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7. Introduction

James Tobin's "q theory" is one of the most prominent current macro-
economic theories about firms' demand schedule for a flow of investment.
According to that theory, there is at most times a discrepancy between the price
of existing capital goods, say, as reflected in markets for used capital goods,
and the price of newly produced capital goods. Tobin calls the ratio of these
two prices q. Tobin posits that q is an important argument of firms' demand
schedule for investment. "The rate of investment--the speed at which investors
wish to increase the capital stock--should be related, if to anything, to q, the
value of capital relative to its replacement cost," [22, p. 21]. Such a theory
must necessarily stem from a model in which "frictions" are present that prevent
the price of existing capital from being driven equal at all times to the price
of newly produced capital. For example, in "putty-putty" versions of one-sector
growth models, q is always unity. Furthermére, in such models firms have no

investment demand schedule, a point emphasized by Tobin [20, 21].

A simple model possessing the friction necessary to permit q to diverge
from unity is the one sector growth model with irreversible aggregate investment.
In this model, newly produced goods can either be consumed or used to augment the
capital stock. But once they are designated as capital, capital goods cannot
physically be converted into consumption goods. At the same time, there is a
competitive market in existing physical capital. By transacting in this market,
individual agents can reverse their past investment decisions, despite the ir-
reversible nature of investment in the aggregate. 1In this model, there is a
relative price which corresponds to g, the value of capital relative to its
replacement cost. The irreversibility of investment in the aggregate is the
friction that permits q to diverge from unity and which makes it possible

for aggregate investment to be positively correlated with q. However, the popula-
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tion regression of aggregate investment on q is in no sense an "investment
demand schedule," instead being a mongrel relation that reflects all of the
parameters of the model. An econometrician studying such an economy would have
no cause to fit such a regression if it is the economy's structure that he is

after. Among other things, there is a massive "simultaneity problem." Not only



-2 -

does q, taken as a random process, influence investment decisions, but investment
decisions influence q as a random process. But it is not merely a purely
econometric simultaneity problem. It is only in a special and qualified sense
that even agents who can legitimately view q as exogenous exhibit investment
behavior that can be described as a function mainly or solely of q; and this
sense does not seem to correspond to the one macroeconomists have had in mind.
Indeed, the model in this paper exhibits a feature that probably characterizes
virtually any model that possesses the friection necessary to make q diverge from
unity: the very same source of friction that makes q diverge from unity also
converts agents' decision problem into a nontrivial dynamic one, the solution of
which will in general not assume a "myopic" form such as a simple contemporaneous
demand schedule relating current investment to current qg. Instead, investment
decisions will necessarily be functions of agents' views about the future, the
current state of which cannot in general be summarized by a single variable such
as q.

This paper uses an irreversible investment version of the stochastic
one-sector growth model as a vehicle for making some observations about the q
theory of investment. We are attracted to the stochastic one-sector growth model
because it is perhaps the simplest coherent general equilibrium model available
in which one can discuss the mutual determination of investment and d. The one-
sector stochastic growth model has been extensively studied (see €.8., Mirman
[15], Mirman [16], Brock and Mirman [6], and Mirman and Zilcha [171), so there is
little that is analytically original here. However, because we are discussing a
version of the‘model with irreversible investment, rather than the reversible
investment (existing capital can be consumed) version that is extensively
discussed in the literature, we have to spend some time discussing the nature of

corner solutions in which the constraint that existing capital can't be consumed
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is binding. The presence of the corner is what permits q to diverge from unity in
some states of the world. From a technical point of view, the presence of the
corner requires modifications of the proof that the optimum value function
associated with the planning problem is differentiable in capital, and of the
proof that the stochastic growth model possesses a "stable" configuration of
fixed points. It is important to verify the existence of the derivative with
respect to capital of the "planners'" optimum value function, since it turns out
to be the price of used capital in the competitive market model. It is useful to
verify that the stochastic growth model has a "stable" configuration of fixed
points because it implies that the endogenous random variables in the model
converge in distribution, and that the sample first and second moments converge
to population values.

