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ABSTRACT

What determines the relationship between pollution and growth? Are the forces that explain the behavior
over time of these quantities potentially useful to understand more generally the relationship between
policies and growth? In this paper, we make a first attempt to analyze the equilibrium behavior of two
quantities—the level of pollution and the level of income—in a setting in which societies choose, via
voting, how much to regulate pollution. Our major finding is that, consistent with the evidence, the rela-
tionship between pollution and growth need not be monotone and that the precise equilibrium nature of
the relationship between the two variables depends on whether individuals vote over effluent charges or
directly restrict the choice of technology. Moreover, our analysis of the pollution problem suggests that,
more generally, endogenous policy choices should be taken seriously as potential sources of heterogeneity
when studying cross country differences in economic performance.
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1.  Introduction

Recent empirical work suggests that the output of many pollutants is controlled as income grows

(for a discussion of the direct evidence on pollution controls and the level of pollution and inter-

national movements of pollution in response to these controls, see Low and Yeats (1992); Lucas,

Wheeler, and Hettige (1992); Grossman and Krueger (1995); and Levinson (1996)). and. Al-

though the evidence is sketchy at this time, it supports the view that, after passing through a pe-

riod of high and increasing pollution, eventually, society takes actions to control these external

effects. Several patterns emerge from the data.  For some pollutants, the relationship between in-

come and pollution follows an inverted U, first increasing and then decreasing, while for others

this inverted U is followed by a subsequent sustained increase (see World Bank (1992) and

Grossman and Krueger (1995)).

While detailed analyses of the history of pollution controls are scarce, anecdotal evidence

abounds. An interesting case study is the experience of the Netherlands’ use of effluent charges

for the control of water pollution. (These are per unit of pollution costs and are quite common in

many European countries. See Wheeler (1992).) Before 1970 no effluent charge was adminis-

tered whatsoever, while over the next decade this fee rose by 83 percent of its introductory level.

The response to this was rapid and stunning: the level of pollutants dropped by 75 percent over

that period.  This pattern of a dramatic, sudden reduction is repeated in other examples. Another

case in point is the history of regulation of DDT in the United States (see U.S. Environmental

Protection Agency (1995)). Although the first regulation aimed at controlling DDT usage oc-

curred in 1957, this restriction was limited to use on lands adjacent to those administered by the

U.S. Forest Service and had only a minor impact on DDT usage in the country as a whole.  By

this point, it was already known that DDT was a carcinogen. Until 1970, only minor legislation



2

controlling DDT use was enacted. Between 1970 and 1975, however, its use was virtually com-

pletely banned.

When confronted with these facts, economists often have the reaction that this follows

immediately from standard arguments if a clean environment is a luxury good. The argument is

that as income grows, an increasing fraction of scarce resources would be directed at pollution

control. Unfortunately, while true (and an important feature of our model), this does not imply

that the measured level of pollution should be nonmonotone. Indeed, virtually any time path of

pollution is consistent with this observation. As an example of this, it is sufficient to consider a

technology in which smoke is proportional to pollution. In this case, it is not possible to simulta-

neously observe ever increasing consumption and bounded (or nonmonotone) paths for pollut-

ants no matter what the form of preferences over the environment. This highlights the role of an

important missing ingredient from the simple story outlined above—the technological link be-

tween output and pollution. This link, through the use of cleaner production processes, plays an

important role in the model we outline below.

Is it possible that the nature of the political institutions that are used to affect pollution

determine whether one or the other path is observed?  At least some authors believe that the an-

swer to this question is yes (see Wheeler (1992)). As evidence of this, they point to the fact that

pollutant levels are considerably higher in Eastern bloc countries than in countries where demo-

cratic processes play a key role.

In this paper, we analyze two distinct models of the extent of pollution regulation through

collective decision making. The models have a common approach to the technological side of

pollution (different technologies are associated with different amounts of pollution per unit of

output), but differ in the details of the political institutions used to bring about pollution control.
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We describe the time paths of income and pollution implied by majority voting in two settings:

voting over (proportional) effluent charges and voting over direct regulation of technology, or

choice of minimum standards. We show that when voting is over effluent charges, the time path

of pollution will follow an inverted U, followed by a sustained increase similar to that described

in the empirical literature. An interesting property of this model is that the equilibrium policy

chosen has a jump as a function of income.  If, instead, individuals vote directly over the “dirti-

est” allowable technology, the level of pollution monotonically increases to a bounded level as

consumption grows.  (There is no discontinuity in the equilibrium policy under this scheme.)

Both of these patterns fit well with the empirical evidence in Grossman and Krueger (1995).1

Both of these models have the interesting implication that countries at the upper end of the in-

come distribution should converge—at high levels of income, the growth rate of output is a de-

creasing function of the level of income. This prediction of the model is reminiscent of the find-

ing of convergence clubs discussed in the empirical growth literature (see Durlauf and Johnson

(1995) and Quah (1996)).

There are several interesting conclusions to be drawn from this analysis.  First, the details

of political institutions used to control pollution matter, even for the qualitative properties of the

time paths of pollutants. In one, the time path is S shaped, while in the other it is monotone. Sec-

ond, although the time paths differ, there are two important common elements. These are that the

level of overall pollution is bounded along the equilibrium path and that the limiting value for

pollution is the same for both schemes. Finally, the discontinuity in the time path of the effluent

                                                                                             
1In each of these cases, that the environment is a luxury good is an important element—if preferences are

homothetic, pollution grows without bound.
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charge in the first model is reminiscent of the abrupt changes in regulation that seem to occur in

practice.

For comparative purposes, we also study a class of optimal allocations. In this case, we

show that the relationship between pollution and income follows an inverted U. Again, the path

of pollution is bounded, but is qualitatively different from those in the two voting equilibria. It is

not possible to generate an S shaped time path with this control mechanism in our model, and

there is no discontinuity in either the optimal regulation or the level of pollution.  To the extent

that the paths observed in the data have the S shaped pattern, they suggest that the voting model

is a better positive theory.  This conclusion is reinforced by the sudden changes in regulation de-

scribed above. The analysis of the planning outcome also allows us to compare the common lim-

iting value of pollution in the voting models with that from optimal allocations. Whether the

equilibrium level is above or below the planner’s level depends on how the young (that is, the

nonvoters) value a clean environment. From this analysis, we can draw two conclusions. First,

the fact that both the planner’s problem and the effluent charge voting model give rise to non-

monotone paths shows that we cannot infer from the data that the observed path is either optimal

or nonoptimal. Second, the fact that pollution is controlled (that is, bounded) in the data is not an

indication that it is optimally controlled.

In the model, pollution is internal in the sense that it affects only the individuals who

vote. A straightforward extension of the model shows that if the pollution is external to the po-

litical jurisdiction being modeled, the level of the pollutant will grow without bound. This sug-

gests that some sort of political mechanism across countries is necessary to control these global

pollutants, but that once in place, this control will occur. Here one of the implications of the

analysis is that heterogeneity in income levels across countries that are not fully integrated
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(capital is not mobile) will necessarily imply disagreement about the optimal regulation of global

pollutants. Further, the analysis shows that low capital countries would prefer less regulation.

Although there is a large literature on the relationship between economic activity and the

environment (see Baumol and Oates (1988) for a textbook treatment of the relevant static the-

ory), there are few papers that explicitly model the equilibrium relationship between growth and

environmental degradation. In the endogenous growth literature, the recent work by Fisher and

van Marrewijk (1994) and  Mohtadi (1994) is closest to our own. Both of these papers model the

environment as an additional factor of production and concentrate on the impact of different cri-

teria that a planner might choose to allocate this environmental input between households and

firms. The key difference is that in our formulation, public policy is endogenously determined.

Stokey (1998) studies economies in which a central planner chooses the optimal allocation when

individuals are infinitely lived. She shows conditions for balanced growth and discusses the rela-

tive merits of tax and voucher schemes over direct regulation. She does not address the issue of

implementation; that is, she does not study whether the optimal policies she describes can be

supported as the equilibrium policies of some collective decision-making mechanism.

