producers problem is to
maximize

0
Ey ). plt-to) {PM[(I + @)kne — khesr] = rikn—
(7.63) t=tn
® (kness = kno)? = peerhne -

As in Sargent [], we solve this problem by first solving the problem assuming there is not

uncertainty. From the certain version of the problem the Euler equation is

Bekpiry — (1 + B) ekpy + ekpy—y
(7.64)
= —B(1+ ¢)pnt + Pre—1 + BYPct + Bt

From the demand curve for hogs we have

pre = Ao — A[(1 + @) Kne — Khot1] + ung
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so that
Pht—1 — B(1 + @)pre = {Ao — B(1 + ¢) Ao} + upe—y — B(1 + @)un

(7.65) +{B(1 + ) A1 + A1} Kne — B(1 + ¢) Ay + Kheg
— A1(1 4+ @)Ky

We also have from the demand curve for corn
1
(7.66) Pet = E[‘YKM + Bo + uct — fKei-

Substituting (7.65) and (7.66) into (7.64) and using K = nky; and K¢y = mkey gives
nBv?

»
B

(Be + Bn(1 + ) Aitnkness — [(1+ B)e + n{B(1 + 8141 + Ar} + 2L | kg

+ {C + ﬂ‘-(l + ¢)A1}nkm_1 + Mnmkq

(7.67) b 2

= nuge—y — nB(1 + PJupe + Bnry + EEltlc.
1

+ ﬂ%‘z@ + n[Ao — B(1 + ¢)Ao)

Equation (7.67) is one of a pair of Euler-like equations whose solution will determine a
competitive equilibrium for the two industries.
Corn farmers maximize their expected present value
s d
B 3 BY=) {peefhet — weket —  (ketr1 = ket)?}.
Again following the procedure in Sargent, \.ve first consider the version of this problem under

certainty. Under certainty the Euler equation is

Bdkeesy — d(1 + B)ker + dkce—1 = Bwi — B fpet

Substituting (7.66) into the above equation gives
| 2
BIY mkng + Bdmkeesy — [d(1 + B) + "‘S f

1 1
(7:8) mBf _ mBfho

B T B
Equations (7.67) and (7.68) are in the form of a pair of Euler equations for kj; and ke;. It

]mkc‘ + mdkﬂ_l

= fmw; —

is reasonable to pose the integrability question: for what optimum problem are these Euler
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equations first order necessary conditions? The answer is not surprising, given the results of
Lucas and Prescott []. Notice that since the demand curve for final consumption of corn is

cee = PBo — P1Pe, + Uc,, the area under the demand curve for final consumption of corn is

Crt ]_
/; [ﬁ0+ud z]dz

ﬁo 1 2
CC| + c CC
B o 25

Substituting for C,; from the eqml:bnum condition C¢p = fKcy — yYKpt gives the following

formula for the area under the demand curve for corn:

fTo[cht - yKne) + "Luct[cht — K]
(7.69) :

2ﬁ fKC: TKhtlz

The area under the demand curve for hogs is:
H
/0 (Ao — A1z + Uny)dz
1
= AoH, - §A1H§ + Hyu,
(7.70) = Aol(1 + $)Knt = Knta]
1
= “2”4-1[(1 + ¢)Khe — Knis)?

+ (1 + @)Knt — Knes1]une

Using (7.69) and (7.70), consider the following social planning problem: to maximize

Ey, Z B {{Ao[(1 + ¢)nkny — nkhyy] - *A (1 + @)nkny — nkpes)?

t=ty
+ [(1 + @)nkne — nkpoyy]upe}

* {én_[fmkq 7“*41.1] + l uct[f‘m-k’q ‘7nkM]
By B

1
= 231 [fmkr:t = 'Tnkh!]
d

— wymkey — renkpy — ‘2“"1(5’::4-1 — ket)?

- sn(kaesr = ka)’)
where the maximization is subject to the given stochastic processes (7.38), (7.41), (7.43),
and (7.45) for wy, 7, uc, and upe, and the information set {kqt,khg,zg,ig,ﬁd,ﬁh,}. The
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maximization is over contingency plans setting {km“,kct“,} as a linear function of this
information set.

This social planning problem amounts to maximizing the expected discounted sum of the
area under the demand curves for hogs and final consumption of corn minus the total social
costs of production. It is straightforward to verify that the solution of this social planning
problem is equivalent with the competitive equilibrium law of motion for {kay41, kerst, }-
The proof of this claim can be obtained by first obtaining the Euler equations for the social
planning problem, and noting that they are exactly the two diflerence equations (7.67) and -
(7.68) whose solutions determine the competitive equilibrium. Next, it can be verified that
the transversality condition for the social planning problem enforces the same solution of
(7.67) and (7.68) as does the transversality conditions for the representative firms’ problems.