The paper is organized as follows. vSeetion 2 describes an interpre-
tation of the model as a collection of households and firms that interact
competitively in markets for output and inputs of capital and labor. Section 3
studies the equilibrium of the competitive model by studying the solution of the
planning model that has an identical structure with the competitive model.
Section 4 contains some numerical examples of economies, designed to illustrate
how the various population moments and regression coefficients depend on the free
parameters of the model. Our conclusions are in Section 5. Three appendixes
contain various propositions and lemmas needed in the text.

We conclude this section with a heuristic description of the workings
of the model. The model implies that capital evolves according to the stochastic

difference equation



where Kt is the economy-wide capital labor ratio, et is a shock to technology
and & is a shock to preferences. The function b turns out to be continuous,
increasing in K and 6, and decreasing in . The function b(K,0,e) by construc-

tion satisfies the restriction that investment is irreversible,

where 0 < § < 1 is the depreciation rate of capital. There is a family of
b(K,0,c) curves, as depicted in Figure 1, one curve for each (8,e) realization.
We have drawn b(K,ea,ea) as the lowest possible b(K,8,e) curve, where ea is the
lowest possible realization of 6 and €, the highest possible realization of €.
We have drawn b(K,eb,eb) as the highest possible b(K,5,e) curve, where eb is the
highest value of 8 possible and €y is the lowest value of £ possible. In between
b(K,ea,ea) and b(K,eb,eb) there is a continuum of b(K,8,e) curves corresponding
to different possible realizations of (6,e).

The capital-labor ratio K of such a system eventually evolves to within
the interval [Ka,Kb], and then stays there forever.l/ The system evolves
stochastically as the capital-labor ratio wanders between Ka and Kb’ depending on
the sequence of drawings of (8,e). For the system depicted in Figure 1, for any
Kt > E, there is a positive probability that (et,et) will be such that Kt+1 =
b(Kt,et,et) = (1-6)Kt, i.e., the constraint that investment is irreversible
becomes binding.g/ This is true because of the specification that there is a
continuum of curves filling the space between b(Kt,ea,ea) and b(Kt,eb,eb). Now
it turns out that in such states (et,gt) in which the system is on the corner, the
price Pyt of used capital relative to the price of new capital (i.e., newly
produced output) drops below unity. Roughly speaking, this relative price drops

farther below unity, the more binding is the constraint that investment be

irreversible. On the other hand, when the irreversibility constraint is not
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binding, the relative price of old and new ecapital is unity. Consequently, the
model implies (stationary) distributions of the relative price Pxt and gross
investment per man It of the kind indicated by the scatter of points in Figure 2.
The bivariate distribution of Pyt and It is a function of the probability
distribution of (Gt,et), and of the parameters of preferences and technology. It
is in the sense of Figure 2 that the model of this paper delivers a relationship
between Prt and It' A main purpose of the paper is to study the sense of this

relationship.

2. A Market Interpretation of the Model

Production is governed by
y, = £(k.)6,

where y is output per man, and kt is capital per man at t; et is a positive random
variable distributed independently and identically at all dates t. We assume

that f( ) is twice continuously differentiable and satisfies
fr(k) > 0, (k) < 0
£'(0) = », () = 0.

The economy is inhabited by a large number of competitive, price-
taking, infinite-lived consumers. The number of consumers in the economy is
assumed constant over time. Each consumer inelastically supplies one unit of
labor each period. All consumers are alike and have bounded one-period utility
function u(et,et), which we assume is twice continuously differentiable. Here ey

is consumption per man and € is a random shock to preferences. We assume that €t

is independently and identically distributed across time. We assume



u{e,e) < M for all ¢, € for some M > 0
uc(c,s) > 0, ucc(c,e) < 0, ue(c,e) >0
uce(c,s) >0

uc(O,e) = o, uc(°°,s) = 0.