Finally, our analysis of the pollution problem suggests that, more generally, endogenous

policy choices should be taken seriously as potential sources of heterogeneity when studying

cross-country differences in economic performance. Our key source of cross-country heteroge-

neity is policy endogeneity (see also Glomm and Ravikumar (1992 and 1995), Alesina and

Rodrik (1994), Persson and Tabellini (1994), and Krusell, Quadrini, and Rios-Rull (1997)). We

show that the equilibrium relationship between growth rates of capital and income levels dis-

plays an inverted U shape when individuals vote over effluent charges. This theoretical implica-

tion, which is consistent with the findings of Easterly (1994) and Cho (1996), provides an alter-
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native interpretation to the standard view that such a relationship must be generated by models of

nonconvexities and/or multiple equilibria. The overall message from this research is clear: on the

one hand, our positive results make us optimistic about the ability of the model to explain styl-

ized facts about pollution and growth. On the other hand, the sensitivity of the outcome to the

details of institutions suggests that the effects of introducing endogenous policy choice are hard

to predict in environments, like the one in this paper, in which income matters.

The paper is organized as follows. Section 2 lays out the basic model and studies the

equilibrium in which individuals vote over effluent charges. Section 3 describes the dynamic be-

havior of such an equilibrium. Section 4 studies the case in which individuals vote over mini-

mum quality or environmental standards. Section 5 presents a class of optimal allocations. Fi-

nally, Section 6 suggests some possible extensions and offers some concluding comments.

2.  The Basic Model With Effluent Charges

We consider an economy that has available a wide range of productive techniques that differ ac-

cording to both their costs of production and their environmental effects. The choice, by firms,

among techniques is influenced not only by price but also by restrictions on use imposed by the

government.  To model this aspect of firm decision making, we adopt the assumption that the

government sets technique-specific taxes with the aim of controlling pollution (in Section 4, we

consider the case in which the government institutes minimum quality standards).  From a formal

point of view, these are equivalent to the effluent charge systems used in many countries. Inter-

preted broadly, however, these environmental taxes should be viewed as incorporating a wide ar-

ray of regulations and other forms of control that result in an increase in the effective price of

environmentally pernicious techniques.
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We will use a growth model with two-period lived overlapping generations.  An implica-

tion of this is that voting decisions are made by individuals with short horizons; thus, the genera-

tional structure and the natural voting scheme that we study (more on this later) allow us to cap-

ture a realistic feature of actual economies. To guarantee that, in the absence of pollution, the

equilibrium displays growth and is optimal, we study a two-sector model with (potentially infi-

nitely many) differentiated capital stocks. We assume that all forms or vintages of capital are

perfect substitutes in production, while they differ both in terms of cost of production and in how

much pollution their use generates. In order to make the problem interesting, we consider the

case in which environmentally cleaner capital goods are more costly to produce.

The nature of pollution that we model is local in both the physical and temporal dimen-

sions. Since we analyze a model in which voters have full control over all polluting activities, it

is probably best to interpret our results as applying to pollution that is local in nature (that is, re-

stricted to the voting region). In the temporal sense, we first consider the case in which the level

of pollution produced at time t affects only the members of generation t − 1 without any direct

generational spillovers. Although there are no direct effects, policy decisions on the part of one

generation affect the well-being of future generations through their impact on capital accumula-

tion decisions. This second assumption is not critical and can be relaxed.

We assume  that successive generations play a voting game in taxes on polluting activi-

ties.  Individuals born at time t vote on pollution taxes that will be in effect at time t + 1.  Their

realized utility, Vt(τ1,τ2,...), is the voter’s utility function over consumption and pollution paths

evaluated at a competitive equilibrium given the sequence of taxes.  The function Vt could (po-

tentially) depend on the entire sequence of taxes chosen.  We will examine subgame perfect

equilibria of this voting game. As is well known, there are typically many equilibria in multi-
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agent voting games. We consider a representative agent model and simply select the equilibrium

that corresponds to the best policy from the perspective of the representative agent. Even with

this restriction, in general, very little can be said about the equilibrium outcomes of voting games

of this type. Because of this, we will simplify the problem by going to a special overlapping gen-

erations formulation.  In essence, we will put enough restrictions on preferences and labor en-

dowments so that Vt depends only on current and past tax rates.  Moreover, for our specification,

it will be true that the only way that previously chosen taxes matter for an individual of genera-

tion t is through their impact on the capital stock at the beginning of time t. In Section 6, we dis-

cuss extensions to settings with heterogeneous agents.

To begin, we will describe the economic environment and the competitive equilibrium

that results from an arbitrary sequence of taxes.  This determines the form of Vt.  We will then

analyze the voting game given this indirect utility function over tax sequences.

Preferences

Consumer preferences are given by

),(loglog 11 ++ −β+ t
t
t

t
t succ

where i
jc  is consumption in period j of the individual born at time i and si is pollution at time i.

We assume that individuals are endowed with one unit of labor in their first period of life and

none in the second. Their endowments of all other goods are zero. Thus, they face the budget

constraint t
tc  + bt ≤ wt in their first period of life and t

tc 1+  ≤ (1+it+1)bt in their second period of

life, where (1+it+1) is the interest rate between time t and time t + 1. Given these preferences, in-

dividuals derive disutility from the level of pollution in their second period of life. Given the as-

sumptions about voting, it is possible without changing the basic results to make preferences de-
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pend on the level of pollution when young if the separability assumption is maintained. We

chose this simpler framework to simplify the presentation. We assume that u is increasing, con-

vex, and C2.  These preferences imply that saving is not responsive to interest rates and hence

greatly simplify the analysis of the voting game. In particular, these preferences imply that, as

noted above, only current and past taxes will enter the voter’s indirect utility function.

Consumers maximize utility by choosing consumption in each period of their lives, tak-

ing after-tax prices as given and beyond their control. It is standard to show that optimal deci-

sions are completely summarized by a saving function, which in this case is given by

(2.1) bt =  (β/(1+β))wt ,

where wt is the wage rate at time t and bt is the level of savings. First period consumption at time

t, ,t
tc  is (1/(1+β))wt.  Second period consumption of an individual born at time t is t

tc 1+  =

(1+it+1)(β/(1+β))wt. It follows that the indirect utility function is

Ut = constant + (1+β)log wt + β log (1+it+1) − u(st+1).

The equilibrium determination of wt , it+1, and st+1 depends on the details of the technol-

ogy and is the focus of the remainder of this section.

Technology

On the production side, we assume that there is one consumption good produced in each period

and a (potentially infinite) number of different capital goods indexed by cleanliness, z, with

higher z indicating a cleaner technology.  Let kct(z) denote the amount of capital of type z that is

used in production of the consumption good. We assume that output in this sector depends only

on the total amount of capital used, ∫
∞

=
0

,)( dzzkk ctct  and labor, nt , according to
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.1 α−α= tctt nBkc

This formulation implies that the different capital goods are perfect substitutes in production, and

hence quality choice will be driven completely by cost considerations. Although we allow firms

to choose either finitely or infinitely many qualities of capital, due to the nature of the cost func-

tions that we will use, it will follow that only one quality level will be chosen in any period.

To simplify, we consider a situation in which capital is fully malleable. At the beginning

of time t, the existing stock of capital, kt , can be used to produce either capital goods of type z to

be used in the consumption sector or to produce generic capital that will be used in the invest-

ment sector. Formally, the investment side of the economy can be summarized by

(2.2a) ∫
∞

+=
0

)()( tctt xdzzkzmk

(2.2b) kt+1 = (1−δ)[kct + xt] + Axt ,

where

∫
∞

=
0

.)( dzzkk ctct

One interpretation of this formulation is that, at the beginning of time t, capital is split into (ba-

sic) consumption capital and investment capital.  We assume that the production of new capital is

linear in the capital goods allocated to the investment sector x—output of the investment sector is

Axt.  In this formulation, m(z) is the amount of general capital (that is, k) necessary to produce

one unit of type z capital. We assume that m(z) is increasing and convex in z. We also assume

that m(0) = 1, which implies that type z = 0 consumption capital and investment capital are per-

fect substitutes and, hence, have the same rental rate.  The cost m(z) should be interpreted as a

flow; that is, in every period, if the firm wants to operate capital of type z, it must spend the extra

m(z) − 1 units of capital necessary to convert general capital into type z capital. This simplifies
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the algebra for the standard reasons: we do not have to keep track of the distribution of old vin-

tages in calculating the equilibrium. Note that if quality choices were restricted to be only z = 0,

we would have a standard two-sector growth model.