The Euler equations (7.67) and (7.68)} can be written

(7.71)  {BL7'G_y + Go + G1L}ky = Hy + Hy(L)bs

where
Ty
kht ] b un
v =
kct UM

l“ﬁ"ﬁ" +n[Ag — 5(1 + ¢)4o)
Hy =

_mBf
On
L [B 0 mL-Bt+e) ]
=10 pm 0 7 ]
. _ [en+n¥(l + ¢)4
G“GT‘”{ 0 1 dm]
Go - [_[(1 +8)e +n{B(1 + $)2A1 + A1+ T |n 8 nm
&lmn ~(d(1 + 8) + "L |m

Methods for solving matrix Euler equations like (7.71) subject to boundary conditions are

described by Hansen and Sargent {1981].
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Chapter 8
Combining Recursive Optimization and

Classical Filtering to Compute Solutions of Control Problems

1. Introduction

This chapter describes a method for solving linear quadratic optimal control problems of
a kind that often arise in linear “rational expectations” models. The method is a variant of
one proposed by Hansen and Sargent [1981]. The idea behind the method is to use recursive .
methods to factor the matrix lag operator polynominal that appears in the Euler equations,
and to use classical Wiener-Kolmogorov filtering formulas to compute the “feedforward”
part of the optimal control. We have already seen many examples of models that fit into the

control problem studied here.
2. The Problem

Consider the problem, maximize

. 1
(8.1 Ey, tlh—?lm (_L‘l—rto) 3" (ziRxy + viQuy — 2a) Ry v¢)
t=tn
subject to
(82) Tyl = Axg + B'Ut

and x,, given, where ¢, is a set of components of a (p % 1) vector z, governed by the r*h

order autoregressive process

2t =p1zim1 + o+ prae-s + ¢
or
(8.3) - p(L)z = v

The p; are matrices conformable to z;. We assume that the zeroes of det p(z) are outside
the unit circle, and that v{, | is orthogonal to {24, z;_),...}. Here z;is an (n x 1) vector of

states, vy a (k x 1) vector of controls, 4 an (n x n) matrix, and B an n x k matrix. At time
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t, the planner is assumed to know {zy, z¢,2¢—1,...} and is supposed to set the control v; as
a linear function of these variables. The matrix Q is negative definite; the matrix R3; is not
restricted; the matrix R is negative semi-definite.

We are interested in instances in which n is small relative to pr. In such instances, there is
an advantage to solving (8.1)-(8.3) using a method that takes into account the features of the
problem as a special case of the general linear optimal regulator problem. The method that
we shall use is a mixture of dynamic programming and discrete time calculus of variations
methods.

To begin, we first consider the related problem of maximizing

1 2
(8.4) lim ————— Y (ziRz: + v;Quy)

fi=ee (=) g

subject to z;4) = Az + By, with zy, given. The solution of this problem is a linear feedback

rule

(8.5) w=—-Fz;

where

(8.6) F'= A'PB|B'PB + Q]!

and where P is the negative definite solution of the algebraic Riccati equation
(8.7) P=APA+R-A'PB(B'PB+Q) 'B'PA.

Under the assumption that the pair (A, B) is stabilizable, the unique negative definite solu-

tion of (8.7) is the limit point of iterations on the matrix Riccati difference equation,
P,_y=A'PPA+ R- A'PB(B'F,\B+ Q) 'B'P,A

as t — —oo, starting from P;, = 0. Let —R = GTG, and assume that the pair (4,G) is
detectable. Then, under the assumption that [A, B| is stabilizable, the closed loop system,

derived by substituting v¢ = - Fz; into z44; = Az; + By, namely,

441 = (A — BF)z
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is asymptotically stable, meaning that the eigenvalues of (A — BF) are less than unity in
modulus. We assume that the pair (A, B) is controllable, implying that it is stabilizable.
We now return to the problem (8.1)-(8.3). First use (8.3) to write |

(L7 — A)zy = By,
or
(8.8) z. = (L7 — A)~! By,

Equation (8.8) needs to be interpreted carefully, since the eigenvalues of A have not been
restricted directly, and since the infinite sum (L1 — A)"! = L{I + AL+ A2L? + .. .} is not
convergent if an eigenvalue of A exceeds unity in modulus. Nevertheless, if v; has behaved
suitably in the past, it is appropriate to regard (8.8) as giving

o0 .
(8.8') z,= Y A'Buve_j_y,

i=0
where by “suitably” we mean in such a manner as to guarantee convergence of the sum.
Since we have assumed that (A, B) is controllable, it is permissable for us to think of the
system as having arrived at its arbitrary initial state z, via the application of an appropriate
sequence of controls in the past. (A version of this argument would also work and we only
assumed that (A, B) was stabilizable.} The preceding interpretation is not the only one that
would validate our procedures, but it is an acceptable one.