We assume that the random processes et and ‘€4 are distributed
independently of each other at all dates. We assume further that the cumulative

distribution function
F(8,e) = Prob{etge, stgg} vt

assigns probability one to the rectangle {eagegﬁb, ebgsgga} where 0 < ea is the
lowest possible value of 6 and eb > Ga is the highest value of 6. Here €y is the
lowest possible value of ¢ while g, 1is the highest. (The reason for our
asymmetric notation will become eclear later.) We assume that F(®,e) is

absolutely continuous with respect to (8,e) at all points except at the point

(Ga,ea). We assume that the point {6a,ea} has positive probability:
Prob{ea,ea} > 0.

This is a condition borrowed from Mirman [16] and Mirman and Zilcha [18] that is
sufficient to bound the support of the stationary distribution of capital per man
strictly away from zero. Except at the point (ea,ea), F(0,c) is assumed to
possess a strictly positive and continuous probability density function.
Finally, we impose the following condition on u(e,s) and f(»): for any

function of K, g(K) with range [0,1],
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GKuce[f(K)ea-GE(K)-K,ea]
uc[f(K)ea]

(0) lim =0

k>0
where 1 > § > 0 is the fixed rate of physical depreciation. The reader can
verify that this condition is satisfied for, e.g., f(k) = & with ae(0,1) and
u(e,e) = €lne.

We assume that in a given period, all agents draw the same (et,gt).
Since all agents are assumed alike in the sense that they have the same utility
functions and have access to the same technology and market opportunities, we
shall assume that there is a single representative consumer who supplies one unit
of labor each period. The consumer views himself as a perfect competitor and
views economy-wide outcomes as independent of his own actions. This means that
we must distinguish between the economy-wide state, which the consumer takes as
given, and the consumer's own state variables, the evolution of some of which are
a matter of choice to the consumer. In equilibrium, the economy-wide state
variables equal the representative consumer's state variables, but the consumer
is assumed to ignore this.é/

The state of the economy at time t can be characterized by the values
of (Kt’et’et) where Kt is the economy-wide capital-labor ratio at the beginning
of period t, et is the random shock to productivity realized in period t, and €t
is the random shock to preferences realized in period t. The state of the
individual consumer at time t is characterized by his stock of capital at the

beginning of t, kt’ and also the same shocks &_ and et that affect all agents!

t
preferences and opportunities. The consumer's supply of labor is identically
one, so that kt also equals his capital-labor ratio. At the beginning of time t,
the consumer rents his capital kt to firms and receives during the period a

competitively determined rental Pis measured in output per unit of capital per

unit time. Capital depreciates at the fixed rate 8, so that at the end of period
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t, the firm returns only (1-6)1{t units of capital to the consumer. During period
t the consumer can buy or sell claims to existing capital to be carried into
period (t+1) at a competitively determined relative price pKt measured in units
of new output per unit of capital. According to one possible interpretation, the
relative price Pyt is precisely Tobin's g. During period t households also buy
newly produced output, consuming an amount cy and carrying an amount it into next
period as capital. The relative price of newly produced capital goods in terms
of consumption goods is unity. Finally, the consumer inelastically supplies one
unit of labor and is paid a competitively determined real wage Wy measured in

output per unit labor.

The consumer's problem is to maximize
o«
(n E z Btu(c €. ), 0<B8< 1
Ot_0 A A

where E0 is the mathematical expectation operator conditional on information

available at time 0, subject to the sequence of budget constraints for t=0, 1,

2’ L] L) L]
c, + D kd + i <w, +rk + (1-8)p,.k
t Kt™t t—"t £t Kt™t
k = kd +i,1i >0,¢ >0 kd >0
t+1 T ¢ B TE =7 g =Y Tp 2
where
§ = rate of depreciation of capital, 0 < § < 1,

ct = consumption per unit labor.

k] = amount of old capital held at end of period t.
it = amount of newly produced goods to be used as capital.
k, = amount of capital per unit of labor at beginning of period t.
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The consumer seeks to maximize (1) with respect to the choice of stochastic
processes for Cys it’ and kﬁ given the information he has at each period and
given the constraints that he faces. To make the consumer's problem well posed,
we suppose that the equilibrium relative prices in the system can be expressed as

continuous functions of the economy-wide state variables, so that
r, = r(Kt,Qt,et)

(2) Pyt = Pp(K18;.€,)
Wy = WK ,0p0ep).