At the end of the period, both the stock of capital that was used in the investment sector xt

and that used in the consumption sector kct are depreciated at rate δ. Thus, capital at time t + 1 is

(1−δ)[kct + xt] + Axt.
2

Firms in the investment sector use general capital to produce capital available for use in

the following period. These firms can use only the z = 0 technology. The production function is

linear: it uses one unit of capital today to produce A units of new capital tomorrow.

We assume that pollution—or smoke, which we denote by s—is associated with the use

of capital in the consumption sector. More precisely, the total amount of pollution is given by

(2.3) ∫
∞

φ=
0

,)()( dzzkzs ctt

where φ(z) is the amount of (flow) smoke generated by one unit of capital in the consumption

sector operated at cleanliness level z. We assume that φ(z) is convex and decreasing so that

higher index goods (higher quality) are less polluting, but there is a diminishing marginal reduc-

tion in the change of pollution per unit of capital.

There are several features of our technology that are worth emphasizing: First, it assumes

that there are no clean and dirty goods, but there are clean and dirty production techniques.  This

                                                                                             
2Since a period in this model corresponds to a generation, δ is a large number. For δ = 1, there is no dis-

tinction between the flow interpretation and the case in which all the capital maintains its original vintage.
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goes one step beyond the smoke-in-the-production-technology function. This model does not

generate a simple reduced form in which smoke (and no other endogenous variables) enters the

production technology. Second, we assume that the capital goods–producing industry does not

contribute to pollution. This assumption can be relaxed, but not completely. See the comments in

Section 6.  Finally, our smoke variable depends only on activities in the consumption sector to-

day; that is, it is a flow variable (past smoke does not matter). We discuss an extension to the

case in which pollution has a cumulative, or a capital-like component, in Section 6.

We assume that a firm in the consumption sector that rents capital of type z has to pay

both the rental price, rkt(z), and the pollution tax, τt(z). We restrict the shape of the function τt(z)

to be proportional to the amount of pollution produced, τt(z) = τtφ(z).  This implies that the repre-

sentative firm producing consumption solves the following problem:

∫∫
∞

α−

α∞

φτ+−−










0

1

0
),( ,)()())(1()(max dzzkzrznwndzzkB ctktttttctnzk tct

where wt is the wage rate. The firms producing new investment goods solve

,)0(max tkttktx xrAxp
t

−

where pkt is the price of new capital available for production at time t + 1. To simplify the nota-

tion, we use rkt(0) = rIt.  The firms that transform basic capital into its different types solve

∫
∞

−+
0

,),( ,)()(max tIttItctktkxzk krxrdzzkzr
ttct

subject to

∫
∞

≤+
0

.)()( ttct kxdzzkzm
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Finally, to keep the presentation simple, we assume that the tax revenues (from the pollu-

tion taxes) are used to provide some good that enters separably in the utility function. We assume

that individuals ignore the connection between tax revenues and this good.

Equilibrium

For a given tax sequence {τt}, we define an equilibrium as follows.

Definition: An equilibrium is a set of sequences [ ,1−t
tc  ,t

tc  kt+1, zt , st , kct(z), xt , pkt , rkt(z), rIt , 1 +

it+1, τt , t ≥ 0], such that

(i) For all t ≥ 0, ,t
tc t

tc 1+  solve the consumer’s maximization problem.

(ii) 1
0
−c  is equal to pk0k0.

(iii) Firms maximize profits.

(iv) bt = pkt kt+1 (market clearing).

(v) [pkt+1(1−δ) + rIt+1]/pkt = 1 + it+1.

(vi) The tax τt is chosen, using a majority voting mechanism, by members of the generation

born at t − 1.

This definition does not require further elaboration, except to point out that when making

consumption-saving decisions, individuals take as given all taxes, as well as the equilibrium

level of pollution.  However, separability of the utility derived from consumption and the disutil-

ity associated with pollution imply that consumption-saving decisions are made independently of

the level of pollution.

Since the equilibrium outcome for a given tax sequence {τt} is rather standard, we rele-

gate (most of ) its analysis to Appendix A. However, there is one aspect—the optimal choice of
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cleanliness level, z, as a function of the tax rate—that is both nonstandard and important for our

results. Even though it is possible to conduct the analysis at a fairly general level, the basic intui-

tion can be fully captured in a simple setting in which we specialize the functions describing the

flow cost of producing high quality goods, m(z), as well as the pollution per unit of capital z,

φ(z). Specifically, we assume

(2.4a) m(z) = (1+z)θ, θ > 0

and

(2.4b) φ(z) = D(1+z)−ν, ν > 0, ν > θ ≥ 1.

Since all types of capital goods are perfect substitutes in the consumption sector and there

are linear transformation curves between any two types (with slope )),(/)( zmzm ′  it follows that

rkt(z) = m(z)rkt(0) = m(z)rIt.  It follows that cost minimization on the part of the firms in the con-

sumption sector implies a choice of z that solves

(P.1) minz(1 + τtφ(z))rkt(z) = (1 + τtφ(z))m(z)rIt.

The properties of this maximization problem are summarized in Proposition 1:

Proposition 1. The solution to problem (P.1) is given by z(τ) = 0 for τ ≤ τL, and

,1
)(

)(
/1

−





θ
τθ−ν=τ

ν
D

z  for τ ≥ τL, where τL is given by τL = θ/[(ν−θ)D].

Proof: See Appendix B.

Proposition 1 shows that for tax levels that fall short of τL , there will be no impact on the

equilibrium level of the quality of capital good chosen. Hence, there is a kink in the optimal
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choice of quality: for relatively low tax rates, there is no quality upgrade; however, as taxes in-

crease, firms upgrade their capital goods to cleaner ones.

The voters born at time t are affected by their choice of τt+1 in two ways. First, higher

taxes at time t + 1 hurt generation t because they lower the rate of return between time t and time

t + 1. Second, higher taxes will both increase the quality of capital goods used in the consump-

tion sector at time t + 1 and reduce the quantity of capital allocated to the consumption sector,

thereby reducing the amount of pollution at time t + 1.3

Optimal behavior on the part of capital goods producers implies that rIt+1 = Apkt+1. Using

this and the definition of equilibrium, we have that

.
)1()1(

1 111
1

kt

kt

kt

Itkt
t p

Ap

p

rp
i

+δ−=+δ−=+ +++
+

Now, at the time of voting, pkt is fixed, independent of τt+1 (see Appendix A), and hence,

the only element that depends on τt+1 is pkt+1. Thus, the key channel through which taxes affect

consumption of voters is through their impact on the unit price of capital.

It is shown in Appendix A that the equilibrium choice of z at time t + 1 depends just on

τt+1. Hence, it follows that total pollution (see (2.3)), is

st+1(τt+1) = φ(zt+1(τt+1))[kct+1(zt+1(τt+1))/kt+1]kt+1 = µ(τt+1)kt+1,

                                                                                             
3There are several potential additional avenues for the effects of taxes that are not important because of the

special assumptions we have made. First, consumption in a voter’s first period of life is a constant fraction of wages.
In Appendix A, it is shown that wages at t are independent of τt+1. Thus, first period consumption does not depend
on voters’ tax rate. Second, consumption in voters’ second period of life is equal to the rate of return times saving.
But savings—which are just wages minus consumption—do not depend on the taxes voters will choose. (It is at this
point that our assumption that saving is inelastic with respect to the interest rate becomes quite convenient.) Thus, it
is only the rate of return that affects second period consumption.
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where we are using the result (see Appendix A for a derivation) that both zt+1 and the ratio

kct+1(zt+1)/kt+1 depend on just the tax rate that will be chosen at t + 1, τt+1.