Substituting (8.8) for z; in (8.1) gives the expression for the objective function

+ v;Quy — 2a;, R;lvt}

We shall solve the problem of maximizing (8.9) over rules for v, by using the certainty

equivalence principle. First, we solve the certainty problem to maximize

. . 1 g S ip e
(8.10) 0% (tr — to) ,:Zm {[(L I—A)" BuR[(L™'I ~ A)" By

+ U;QU; - QGER'“Ug}
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where {a,to < t < t1} is regarded as a bounded sequence. By differentiating with respect

to successive v;’s one obtains the system of Euler equations
(8.11) {B'(LI - A")"'R(L™'I — A)"'B + Q}v; = Rya,

In addition to these Euler equations, there is a set of transversality conditions that requires
that the {v;} sequence remain bounded. The transversality condition will be used to pin

down the correct solution of the Euler difference equations (8.11).

3. Factoring the Characteristic Matrix Polynomial Associated with the Euler

Equation

We now indicate how the spectral-density-like polynomial
{B'(LI — A")"'R(L™'I — A)B + Q} can be factored and how this factorization permits
obtaining the solution of the control problem in a convenient form.

Recall the equations for F' and P:

(8.6) F'= A'PB|B'PB + Q]!

(8.7) P=APA+R-A'PB(B'PB+Q) 'B'PA.

We now establish the following identity which gives an expression for the polynominal on
the left side of (8.11):
Lemma 8.1: (Factorization Identity)’

I+ B'(zf - A 'F')|Q + B'PB)|I + F(z~'I - A)™!B]

(8.12)
=Q+ B'(z2I - A")'R(z"'I - A)B.

Proof: First note the identity
(8.13) P—A'PA=(z -A")P(z7'1-A)+ A'P(z7'T - A) + (2] - A")PA

To establish this identity, write out the right side to obtain
P—2PA—-A'P:"'"+APA+ APz —A'PA+:PA- A'PA
=P - A'PA.
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Next, we substitute (8.7) for P into (8.13) to get
(21 - A"YP(z™' — A) + A'P(z'1 — A) + (2] - A')PA+ A'PB(B'PB + Q)"'B'PA
=R
Premultiply the above equation by B'(zI — A')~! and post multiply by (271 — A)~!B to
obtain
B'PB + B'(2] — A)"'A'PB + B'PA(z"'I - A)™'B
+ B'(zI - A)"'A'PB(B'PB +Q)"'B'PA(z"'I - A)'B
= B'(z] - A)™'R(z"'I - A)"'B
Now from (8.6) A'PB = F'(B'PB +Q), which when substituted into the preceding equation
gives
B'PB + B'(2I - A)"'F'(B'PB + Q)+ (B'PB + Q)F(z"'I - A)™'B
(8.14) + B'(zI - A)'F'(B'PB+ Q)F(z"'I - A)™'B
= B'(z2I - A")"'R(z"'I - A)B
Notice that
(I+B'(zI - A)"'F'\|(B'PB+Q)[I + F(z™'I - A)™'B]

=B'PB+Q+(B'PB+Q)F(:"'I - A)"'B

+ B'(zI - A)"'F'(B'PB + Q)

+ B'(zI - A 'F'(B'PB+Q)z"'I - A)"'B |
In light of the above equality, adding Q to both sides of (8.14) gives the factorization identity

[T+ B'(zI - A 'F'|(B'PB + Q)[I + F(z~'I - A)™'B]

B2 —Q+ B'(z1 — A')"'R(z"'1 — A)B. |
The factorization identity (8.12) is a special case of another factorization identity that is
associated with linear regulation problems in which there are cross products between states

and controls in the objective function. We state this identity in the following lemma.
Lemma 8.2: (General Factorization Identity)
Let F and P satisfy

(8.15) F=(Q+B'PB)'(B'PA+ W'
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P=R+APA
(8.16)
—(A'PB+W)(Q+ B'PBY Y (B'PA+W').