We suppose that the functions are such that they yield positive values of wt, rt,
and Pt for all values of (K,9,e). We assume that the representative agent in
the economy knows the three functions listed in (2) and that at time t he knows

the values of et, €y and the economy-wide capital stock Kt' We also suppose

that Kt follows the law of motion

(3) K = h(Kt,e

£+1 1€ )

where h 1s a continuous function. We assume that this aggregate law of motion is
known to the representative agent and is perceived by the agent to be independent
of his own decisions. Let us denote the four functions in (2) and (3) as d.
For a given selection of the four functions in (2) and (3), the
household's problem is equivalent with finding an optimal wvalue function

J(k,e,e;K,¢) which solves the functional equation

(4) J(k, 0, e;K,p) = max {u(w(-)+r(-)k+(1-6)pK(.)k_pK(,)kd

d -i,E)
i>0, k>0

+ SJ'J(kd"'i} o' ’ g' ;h(K,e ,€),¢)dF(e ! € ')} .
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Here the functions w(e), r(s), and pK(-) have as arguments (K,0,c). For a given
selection of the functions in ¢, it is possible to prove that the functional
equation has a unique, continuous bounded solution J(k,e,s;K,¢).E/ The right

side of (4) can be shown to be uniquely attained by continuous functionsi/
c = c(k,8,e:3K,9)
. d . d
i+ k = i(k,0,e3K,9) + k (k,8,e3K,0).

It can also be proved that J(+) is strietly concave in k for fixed (0,e), and that
J has a continuous and bounded partial derivative with respect to k.§/
The first-order necessary conditions for the maximization problem on

the right side of (4) areZ/

(5) k% —u(e,e)pe(K,0,6) + ], (k%+1,0,6"50(K,0,€),)dF(0,e") < O,
=0irxdso0

(6) it -u(e,e) + Bf3, (k%+1,0%,¢";h(K,0,8),0)dF(8",e") < O,
=0 if 1 > 0.

The partial derivative of J(+) with respect to k can be calculated from (4) to

e/

(7) Jk(k,e,s;K,¢) = uc(C(k,e,e;K,¢),s)[r(K,e,e)+(1-6)pK(K,6,€)]-

Conditions (5) and (6) tell something about the sense in which there is

a "q theory" of investment in the present model. Use (7) to write (5) and (6) as
(8) -0 ey e )Pg(Kes0p06,) + Blugleg 158, )
[r(Ke, 198410800+ (1=0Dp(Re 4,8 qr e ) TR (B, 4o 1) 2 0,

_ . d
=0 if kt >0
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(9) -u(egep) + Bluglep 1h8,q)
Ir (K 198gp1r80a1 )+ (1=8)Pp (K 458 1oep )TAF(B, 1hep 1) 20y

Now in equilibrium, kg must exceed zero, so that (8) will be satisfied with
equality. It then follows that pK(K,e,e) < 1. The marginal condition (9) shows
that i, will be >0 only if Pt = pK(Kt,et,et) = 1. However, notice that the
marginal conditions (8) and (9) necessarily involve the agent's perceptions of
the distribution of one-period-ahead values of the ©rental r =

t+1

P(Kt+1’et+1’€t+1) and the relative price Prie1 pK(K In

t+1’et+1’€t+1)°
general, the agent's choice of it depends on all of the current state variables
that help determine the conditional distribution of future wvalues of Pg and r.
In a limited sense, the first-order conditions (8) and (9) do provide some
foundation for the "q theory" of investment demand. But it is really the
function pK(K,G,s), or put differently, Pg as a stochastic process, and not only
the currently realized value of Pry that influences investment at time t.

The marginal conditions (8) and (9) make it clear that some carefully
spelled out view about the stochastic processes (laws of motion) of Kt+1’ re1?
and Prtan must be attributed to agents in order for the decision problem to be

well specified. The restriction that we have imposed, that agents' perceptions

of those laws of motion are accurate, is the hypothesis of rational expectations.