To summarize this discussion, it follows that voters’ utility function over taxes is given

by

)).,((),(log),(log),( 111111 ���� τ−τβ+τ=τ ++ t
t
t

t
tt succV

First, note that the effects of τ1 through τt−1 on the voter’s utility is completely summarized

through their effect on kt.  Moreover, since all of these variables are predetermined and utility is

separable, the term log ),( 1 �τt
tc is independent of the voter’s choice.  For similar reasons, both

),( 11 �τ+
t
tc and ),( 11 �τ+ts can be written as functions of kt+1 and τt+1 only.  Finally, because of the

independence of savings from the interest rate, it follows that kt+1 does not depend on τt+1.  These

considerations imply that the voter’s problem is equivalent to maximizing

)),;(();(log 111111 ++++++ τ−τβ ttttt
t
t ksukc

where kt+1 is taken as given.  Note that );( 111 +++ τ tt
t
t kc  = pkt+1kt+1.  The arguments in Appendix A

show that pkt+1kt+1 is of the form pkτ(τt+1)
α
+1tk , where the subscript τ is to remind the reader that

these are the equilibrium values when individuals vote over tax rates. Because of our choice of

log utility and the independence of kt+1 from τt+1, it follows that the voter’s objective function is

V(τ,k) = β log [pkτ(τ)] − u[µτ(τ)k].

To describe the equilibrium of the voting game, it is necessary to determine the properties

of pkτ(τ) and µτ(τ). These are summarized in Appendix A. The key properties that affect the

qualitative nature of the equilibrium are that, although these functions are continuous, first, they
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are not differentiable at τ = τL, and, second, the price of basic capital, pkτ(τ), is not necessarily

decreasing in τ.

Given our choice of functional forms for m and φ, it is useful to introduce the variable y =

(τ/τL)θ/ν to simplify notation.  Individuals can be seen as voting over y directly. Note that under

this notation, y ≤ 1 if and only if τ ≤ τL. Thus, y ≤ 1 corresponds to no effective pollution control,

z = 0, while y > 1 corresponds to z > 0.

Let kA be defined by

βα + β[α(1+β)/(1−α)β][1+θ/(ν−θ)]−1 = u′ (µ1(1)kA)µ1(1)kA.

Given our assumptions about u, it is clear that kA both exists and is unique.

Assumption A: There exists a (k,y) pair with k < kA and 0 ≤ y < 1, such that

βα + β[α(1+β)/(1−α)β][1+θ/(ν−θ)yν/θ]−1 < u′ (µ1(y)k)µ1(y)k.

Proposition 2. Under Assumption A, the maximum of V(y,k) is well defined for all k ≥ 0, and

y(k) has the following properties:

(i) For low k, y(k) = 0; that is, ∃ kB > 0, such that ∀ k ≤ kB , y(k) = 0.

(ii) For large k, y(k) is continuous and increases without bound; that is, ∃ kC , such that for

all k ≥ kC , y(k) is continuous, is increasing, and limk→∞ y(k) = ∞.

(iii) There is at least one upward jump discontinuity in y(k).

(iv) For moderate k, changes in k do not induce any change in quality, although there may

be changes in taxes; that is, ∃ kD and kE , such that for all k ∈ (kD ,kE), z(y(k)) = z(y(kD)).
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(v) If y(k) is differentiable in the region in which y ≤ 1, then there is a kF , such that for all

k ≤ kF , y(k) ≤ 1; for k ≥ kF , y(k) ≥ 1; and y is continuous in these two regions. Thus, y(k) jumps

upward at kF and is continuous otherwise.

Proof: See Appendix B.

In words, what Proposition 2 says is that for small values of k (that is, in low income per

capita countries), pollution taxes are chosen to be zero.  As k increases, y increases but stays in

the region y ≤ 1. In this region, nonzero taxes are chosen by voters not to control pollution (since

z = 0 when y ≤ 1), but rather to manipulate the rate of return on capital to voters’ benefit. This is

a common property of voting equilibria in economic models—voters strategically manipulate

prices (here, interest rates) for their own benefit in the equilibrium outcomes of the economic

system.  Finally, for sufficiently high levels of k, the equilibrium tax is greater than τL(that is, y >

1), and it grows without bound as a function of k. The transition from the low tax region (y ≤ 1)

to the high tax region (y ≥ 1) is not smooth. Specifically, we show that there exists a level of k,

denoted by kF , such that y(k) is discontinuous at kF . The discontinuity is of a very simple form: y

jumps upward at kF.

It is easy to check that even though we assume that u is convex, most of the analysis goes

through as long as u is not too concave. In particular, if u = log, the equilibrium tax rate is inde-

pendent of k, and pollution increases monotonically with income, and the model converges in

one period to a balanced growth path.

Even though Proposition 2 contains the basic result, it is useful to more carefully analyze

what kind of time path for taxes and pollution are implied by it. We now turn to that task.
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3.  The Dynamics on the Equilibrium Path

It is of interest to analyze what kind of time paths for income and pollution—the variables se-

lected by Grossman and Krueger (1995)—are implied by this model. The previous section

showed the nature of the equilibrium as a function of the aggregate capital stock. In Appendix A,

we detail the implications of the model for the growth rate of capital. Here, it suffices to say that

under standard assumptions (that is, the productivity in the production of investment goods is

sufficiently high), the model displays positive growth for all possible values of the tax variable y.

Given this, the time path of capital is simple: it increases without bound. Thus, it is simple to de-

scribe the time path of the relevant endogenous variables using Proposition 2. Let γ(y) be the

growth rate of the capital stock when the tax rate is equal to y. We collect the main results in the

following proposition.

Proposition 3. Assume that Assumption A holds, that γ(y) > γ(∞) > 1 for all y, and that the initial

capital stock, k0, is small.

(i) There is some ,*
0t such that for 0 ≤ t ≤ *

0t

(a) the equilibrium tax rate yt is zero,

(b) the growth rate of capital is constant and equal to γ(0),

(c) pollution is increasing.

(ii) There is a ,*
0

*
1 tt >  such that for all t between *

0t and *
1t

(a) the equilibrium tax rate is increasing, but yt ≤ 1,

(b) the growth rate of capital is increasing over time,

(c) the level of pollution is decreasing.
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(iii) At t = *
1t

(a) the equilibrium tax rate jumps up to a value of y > 1,

(b) the level of pollution jumps down.

(iv) For t > *
1t

(a) the level of pollution increases over time and converges to ,*
τs where *

τs  satis-

fies

),/1/()( ** θν+βα=′ ττ ssu

(b) the tax rate is increasing over time and converges to ∞,

(c) the growth rate of capital is decreasing over time and converges to γ(∞) > 1 .

(v) The asymptotic growth rate of consumption, γc(∞), is strictly greater than one.

Proof: This follows directly from an application of Proposition 2, since γ(y) > 1 for all y.

An interesting implication of Proposition 3 is that the time path of pollution is not

monotone. An example is shown in Figure 1. After an initial period in which pollution increases

and taxes are zero, there is a period of relatively low taxes, no quality upgrades, and decreases in

the level of pollution. This is induced by a change in the composition of capital: more capital is

allocated to producing investment goods and less capital to producing capital goods used in the

production of consumption goods. Since the latter are the pollution-causing factors, total pollu-

tion decreases.

As income grows, voters choose to induce—through higher taxes—a quality upgrade. In

the model, this takes the form of a discrete increase, a jump, in the tax rate. In the period in

which the jump occurs—recall that a period is roughly half a generation in this model—output
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drops. In this period, higher taxes induce a quality upgrade and pollution drops, because cleaner

capital goods are used in the consumption sector.

After the transition period, the economy is in a new regime in which tax rates, as meas-

ured by yt , increase over time and pollution per unit of capital decreases, because cleaner capital

goods are used in equilibrium. What happens to measured pollution taxes? Recall that the actual

tax rate per unit of capital is τφ(z). As y increases without bound, τ increases as well, but z(y) in-

creases, and hence, φ(z) decreases. Thus, the endogenous response works in the direction of re-

ducing the measured tax rate. For the example that we have analyzed, measured taxes, defined as

τφ(z), equal θ/(ν−θ) (see Appendix A). Thus, observations on measured taxes and pollution lev-

els (or quality of the capital stock) could lead an observer to incorrectly infer that the price

mechanism is not important to induce environmental protection when, in fact, exactly the oppo-

site is true. In this region, both income and pollution grow, although pollution grows at a slower

rate. In the long run, pollution is bounded and income is growing; hence, pollution, as a fraction

of income, disappears. Note that this does not imply that people do not care about pollution. Ac-

tually, the opposite is true: at high income levels, voters choose taxes to induce very high quality

choices; hence, they choose to pay a large penalty, in terms of resources used to operate cleaner

technologies, relative to output.