(These equations are the formula for the optimal feedback law and the algebraic matrix

Ricatta equation, respectively, for a linear regulator with cross product between states and

controls described by matrix W.) The following identity holds:

Q+B'(z ' T-AY Rz~ A'B+ B -AYV W+ W (7T - A8
(817 =[I+B'(zI - A 'F'|(Q+ B'PB)[I + F(z™'I - A)"'B}.
Proof: The proof precisely parallels the steps for proving lemma 8.1. 1
We will not need to use the more general lemma 8.2 here, but it comes in handy sometimes
(see hansen and Sargent [1988}).
We shall study the structure of the factorization (8.12) of the matrix polynomial associ-
ated with the Euler equation by using the following two facts from matrix algebra. Let a, b,

c, and d be matrices and let all of the indicated inverses exist. Then we have the identities

(8.18) : [a—bdte} ' =a! — a7 "b[d ~ ca” b ca!
and
(8.19) detd - det(a — bd~'c) = deta - det(d — ca™'b).

For proofs see Fortmann {] or Nobel and Daniel [p. 29, 210]|. Using (8.18) witha =1,-b=
F'.d = (21 — A'),c = F' we have

(8.20) (I+B'(z2 - Ay 'F ) =1 - B2 -(4 - F'B)"'F

Next witha = I,b= B',d = (2] — (A' — F'B')),c = F', apply (8.19) to get
det{I - B(zI — (A' = F'B'Y)"'F'] . det (I - (4’ - F'B")
=det[z] - (A' - F'B"y - F'B|
or

_pgytp e et -A)
(8.21) det{l — B(zI - (A" - F'B'"Y)'F' = det (2l = (A = FIBY)
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Combining (8.21) with (8.20) gives

. -l _ det (I — A")
det (I + Bl - AV = o - )

or

., det(z] — A' — F'B')
! —_ -1 ' —_— e — =
(8.22) det{I + B'(z] — A)~'F] I

Equation (8.22) implies the following:

Lemma 8.3:  The zeroes of det [ + B'(z] — a)"!F'] equal the eigenvalues of A' — F'B',
which equal the eigenvalues of (A — BF). H the pair (A4, B) is stabilizable, the zeroes of
det [I + B'(zI — A)~1F'| all are less than unity in modulus.

4. Solving the Non-Stochastic Problem

Armed with these results, we now return to study the Euler equation (8.11). The fac-

torization (8.13) permits the Euler equation to be written as
(8.23) {[I+B'(LI - Ay F|(B'PB + Q)[I + F(L™ — A)"'B}v, = Ruas

In effect, the transversality conditions require that to get the correct solution we must operate

on both sides of (8.23) with the inverse of [T + B'(LI — A")"'F'|(B'PB + @), which gives
T+ F(L7'T—A)y 'Bloy=(Q + B'PB)"'[I + B(LI - A"Y"'F'|Rya, |
Substituting z; = (L1 — A)~! By, and equation (8.20) in the above gives
v=—Fzy+(Q + B'PB) I - B'|LI - (A' - F'B")) _IF'Rm;

Tﬁis can be written

vp=—Fzy +(Q+ B'PB)Y 'Ryja - (@ + B'PB) ' B'[LI
(824) _ (4 — F'B')"'F'Rysas.
In effect, {8.24) expresses v, in terms of a “feedback” part, — Fz,, and a “feedforward” part,
as the remaining terms on the right side of (8.24) forms a weighted sum of current and future
a’s. ‘
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To proceed with the analysis, we use the following theorem from Kwakernaak and Sivan

(] and Zadeh and Desoer ] :

Theorem 8.1:  (Leverrier’s algorithm)

Consider the constant (n x n) matrix G with characteristic polynomial
det(zI - G)=2z"+ an_12""1 4 ...+ a1z 4 ao.

Then

(2 -G)~! = 2 1R;

det (zI G) < Z

where the n x n matrices R; are given by
n . .
R; Z a‘-GJ'"" 1= ':,2:"""':
j=i
with @, = 1. The coefficients a; and the matrices R; can be obtained from
al’l = 1: R!‘l = Il

Cych = i tr(GRy_g41),k=1,2,...,n
Rpok =an_tI +GRp_k41,k=1, 2,...,n
Ro = 0.
For a proof of the theorem, see Kwabernaak and Sivan [1972, |.
Applying theorem 8.1 with G = (A' — F'B') gives