We think of production as being determined by competitive firms which

rent capital and hire labor to maximize profits

T = ndf(k)e - w(')nd - r(*)k°nd



- 12 -

where f£(k) 1is output per man, k is the capital-labor ratio of the representative
firm, and nd is the employment level of the representative firm. The first-order

necessary conditions for a maximum of profits are
(k)6 = r(X,0,¢)
£(k)0 - kf'(k)6 = w(K,0,¢).

We can now give a definition of equilibrium.
Definition: An equilibrium is a five-tuple of functions r(X,9,¢),
pK(K,e,e), w(K,8,¢€), h(k,0,¢), and J(k,0,e;K,¢) such that—
i. The functional equation (4) is satisfied with the right-hand side
being attained by the continuous funetion i(k,0,e;K,d) +
k3(x,0,€5K,0).
ii. i(K,8,e5K,0) + k%(K,8,¢;5K,4) = h(K,0,¢).

iii. The marginal conditions for firms are satisfied with
f'(K)6 = r(K,0,c)
(K)o - Kf'(K)6 = w(Xk,0,e).

Condition (i) says that consumers are meximizing expected utility, given the
random processes they are facing, which includes the Markov process (law of
motion) for the economy-wide capital-labor ratio K. Condition (ii) says that the
consumer's perceptions of the law of motion for the aggregate K turn out to be
correct; that is, those perceptions are implied by the representative agent's
solution of the maximum problem on the right side of (4). Condition (iii) states
that firms are on their demand schedules for factors and that the factor markets

always clear.
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We shall follow Lucas and Prescott [14] by studying the equilibrium of
the model only indirectly by studying the planning problem that reproduces the
competitive equilibrium. In the next section we study the version of the Cass-
Koopmans planning model that is isomorphic with the market model of this section
and which generates as a shadow price for capital the correect function

pK(K,e,e)-

3. The Planning Model

The planning problem is to choose a contingency plan for It which

maximizes
v Lt
(10) E,) BulC_,e.)
Ot:O Ut
subject to
Ct + It < f(Kt)et
Ct > 0, It >0
where
Ct = consumption per man.
It = gross investment per man.
Kt = capital per man.

Solving the planning problem is equivalent with solving the following functional

equation in the optimum value function v(K,8,¢)

(11) v(K,0,¢g) = ?ag{u(f(K)e-I,e)+va((1-6)K+I,6',e')dF(e',e’)}.
>
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The solution v(K,6,e) gives the maximum value of (10) starting from state (K,6,e)
at time 0. Associated with the functional equation (10) is the operator T
defined by
(12) Ta(K,0,€) = max{u(f(K)0-I,e)+Bfa((1-8)K+I,0",e!)dF(0",e")}.

>0
Let L3+ be the space of bounded continuous functions mapping R3+ into the real
line. Then it is readily verified that T maps bounded functions into bounded
functions. Application of the "maximum theorem" of Berge [3, p. 215, 216] shows
that T maps continuous functions a into continuous functions Ta. Therefore, T is
an operator on the space of bounded continuous functions L3+, mapping bounded
continuous functions into bounded continuous functions.

3+

As a norm on L, take

lla=a || = sup la (K,8,e)-a,(K,0,¢)]
K,6,e

3+, a2€L3+' With this norm, the space (L3+,||-||) is complete, so that

where a1€L
the contraction mapping theorem is potentially applicable.g/
It can be verified that the operator T satisfies Blackwell's [5] pair
of sufficient conditions for T to be a contraction operator:
i. T is monotone, i.e., if a1(K,e,e) Z.aZ(K,S,e) for all (K,e,e)sR3+, then
Ta;(K,0,e) > Ta,(K,6,e) for all (K,0,e)eR>".
ii. For all constants y and all aeL3+, T(a+y) = Ta + By.
By virtue of Blackwell's [5] theorem 5, satisfaction of (i) and (ii)
implies that T is a contraction mapping. Therefore, application of the
10/

contraction mapping theorem proves:—

Proposition 1: The functional equation v(K,0,e) = Tv(K,8,e) has a
3+
3

unique continuous bounded solution v(K,8,¢). Furthermore, given any VosL

lim Tnv0 = v where the convergence is in the sup norm. This implies that the
oo

convergence is uniform.
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It is also possible to prove:

Proposition 2: The value function v(K,8,e) is strictly concave in K

for each fixed pair (8,¢).