4.   Regulating Quality Choice

An alternative institution that can be used to enforce environmental standards is direct quantita-

tive restrictions. For example, in the United States there is a quantitative restriction on the num-

ber of leaded-gasoline-burning car engines that can be sold: it is zero. This type of quantitative

restriction is common in many environmental regulations. One way of modeling quantitative re-

strictions is to allow the voters at time t to collectively choose a minimum level of quality z. In
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other words, at time t the old vote on a level of quality zt and firms cannot use any variety z, with

z < zt. (Alternatively, one can interpret this scheme as a different simplification of the tax rules

where τ = ∞ for all z < zτ, for some zτ, and τ = 0 for z ≥ zτ.) It turns out that the equations de-

scribing the equilibrium for a given value of the tax rates hold with τt equal to zero. The reason

for this is simple: if the policy specifies that the lowest available quality is zt , then firms will

choose capital of quality exactly equal to zt since all forms of capital are perfect substitutes. The

market price of capital will be m(zt)rIt , and firms optimize taking this as given.

It is useful to describe how the key variables vary with z. First, consider the price of

capital. Simple calculations detailed in Appendix A show that pkq(z) (here the subindex q indi-

cates that the collective decision is over qualities), the price of capital, is given by

(4.1) pkq(z) = Mkα−1[a0m(z) − a1]
1−α/m(z),

where a0 = 1 + [α(1+β)(1−δ+A)]/[(1−α)βA], a1 = α(1+β)(1−δ)/[(1−α)βA], and M = (a0−1)αB/A.

If a1/αa0 > 1, denote by zM the value of z satisfying m(zM) = a1/αa0. If a1/αa0 ≤ 1, set zM = 0. As

in the case in which the collective decision making is over taxes, there is a value of the policy

variable—which we denote by zM—that maximizes the value of capital and, hence, the value of

consumption of the voters—the old. Note that, in equilibrium, the minimum allowable quality

level will be always at least equal to zM. Voters will always extract the monopoly surplus. It can

be easily verified that the function pkq(z) is decreasing for z ≥ zM. In order to avoid unnecessary

notation, we will concentrate on the case in which zM = 0.

The amount of pollution per unit of total capital is given by

(4.2) µq(z) = D(a0−1)[(1+z)ν(a0m(z)−a1)]
−1.
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This function is strictly decreasing for all values of z. Thus, the higher the minimum

quality level, the lower the amount of pollution per unit of output.

In this case, the rate of growth in total capital is,

(4.3) γkq(z) = (1−δ+A)[1 + (a0m(z)−a1)/m(z)]−1,

which is decreasing for all values of z.

Finally, the relevant voting function for this case is just

(4.4) Vq(z,k) = β ln(pkq(z)) − u(µq(z)k).

The next proposition summarizes the behavior of the relevant variables under this equi-

librium.

Proposition 4. Assume that the initial capital stock k0 is sufficiently small. Then the following

are true.

(i) There is some ,*
0t such that for 0 ≤ t ≤ ,*

0t

(a) the equilibrium minimum quality zt is zero,

(b) the growth rate is constant and equal to γq(0),

(c)  pollution is increasing.

(ii) For t > ,*
0t

(a) the equilibrium minimum quality is increasing, and it grows without bound,

(b) the growth rate of total capital is decreasing over time,

(c) the level of pollution is increasing, and it converges to ,*
qs where *

qs  satisfies

** )( qq ssu′  = βα/(1+ν/θ).
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Remark: If zM > 0, then the chosen quality is strictly increasing for all values of k and converges

to zM as k converges to zero. Thus, in terms of time paths, it is increasing and bounded below by

zM.

Proof: See Appendix B.

The behavior of pollution over time (as well as the minimum quality zt) is shown in Fig-

ure 2. When individuals regulate technologies, the economy displays an ever increasing level of

pollution. This level grows faster during the initial period in which the minimum quality is given

by zM. After ,*
0t  the increase in environmental standards decreases pollution per unit of output.

However, the growth effect of output dominates, resulting in an increasing level of pollution. Fi-

nally, this scheme succeeds in controlling pollution even in a growth environment: the asymp-

totic level of pollution is finite; moreover, it coincides with *
τs —the limiting level of pollution

under the scheme in which taxes are used to regulate pollution. Thus, although the time paths of

the two regimes are quite different, their asymptotic or long-run behavior is the same. From a

practical point of view, this example points out the limitations of using long-run or balanced

growth arguments to interpret data. In this case, if one were interested in using the evidence to

distinguish between the two possible regimes, ignoring the transition phase would be equivalent

to giving up the possibility of identifying the correct regime.

5.  A Class of Optimal Allocations

So far, we have characterized the time path and the asymptotic behavior of pollution and income

in two equilibrium regimes. In both cases, the old at time t vote on either effluent charges or

minimum quality standards to be implemented at t, and the collective decision is made using
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majority voting. There are several concerns that arise: Do the qualitative properties of the time

path of pollution from the planner’s problem agree with either the tax equilibrium or the regula-

tion equilibrium? How does the limiting level of pollution in the voting systems compare with

the optimal levels of pollution?

It is well known that in overlapping generations models it is difficult to fully characterize

the class of optimal allocations. However, in order to get an idea of the nature of optimal pollu-

tion paths, we consider a simple utilitarian social preference function. Let Ut be the utility of

generation t, and assume that the planner maximizes

(5.1) ∑∞
=
β=

0
,

t t
t
PUW

subject to the feasibility constraints. The discount factor βP is assumed to be between zero and

one. The time path of the optimal solution is summarized in the next proposition.

Proposition 5. Assume that βP(1−δ+A) > 1 (to guarantee that the planner would be willing to

grow) and that the initial capital stock k0 is sufficiently small. Then the solution to the planner’s

problem is such that

(i) There is some ,*
0t  such that for 0 ≤ t ≤ ,*

0t

(a) the optimal level of quality zt is 0,

(b) the growth rate is constant and equal to γp(0),

(c) the level of pollution is increasing.

(ii) For t > ,*
0t

(a) the optimal quality level is increasing and converges to ∞ as t goes to ∞,

(b) the growth rate of total capital is decreasing over time,
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(c) the level of pollution is decreasing, and it converges to ,*
ps where *

ps  satisfies

=′ ** )( pp ssu (β+βP)α/(1+ν/θ).

Proof: See Appendix B.

There are some interesting differences between the planner’s allocation and the alloca-

tions under either one of the two equilibrium regimes (choosing pollution taxes and regulating

minimum quality levels). The basic details of the time path of the planner’s choices of qualities

and level of pollution are displayed in Figure 3. Note that the equilibrium path of pollution dis-

plays the U shape pattern that Grossman and Krueger (1995) find for some pollutants.

The planner’s allocation is such that pollution converges to a long-run level .*
ps  This

level is strictly greater than the long-run level in either one of the voting solutions (they are the

same). Thus, it follows that the planner’s allocation entails strictly more pollution per unit of

output than the equilibrium allocation when people vote over minimum quality. It is more diffi-

cult to determine how the planner’s solution compares with the equilibrium solution when taxes

are the instrument. All that can be said is that for very high levels of capital (and, hence, income)

the planner’s choice of pollution is higher than the equilibrium. Thus, at least for high levels of

income, the models predict excessive conservation associated with the equilibrium solutions. The

reason the planner chooses more pollution in the limit is easy to ascertain: the planner cares

about future generations more than voters do. In this setting in which there are no

intergenerational spillovers of pollution, voters fail to take into account the impact of the more

expensive capital on the welfare of future generations. Note that as the discount factor in the

planner’s problem is driven to zero, all three solutions coincide in the long run.
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6.  Comments, Extensions, and Conclusions

(1) Endogenous Policies and Convergence. Our focus to this point has been on the relationship

between pollution, income, and growth. In addition to this, the model has implications about the

relationship between income levels at time t and the growth rate between t and t + k. This is ex-

actly the kind of relationship that has been the focus of the convergence literature.  One position

(see, for example, Barro and Sala-i-Martin (1995)) emphasizes that exogenous growth models

imply conditional convergence, that is, that future growth is negatively correlated with current

income level, once other factors are controlled for.  Hence, finding a negative coefficient on in-

come would be support for the exogenous growth model. Overall, the empirical evidence on this

is inconclusive. The studies summarized in Barro and Sala-i-Martin (1995) seem to give support

to the conditional convergence hypothesis, while Durlauf and Johnson (1995) and Quah (1996),

using a different technique, find convergence clubs, that is, groups of countries that have similar

behavior, but no overall convergence.  There is no uniform theoretical result on the sign of this

coefficient in the endogenous growth literature.  Simple Ak models with exogenous (and station-

ary) policies have the implication that there should be no relationship between income levels and

growth rates, while in other models of endogenous growth, this relationship can be either in-

creasing (see Romer (1986)) or decreasing (see Jones and Manuelli (1990) and Boldrin and Rus-

tichini (1994)).