4 ! i=1
] T det (LI - (A' - FB'))ZRL

(LI - (A' - F'B")

or

1

LI—(A' - F'B')|! = -
[ ( B)] (Ln+an_lL“—l+...+O:1L+aﬂ)gRL

Since the eigenvalues of (A' — F'B') are less than unity in modulus, we have

. 1 t—1
gl = R

1=1

[LI - (A" - F'B'))™?

where | p; |< 1 and the p;’s are zeroes of ¥ a; L, which equal the eigenvalues of (A— BF),
which we assume are distinct. Multiplying the numerator and denominator of the right side

of the preceding equation both by L™" gives

1 n ,
— — L—{n+1—t)R‘
(1= L7Y)(1 = poL71). .. (1 = pnLY) g
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Substituting (8.25) into (8.24) gives

v =—-Fz,+ (Q + B'PB) 'Ry q,
2 LR F' Rasay
(1= pL=1)(L = paL=1). .. (1 = pal™?)

The last term can be expressed as follows using matrix partial fractions:

(8:36) -(Q+B'PB)'B

(8.27) (+B'PB)'B'SL, L= RiF'Ryy _ 3 _GiL!
(1=pmL7t)...(1 = paLl™?) o (=gl
where

_(Q+B'PB)'B' [T (#;)" "R F'Ra
Mg (L= prpt)
With (8.27) substituted into (8.26) the decision rule becomes

Cj

vy = —Fzg + (Q + B'PB)_IRzldg
(8.28) = C;
= S a——
jgl (l—p.jL_l) t+1
or

vy=—-Fz;+(Q+ B'PB) 'Ry,

8.29 = —
( ) ' Cj Z P;‘ At+1+k

=1 k=0

This is the optimal plan for setting v; when the a; sequence is known with certainty. The
reason for calling (— Fz;) the “feedback” part of the solution and the remaining part of the

right side of (8.29) the “feedforward” part is now clear.
5. Solution Under Uncertainty

Under uncertainty about future a,’s, the appropriate solution is:
vy = — FI; + (Q + B'PB)"Rna,

8.30 > —
( ) 2. C; E,#§ Etaii14k
j=1 k=0

where E; is the conditional expectation unconditioned on information known at ¢, i.e., Ey(:) =
E(- | z¢,2¢—1,...). An explicit formula for vy in terms of the current and past z,’s can be

derived using the procedures of Hansen and Sargent [ , appendix A]. In particular, recall
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that we have assumed that a; is a component of z;, say a; = ez; where e is a vector linking

a and z, e.g. often a vector of zeroes and ones. We have assumed that
p(L)ze = v§

20 = &(L)vf = p(L)™'vf

where our assumption that the zeroes of det p(z) are outside the unit circle quarantee that
p(L)~! is one-sided and square summable in nonnegative powers of L. We want to form

terms of the form
o0

k
Bi Eragyrir
k=0

Using the Wiener-Kolomogorov theory of prediction and the results of Hansen and Sargent

(1980], we have

o0 L—l L .
8:31) > wiBitun = el T
k=0 i el
where the operator [ |, means “ignore negative powers of L”, ie. [T72 hij]_l, =

720 h;L’. Using the technique of Hansen and Sargent, the right side of (8.31) can be

shown to be

R i {0 PO el i 1171 3 L [P0
1 - MLyt 1—p,;L-! +
r—1 r
=@ )1 j k-3-1 L’ 2y,
p(u;) {;(kgl(p) pg) ]

where recall that r is the order of the autoregressive process for z;. Substituting the above
into the right side of (8.30) gives
vuw=-Fz;,+(Q + BPB)_lRuag

n pt -

(8.32) _ {Z C; ep(pj)_l[Z( b (uj)*‘j“l"*)f’j}}z‘
i=1 i=1 k=j+1

(8.31) ALY =

Equations (8.32) and (8.31) compactly display the restrictions across the {z;} process and

the optimal control law for {v;} that are implied by the dynamic optimum theory.
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Sometimes optimum theory problems are encountered with criterion functions of the
form (P1), except that the term —2a}Rj;v; is replaced by a term of the form —2a}Ry;z;.
With minor modifications, the preceding solution applies in this case. Consider the term
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Writing out this last sum and differentiating J with respect to v¢, one finds

i B'(LI — A" 'Ry a,
Ovy

The Euler equation thus becomes (8.11) with B'(LI — A)‘lfifglég replacing R3zja; on the

right side. An equivalent procedure is to define
(8.33) (Raras) = (B'(LI — A)~ 'Ry, d,)'

With this definition of Rj;ay, the Euler equations for the amended problem remain (8.11).
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