This follows because T maps concave functions into striectly concave
functions.

We also have:

Proposition 3: The value function v(K,8,e) is uniquely attained by

the single-valued policy function I = I(K,6,¢). The funection I(K,8,e) is
continuous.

Uniqueness of the maximizing value of I is implied by the strict
concavity of u(*) in C and of v(¢) in K. Continuity of the policy function I(e)
is implied by the "maximum theorem" of Berge [5, p. 215-216].

Now choose vO(K,e,s) to be nondecreasing in K, strictly concave in K,
and continuously differentiable in K. Define vj+1(K,6,s) = ij(K,e,s). We shall
show that vj+1(K,e,e) is continuously differentiable in K for each fixed (0,¢),
provided that vj(K,e,e) is continuously differentiable in K for each fixed (9,¢).

Consider

(13) vI*1(K,0,e) = max {u(£(K)6-I9,e)+B/vI((1-8)K+IJ, 0", )dF(O e )}

IJZp
and assume that vJ(K,e,e) is nondecreasing in K, concave and continuously
differentiable in K for each fixed (8,e). The first-order necessary condition

for the maximum problem on the right-hand side isll/

(14) ~u_(£(K)e-17,6) + Bfvi((1-8)K+17,0%,e")aF(8",e") < 0,

=0 ir 19 > 0.
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Let IV = gJ(K,e,e) be the solution of (14) with equality replacing the
inequality, so that éJ(K,e,e) would be the optimal rate of investment given
terminal reward function vJ(e) if the inequality constraint IY > 0 were not

present. Then the optimum rate of investment IY implied by (1Y) is
19 = 19(%,8,¢) = max(0,g9(K,0,¢)).

That Ij(K,e,e) is continuous is implied by the maximum theorem of Berge. We
consider three sets for (K,0,e):
i. The set of (X,8,e) such that Ij > 0.
ii. The set of (K,8,e) such that IJ = 0 and g9(K,8,e) < O.
iii. Points (K,0,e) such that g3(K,8,¢) = O.

On the first set of points (K,8,e) such that 1J s 0, Benveniste and Scheinkman's

[2] theorem implies that vj+1(K,e,e) is differentiable in K with derivative given
by
(15) v (%,0,6) = u (£(K)O-II(K,0,€), ) [£1 (KID+(1-8)].

On the second set of points (K,9,c) such that IJ(K,e,e) = 0 and EJ(K,e,e) < 0,
IJ(K,e,e) is differentiable in K with derivative zero. Then direct calculations

on (13) show that vj+1(K,e,s) is differentiable with respect to K and that
(16) v§+1(K,9,e) = uc(f(K)e,e)f'(K)e
+ BUI=-8) [V (1-)K+II(K,0,¢), 67, €' )AF (6" e ).

Now consider the third set of points such that IJ(K,G,E) = 0 =
EJ(K,e,e). We shall initially assume that éJ(K,e,e) is decreasing in K in the
neighborhood of the point K in set (iii), so that the situation is as depicted in

Figure (3). We shall then indicate how to modify the argument to handle the
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possibility that éj(x,e,e) is constant, as in Figure (4 ), or increasing in X, as
in Figure (5) in the neighborhood of the point in set (iii). Now assuming that
gj(K,e,s) is decreasing in K in a neighborhood of K, notice that Ij(K,e,e) has a
right-hand derivative with respect to K equal to zero. The argument used for set
J+1

(ii) implies that vv (X,0,e) is differentiable from the right at points in set

(iii), with a right-hand derivative given by formula (16). We now undertake to
show that vj+1(K,6,e) is also differentiable from the left in set (iii) and that
the left-hand derivatj;ve is also given by (16).

First, note that in region (i) since Ij > 0, the first-order necessary

condition (14) holds with equality. Substituting (14) with equality into (15)

yields
(17) vk, 8,0 = uc(f(K)e—Ij(K,e, €), &)1 (K)B
+ B(1-6vag((1-8)K+Ij(K,e,e),e',e')dF(e',s').