What the model we analyze here shows is that when policies are endogenously chosen,

virtually any result is possible, even in a model in which, if policies were exogenous and con-

stant, the growth rate would be independent of the level of income. Indeed, we show that the

model in which policies are endogenous can generate empirical convergence clubs, even though,

in the long run, all countries will have the same policies and, hence, the same growth rate. To see
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this, we concentrate on the effluent charge equilibria of Sections 2 and 3. From the calculations

in Appendix A, it follows that the mapping between the tax variable, y, and the growth rate of

capital, γ(y), changes depending on whether the tax rate lies above or below the threshold τL (that

is, y is less than or greater than one). Although this relationship is a complicated one (see Ap-

pendix A), several qualitative properties can be determined.  First, under some parameter restric-

tions—basically, the magnitude of the productivity parameter A—the model displays positive

growth, in the sense that for all y, γ(y) > 1. Second, γ(0) > limy→∞ γ(y) > 1; that is, high taxes de-

crease growth—relative to zero taxes—but do not stifle it altogether. Third, the growth rate of

capital is increasing for values of τ that fall short of τL(y < 1), while it is decreasing for values of

τ > τL (y > 1): for values of y < 1, a tax increase induces a reallocation effect, because more

capital is devoted to investment and less to the production of consumption goods. This increases

the growth rate. In the region y ≥ 1, higher taxes result in higher quality capital goods being de-

manded by the consumption sector (in smaller quantities though). This implies that less capital is

allocated to the investment sector, decreasing the growth rate. An example of the function γ(y) is

shown in Figure 4.

The relationship between the current level of income and its future growth is not simple,

but it is relatively simple to describe the relationship between the level of income at time t and

the growth rate of total capital between t and t + 1 (half a generation in our model). Consider, as

before, an economy that starts out at a low level of income (k is low). This economy chooses no

pollution taxes (y = 0), and the growth rate of capital is given by γ(0) in Figure 4. For a period of

time—more precisely, between t = 0 and t = *
0t —income grows at a constant rate. Thus, in this

region, the implication of the model is that growth rates are independent of income levels. How-
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ever, after ,*
0t  the equilibrium is such that low but positive taxes are chosen (this is the region in

which 0 < yt < 1). Moderate taxation of capital used in consumption induces more investment

and a growth boom. Thus, in this region, the model implies that growth rates increase with the

level of income and the average incomes of low and middle income countries grow farther apart.

Finally, the economy enters the region in which taxes are high (yt > 1), a region that is never left.

In this region, the higher the initial level of income, the lower the subsequent growth rate. Thus,

in this region, the model predicts conditional convergence of growth rates of capital, that is, a

convergence club for high income countries.

Even though this is a very simple model and emphasizes only pollution taxes, we suspect

that the mechanisms that we describe are relevant in models that emphasize endogenous deter-

mination of utility producing publicly provided goods (nonhomotheticity of utility may be im-

portant as well). Our results imply that care must be taken in the interpretation of convergence

regressions. In particular, the convergence coefficient depends on initial income and could take

any value—including divergence—depending on the mix of countries in the different regions. In

addition, models of this type also suggest that it is possible to find convergence clubs in the data,

without the usual implication associated with those findings—for example, rich countries (those

with yt strictly greater than one) would form a convergence club.

Thus, the model is consistent with different policies driving differences in per capita in-

come and growth across countries. Indeed, the model provides a theory for the differences—dif-

ferences in levels of income across countries give rise to differences in selected policies, imply-

ing differences in growth rates.

(2) Heterogeneity. The assumption of identical individuals is convenient, but not essential. First,

if individuals differed in terms of initial wealth—say, due to differences in their labor endow-
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ment or government transfers—our results in Sections 2 and 4 go through as they are. The key

observation is that the relevant voting function, even in this case, depends on just the amount of

pollution and the unit price of capital. If individuals have different disutility from pollution (dif-

ferent u functions), then additional assumptions to guarantee that the median voter theorem holds

are necessary. Given those assumptions, the analysis proceeds as in Sections 2 and 4. Finally, if

the young cared about pollution but either cannot vote or are never the median voter, our positive

analysis goes through without any changes. However, the normative analysis of Section 5 needs

to be revised. In particular, the conclusion that the asymptotic level of pollution in the planner’s

solution exceeds that of the market need no longer hold.

(3) The Nature of Pollution. Throughout the paper, we assumed that pollution is a flow: the

amount of smoke generated today affects only today’s utility. If, instead, pollution is treated as a

capital stock in which the amount produced at time t increases that stock, the analysis in Sections

2 and 3, and hence the qualitative features of the model,  remains basically unchanged. In this

case, however, the welfare comparisons are more difficult.

(4) The Uses of Tax Revenue. In the analysis of Sections 2 and 3, we assumed that the proceeds

from the environmental tax are thrown away (or, alternatively, used to finance a public good

whose utility is separable with respect to the other variables). There are at least three simple al-

ternatives: use the proceeds to clean the environment, make a transfer to the young, or make a

transfer to the old. In the first case—and depending on how the cleaning up technology is speci-

fied—the qualitative results remain the same. If the tax revenue is used to finance a transfer to

the young, it is possible to obtain the puzzling result that higher taxes increase the growth rate.

This is a standard result in overlapping generations models (see Boldrin (1992) and Jones and

Manuelli (1992)). Finally, if the proceeds from taxing low quality capital are used to finance a
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transfer to the old, the problem becomes substantially more complicated: in this case, the saving

function will depend on the interest rate; hence, the voting decision must be modeled as a com-

plicated game with an uncountable number of agents. Even though this is an interesting (and re-

alistic) situation, it seems to add a level of complication that is hard to justify.

(5) Alternative Technologies. In this paper, we studied the case in which different varieties of

capital used in the consumption sector generate pollution. An alternative would be to consider

clean and dirty capital goods that can be used in both sectors. There are problems with these al-

ternative specifications. If there are multiple capital goods in the production sector, it is possible

that the voting problem is not well defined. The reason for this is simple: by increasing the price

of capital (say, through higher taxes), the old increase their consumption while at the same time

reducing pollution. In this setting, the optimal tax is infinite. Alternatively, one can consider

multiple capital goods in the consumption sector. The problem in this case is that tax increases

cause a reallocation to the capital sector, increasing the growth rate. Therefore, such a model

would have the implication that higher pollution taxes are growth enhancing. Since this is at odds

with the evidence, we decided against this approach.

(6) Global External Effects. The model can be easily extended to one in which pollution is

global. In this case, and for a small country, the level of pollution is independent of local activi-

ties.  It is straightforward to show that in this case, no local pollution controls are enacted. Thus,

control of global pollutants requires worldwide collective decision-making mechanisms, and it is

not clear that a voting model is appropriate for this.



32

Appendix A: Equilibrium for a Given {τt}

In this Appendix, we describe the equilibrium of the model for a given sequence of taxes {τt}.

Let rIt be the rental rate for renting capital to use in the production of new capital (xt), and let pkt

be the price of new capital produced at time t. Profit maximization requires the following:

(A.1) rkt(z) ≤ m(z)rIt , with equality if variety z is produced,

and

(A.2) rIt /A ≥ pkt , with equality if new capital is produced.