Thus, (17) holds for sets (i) and (ii) and also gives the right-hand derivative
on set (iii). We wish to show that the left-hand derivative of vj+1(K,e,e)
exists at points in set (iii) and also equals (17). Let (K,0,¢e) be in set (iii),
and let A> 0. We know that vj+1(K,6,a) is continuous on the closed interval
[K-A,K] and is differentiable on the open interval (K-A,K), each point of which
has been assumed to be in set (i). By the mean value theorem for derivatives,

there exists a point £ belonging to the open interval (K-A,K) for which

VJ+1 (K, 6, €) - VJ+1 (K"A_Le, E) -
A =

i+ 1
v (E,0,e).

Taking the limit as A goes to zero proves that the left-hand derivative of

vJ+1(K,e,e) at (K,0,c) exists and equals the limit of the derivatives vé+1(£,6,s)

as E approaches K from the left. From (15) or (17), we know that this latter
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limit exists since the right-hand side of (15) or (17) is continuous in K.
Therefore, we have that the left-~hand derivative of vj+1(K,e,e) at K exists and
equals the right side of (17), as does the right-hand derivative. In summary, it
follows that for (K,0,e) in all three regions, the partial derivative of
vj+1(K,e,e) with respect to K exists and is given by (17).

Now if éj(K,G,s) had been assumed to be increasing in K in a neigh-
borhood of K in set (iii), &a symmetrical argument would establish that
vj+1(K,e,€) is differentiable with derivative obeying (17). The arguments used
above with respect to the left- and right-hand derivatives with respect to K
would simply have to be exchanged.

Next, if éj(K,e,e) is constant in K in a neighborhood of (X,8,c) in set
(iii), the same argument as used in region (ii) would apply.

Since the function Ij(K,e,e) is continuous and has a slope with respect
to K that is bounded from above and below (see Appendix B), it suffices to
consider the cases depicted in Figure 3.

This establishes:

Proposition 4: Choose vo(K,e,e)to be nondecreasing and concave in K

with bounded and continuous partial derivative in K. Generate the sequence
vj(K,e,e) = ijo(K,G,e). For all j > O, vj+1(K,e,e) is continuously differ-
entiable with respect to K with a partial derivative vg+1(K,e,e) satisfying
equation (17).

Equation (17) and the first-order necessary condition (14) imply the

inequality
(18) vI*(K,0,0) £ u_(F(K-TI(K,8,8),e) [£1 (KO +(1-8)]

= ir 19(x,0,¢) > O.
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In Appendix A, it is proved that IJ+1(K,e,s) > IJ(K,e,e) for all j > 0. Then
replacing IJ(K,e,e) with the (pointwise) 1limit function I(K,0,e) gives the

inequality
vit (K, 0,e) < u (FIK)B-I(K,0,¢),e) [£' (KIO+(1-8)].

This establishes that for each fixed (X, 6, ¢), vg+1(K,e,e) is a bounded sequence.

j+1
K

with the boundedness of vﬁ(K,e,e), this proves that the sequence vg(K,e,g)

In Appendix A, it is proved that vy (K, 9, €) Z_vg(K,e,e) for all jJ > 0. Together
converges pointwise to a limit funetion, call it ;K(K,e,s).

It is now our aim to establish that the limit funection ;K(K,e,e) is the
partial derivative with respect to K of the value function v(K,0,¢€). We shall
proceed by first restricting the domain along the K axis‘in a natural way, and
then by arguing that in this domain vg(K,e,e) converges uniformly to ;K(K,e,e).

In Appendix A, it is proved that there is an n > 0 such that for all
Ke(0,n] and for all (8,e), Ij(K,e,e) + (1-8)K > K for all j > 1. In particular,
for all Ke(0,n] and for all (6,e), I(K,0,e) + (1-8)K > K. It follows that if the
system starts out with any K > 0, eventually capital will have to remain forever
within the interval [n:f]. Here E is the "maximum sustainable capital stock"

that solves
f(K)eb = K.