From Proposition 1, we know that producers of consumption goods will choose, at time t,

only one quality of capital, which we denote by either zt or z(τt) as given in Proposition 1.  For

firms in the consumption sector, the rental price of capital (after taxes) must equal the marginal

product of capital.  That is,

(A.3) αBkct(zt)
α−1 = (1 + τtφ(zt))rkt(zt) = (1 + τtφ(zt))m(zt)rIt.

Hence, using the equilibrium condition from the capital-producing sector,

(A.4) .
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Imposing the equality of savings with the value of capital taken into time t + 1, bt =

pkt kt+1, and using the equilibrium condition that the wage rate is given by the marginal product of

labor, we have that

,
11 ttkt wkp

β+
β=+  where wt = (1−α)Bkct(zt)

α.

After some algebra, this implies that
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Since m(zt)kct(zt) + xt = kt , we can rewrite, after substitution, the law of motion for k as

kt+1 = (1−δ+A)kt + kct(zt)[(1−δ)(1 − m(zt)) − Am(zt)].

Using (A.5) in the above equation gives

(A.6) kt+1 = (1−δ+A)kt + .
)())(1()1(

)]())(1)(1)[(1(
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ttt

tt
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It follows that the growth rate of capital between time t and time t + 1 depends on the tax

rate chosen at time t. The precise expression is

(A.7) ,
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where the dependence of zt on the tax rate is described in Proposition 1. Equations (A.5) and

(A.7) imply that the equilibrium relationship between kct(z) and kt  is given by

(A.8)
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Given the ratio kc /k and φ and substituting in the expression for y, it follows that the unit

price of capital, pkτ(y), and pollution per unit of total capital, µτ(y), are given by

(A.9)
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(A.10)
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where K is a constant.
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Appendix B: Proofs

Proof of Proposition 1: The first-order condition for cost minimization is

θ(1+z)θ−1(1 + τD(1+z)−ν) + (1+z)θ(−ν)τD(1+z)−(ν+1)

= (1+z)θ−1[θ(1 + τD(1+z)−ν) − ν(1+z)−ντD].

When τ = 0, this is (1+z)θ−1 θ > 0 for all z ≥ 0.  This implies that z(τ) = 0 for sufficiently

small τ. Note that, as defined, τL satisfies [θ(1 + τLD) − ντLD] = 0.

For τ ≥ τL, z is interior. After substitution, we get

.1
)(

/1

−





θ
τθ−ν=

ν
D

z �

Proof of Proposition 2: Let





≥
≤

=
1for ),(

1for ),(
),(

2

1

ykyV

ykyV
kyV

where Vi(y,k) ≡ ln(pki(y)) − u(µi(y)k). The maximized value of V, denoted by V*(k) ≡ V(y(k),k),

where y(k) is the optimal choice of y given k, is given by V*(k) = max{i=1,2} )(* kVi . )(* kVi  is just

the maximum of Vi over the relevant domain for y; that is, 0 ≤ y ≤ 1 for i = 1 and y ≥ 1 for I = 2.

The maximizers are denoted by y1(k) and y2(k), respectively. It follows that )(* kVi = Vi(yi(k),k) for

i = 1,2.

It is convenient to restate Proposition 2 using the notation introduced above. To prove the

proposition, it suffices to prove that the maximum of V(y,k) is well defined for all k ≥ 0. The

maximizer, y(k), has the following properties:

(a) ∃ kB > 0, such that ∀ k ≤ kB , y(k) = y1(k) = 0.
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(b) ∃ kC , such that for all k ≥ kC , y(k) = y2(k), which is strictly increasing, is continuous,

and limk→∞ y(k) = ∞.

(c) For all k, y2(k) > y1(k).

(d) There exist kD and kE , such that for all k ∈ (kD ,kE), y1(k) is interior.

(e) If in addition to Assumption A, y1(k) is differentiable, there exists a unique kF , such

that y(k) = y1(k) for k ≤ kF and y(k) = y2(k) for k ≥ kF .

Note that (a)–(c) imply properties (i)–(iii), (d) implies (iv), and (e) implies (v). We are

now ready to prove the result. First, we first characterize y1(k) and y2(k). (See Figure 5.)

Consider max0≤y≤1V1(y,k). Given that the function is continuous, existence and upper-

hemicontinuity of y1(k)—the maximizer of V1 in the region [0,1] as a function of k—follows

from the maximum theorem. The function V1 is differentiable, and it can be checked that

∂2V1/∂y∂k ≥ 0 (with the inequality being strict if k > 0). Thus, the function is supermodular. The

results of Topkis (1978) and Milgrom and Shannon (1994) show that the maxim and y1 is

monotone increasing.

A straightforward calculation shows that

].)()[/(/ 111
 
11 kkuV y µµ′−ζµµ=∂∂ ′

Next consider

{ }.)())(()(max)( 1110 kykyykH y µµµ′−ζ= ≤≤

It follows that limk→0H(k) > 0 and  limk→∞ H(k) < 0. Thus, there exists some kB1, such that

k ≤ kB1 implies that H(k) ≥ 0. Since ∂V1/∂y ≤ ( ),(/ 1
 
1 kHµµ ′ this implies that y1(k) = 0 for k ≤ kB1.

We will later show that y1 and y coincide on an interval [0,kB] with kB ≤ kB1.
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Note that, as defined in the text, kA is the smallest k such that y1(k) is one. Given the

monotonicity result, it is also equal to one for k ≥ kA. That kB1 < kA is simply guaranteed by As-

sumption A. In Figure 1, we show a candidate y1(k) function.

We now characterize the solution, y2(k), to the maximization of V2. We need to consider

two cases. If yM > 1, the function V2 is clearly increasing in the region [1,yM]. Thus, in this case,

y2 ≥ yM. From an economic point of view, yM is a monopoly price of capital, and the old would

never choose taxes that result in a price lower than this monopoly price. The second case is when

yM = 1. This corresponds to a pk2 function that is decreasing. In this case, define kC1 as the largest

value of k such that y2(k) = 1. Then kC1 satisfies

.)1())1(())1(/)1())(1()1(( 1212
 
222

 
2 CCkk kkupp µµ′=µµβ ′′

It is easy to show that V2 is supermodular as well and, hence, that y2 is increasing.

Moreover, inspection of the function β(  
2
′

kp (y)/pk2(y))(µ2(y)/  
2
′µ µ(y)) shows that it is monotone

increasing for y ≥ yM (y ≥ 1 when pk2 is everywhere decreasing), while u′ (µ2(y)k)µ2(y)k is de-

creasing. Since equality of these two functions is a necessary condition for an interior maximum

(y > 1), it follows that the maximizer is unique and, hence, continuous. Simple inspection implies

that y2(k) → ∞ as k → ∞.

To prove property (iii), we show that kC1 < kB1. Direct calculation shows that  
2
′

kp (1) >

 
1
′

kp (1). From the definition of kC1 and kB1 and given that the functions pki and µi are continuous

at 1, it follows that

.)1())1(()1()1())1(()1( 1111
 
1212

 
2 BBCtC kkukku µµ′µ>µµ′µ ′′

Direct calculation shows that )1( 
2
′µ  < )1( 

1
′µ  < 0. Thus, after some substitution,
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.)1())1(()1())1(( 11111212 BBCC kkukku µµ′<µµ′

The monotonicity of xxu )(′  implies that kC1 < kB1.

To complete the argument, we need to show that for low values of k, *
1V  > ,*

2V while the

opposite holds for large values of k (this is properties (i) and (ii)). First we show that for small k,

*
1V  > *

2V . Let k ≤ min{kB1,kC1}. Then

*
1V (k) = V1(0,k) and )(*

2 kV = V2(1,k).

Thus, using the fact that pk1(1) = pk2(1), we get

*
1V  − *

2V  = β ln(pk1(0)/pk1(1)) − [u(µ1(0)k) − u(µ2(1)k)].

Note that the first term is strictly positive, while the second converges to zero as k goes to

zero. This completes the argument that y = y1 for small k.  Define kB as the largest such k.

Next we show that *
2V  > *

1V  for large k. Let k > max{kA,kC1}, such that y2(k) > y* > 1 and

y1(k) = 1 (see Figure 1). Hence, V2(y,k) > V2(y
*,k). Thus,

*
2V  − *

1V  ≥ V2(y
*,k) − V1(1,k) = β ln(pk2(y

*)/pk2(1)) − [u(µ2(y
*)k) − u(µ1(1)k)].

Since the first term is bounded, it suffices to show that the second term (in square brack-

ets) goes to −∞ as k grows. Since u is convex, it follows that

u(µ1(1)k) − u(µ2(y
*)k) ≥ u′ (µ2(y

*)k)µ2(y
*)k[(µ2(y

*) − µ1(1))/µ2(y
*)],

and the result now follows from our assumptions on u.

To prove property (iv), consider the first-order condition for an interior maximum of V1.

It is given by

∂V1/∂y = ( )( 
1 y′µ /µ1(y))[ζ(y) − u′ (µ1(y)k)µ1(y)k] = 0.
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It is sufficient to show that for some values of k and y, the term in square brackets is zero.  From

Assumption A, this term is negative for some k < kA and some y < 1. It is positive when evaluated

at y = 1 for this k.  It follows that for this k, this term is zero for some y in (0,1).  By continuity of

,u′  it follows that this holds for an open set of k’s.

To prove property (v), note that it is sufficient to show that if at some k, y(k) = y2(k), then

)(ky ′  = )(2 ky ′  for all k′  > k.  To see that this holds, it is sufficient to show that *
2
′V  > *

1
′V  for all

k.  To see that this holds, recall that *
iV  = Vi(yi(k);k), and so *′

iV  = ∂Vi(y;k)/∂y dyi /dk +

∂Vi(y;k)/∂k.  By the definition of yi , it follows that the first term is zero; hence, it is sufficient to

show that ∂V2(y;k)/∂k > ∂V1(y;k)/∂k.  Straightforward calculations show that this is equivalent to

showing that µ1(y1(k)) > µ2(y2(k)) for all k. That this holds follows from the fact that both µ1 and

µ2 are monotonically decreasing and that they are equal at y = 1.

Proof of Proposition 4: We first characterize how the optimal z varies with k. With this done,

the assumption on parameters that imply that k is strictly increasing over time results in the be-

havior of time paths as stated in the proposition. Using (4.1) and (4.2) as well as the indirect util-

ity function Vq , it follows that

∂Vq/∂z = βm′ (z)/m(z){[(1−α)m(z)a0/(a0m(z) − a1)] − 1} +

 u′ (µq(z)k)µq(z)k[a0 m′ (z) + ν(1+z)−1]/[a0m(z) − 1].

Given our assumptions about u, the second term converges to zero as k goes to zero.

Thus, to establish that for small k the equilibrium z will be zero, it suffices to show that

βm′ (z)/m(z){[(1−α)m(z)a0/(a0m(z) − a1)] − 1} > 0.



40

Simple algebraic manipulations show that this inequality holds if and only if m(z) >

a1/αa0.

Note that the assumption zM = 0 requires that 1 > a1/αa0, which completes the argument,

because m(z) ≥ 1.

Next we characterize the equilibrium z as a function of k when the solution is interior.

Algebraic manipulation of the condition ∂Vq /∂z = 0 shows that it is equivalent to S(z) = G(z,k),

where

G(z,k) = u′ (µq(z)k)µq(z)k

and

S(z) = [(a0m(z) − a1) − (1−α)]/[(ν/θ)(a0m(z) − a1) + a0m(z)].

It follows that G(z,k) is decreasing in z and increasing in k, while S(z) is increasing in z.

Thus, the optimal z is unique and increases as k increases. Moreover, as proved above, for small

k, G(0,k) < S(0), and so the equilibrium z is zero.

Proof of Proposition 5: The planner’s problem is

max W = )]()ln()[ln( 1
1

0 +
−∞

= −β+β∑ t
t
t

t
t

t
Pt succ

subject to

,1 α− ≤+ ct
t
t

t
t Bkcc

kt+1 ≤ (1−δ+A)kt + [(1−δ) − (1−δ+A)m(zt)]kct ,

φ(zt)kct ≤ st.

This statement of the planner’s problem assumes that only one quality, zt , is chosen at time t. A

more general statement of the problem should allow for measures over values of z as the relevant



41

choice variable. Later in the proof, we state the problem in this more general framework and

show that the optimum is such that only one quality is chosen at any given time.

After differentiation, some algebra, and some substitution, we get

(P.5.1)   u′ (st)st = α(β+βP)(θ/ν)(1−δ+A)m(zt)/[(1+θ/ν)(1−δ+A)m(zt) − (1−δ)].

Equation (P.5.1) completely summarizes the behavior of pollution in any interior solu-

tion. Direct calculation shows that the right-hand side of (P.5.1) is decreasing in zt. Thus, if zt is

increasing in equilibrium (we will show this to be the case), st is decreasing. Taking into account

that st = φ(zt)kct , it follows from (P.5.1) that if limt→∞ kct = ∞ (we will show this to be the case as

well), then limz→∞ zt = ∞.  That kct → ∞ also follows from the first-order conditions of the plan-

ner’s problem along with the assumption that βP(1−δ+A) > 1.

The limit of the right-hand side of (P.5.1) as z → ∞ is (β+βP)α/(1+ν/θ). Thus, it follows

that st is decreasing (if zt > 0) and converges to ,*
ps where

** )( pp ssu′  = (β+βP)α/(1+ν/θ).

Finally, we show that for small k, the optimal solution is a corner solution with z = 0.

Using the relevant version of the first-order conditions, the appropriate version of (P.5.1) is

)1.5.P( ′   u′ (φ(0)kct)φ(0)kct < α(β+βP)(θ/ν)(1−δ+A)/[(1+θ/ν)(1−δ+A) − (1−δ)],

which clearly must hold for small k since kc is bounded above by k and the left-hand side is con-

verging to 0 as kc → 0.

To complete the proof, we show that zt is indeed increasing (and in passing we also show

that only one z is chosen at time t). To do this, it is convenient to write the planner’s problem as a

dynamic problem with the choice variable being a measure, µ, over the space of possible quali-

ties (which we denote by Z), with the interpretation that µ({z}) is the amount of capital of type z
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that the planner allocates to the consumption sector. With this relabeling, the appropriate version

of Bellman’s equation for the planner’s problem is

(P.5.2)  V(k) = )}()({max ,, kVfkx ′β+µ′µ

subject to

k ≥ ∫m(z)µ(dz) + x,

k′  ≤ (1−δ)[∫µ(dz) + x] + Ax.

Here, f(µ) is the indirect utility function when cy , c0 , and s have been maximized out.

Standard arguments imply that f is a strictly concave function of µ, V(k) is strictly con-

cave, and V is differentiable when the solution is interior.

Even though we stated the planner’s problem in a general way by allowing measures to

be the choice variable, since both m(z) and φ(z) are convex (φ(z) is strictly convex), a direct ap-

plication of Jensen’s inequality establishes that a point mass measure on some zt dominates any

measure that puts positive mass on more than one point. Thus, the optimal measure is one that

puts mass kct on the set {zt}, where kct and zt are the variables characterized in the planner’s

problem at the beginning of the proof.

Finally, to establish that the sequence zt is increasing when it is interior (we already

showed that there is a region in which it is zero), rewrite the planner’s problem as

max{C0 + α(1+β) ln(kc) − u(φ(z)kc) + βV[(1−δ)kc − (1−δ+A)(k − m(z)kc]},

where C0 is a constant. This formulation already incorporates the result that the choice of z is

unique. Let the function inside set brackets be denoted by M(kc ,z;k). It follows from the concav-

ity of V that the function is supermodular (see Topkis (1979) and Milgrom and Shannon (1994))
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and, hence, that higher values of k result in higher values of z. However, since the growth rate is

positive, the sequence kt is increasing. Thus, the sequence zt increases as well. �
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Figure 1: The Time Path of Pollution and Taxes
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Figure 2: Voting over Qualities: Pollution and z
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Figure 3: Planner’s Problem: Pollution and z
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