The value K is the steady state capital stock associated with the policy of
consuming nothing and with always drawing the best technology shock eb. So X is

the stationary point of the difference equation

Ko = (1=8K, + £(K)8,, K, > 0.
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Qur assumptions about f(<¢) guarantee that this difference equation has a unique
stationary point.

From now on we shall assume that Ke[n,?ﬁ.

Now choose vO(K,e,s) = vg(K,G,g) = 0, and generate the sequence

vg(K,e,e) according to (17). We have

(19) v(K,0,€) = u_(£(K)8,e)E" (K)6

v2(K, 8, ¢) uc(f(K)e-I1(K,6,e),e)f'(K)

+ 8(1-6{fuc[f[(1-5)K+I1(K,6,e)]8',5']f'(K)6'dF(6',s').

Notice that since IJ(K,G,E:) > 13-1(K,e,s) (see Appendix 4), it follows that

on the domain [n,K], we have
(20) uc(f(K)G—Ij(K,S,e),s)f'(K)e
< uc(f(K)G-I(K,e, E:) s €)f' (K)G

< max  u (£(K)8-I(K,8,e),e)f'(K) = A< .

Xeln, K]
R
b’~a

We can continue the recursions (19) to get a series that can be written in the

form
(21) ve(K,8,€) = b (K,8,€) + hy(K,6,)+...+h_(K,6,¢)
where
hj(K,e,s) >0 for all j > 1
and where

hy (%, 8,0 < [8(1-817"a,
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That is, applying inequality (20) to (19), we have
1
VK(K7678) < A
vE(K, 6,6 < A{1+B(1-8)}

V(K,0,¢) < A{1+8(1-8)+8%(1-8)2}

. 3 .
vi(k,6,e) < &% [B(1-8)197".
j=0

It follows by the Weierstrass M-test (see Apostol [1, p. 223]) that the series
(21) converges uniformly. Therefore, vé(K,e,e) converges uniformly to
vK(K,e,e). So we have proved:

Proposition 5: Choose VO(K,e,e) = vg(K,e,e) = 0. Then vé(K,e,s)

exists for all j > 1. On the domain [ﬂ:i] the sequence of functions vg(K,G,E)
converges uniformly to a bounded and continuous function Gk(K,e,s).

Now choose vO(K,e,s) = vg(K,e,s) = 0, and generate vj(K,e,E) =
ijo(K,e,s) and vg(K,e,s) from (17). From the uniform convergence of vg(K,e,E)
to VK(K,G,S) on [TLE] we have (see Apostol [1, p. 238-239]),

Proposition 6: The value function v(K,9,€) is continuously differ-

entiable in K with vK(K,e,e) = Gk(K,e,s). The partial derivative obeys the

equation
(22) Ve (K,8,8) = uc(f(K)e-I(K, 9,8, (K)6

+ B(1-8) [v ((1-8)K+I(K, 0, €), 0", e*)dF (0", &').
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Proposition 6 implies that the first-order necessary condition for the
maximum problem on the right side of (1l1) is
(23) -u (£(K) 6-I, €) +8 [v ((1-8)K+I, ¢', ¢')dF(g', ') < O,
=0 if I > 0.

Proposition 6 implies that obvious candidates for the equilibrium

price functions r(X,9,«), pK(K,e,e), and w(K, 6, €) are

r(K, 6, &) f'(K)o

(24) w(K,0,e) = £(K)0 - KF'(K)©

(K, 8,8) = {uc(f(K)e.]:(K,e,s),s)}‘1
- B [vg((1-0)K+I(K, 8, €),07,e1)dF (0", e1),

It can be verified that with these price functions and with h(K,0,&) taken to be

given by
(25) h(K,6,e) = (1-8)K + I(X,9,¢)

the market model of Section 2 is in equilibrium with the representative
consumer's choice of i(k,9,e;K,0) + kd(k,e,s;K,¢) equaling I(K,0,e) + (1-8)K the
planner's capital accumulation plan, and with the representative consumer's
choice of consumption equaling f(K) & - I(K, 8 ). This can be verified by noting
first that with (24), firms' marginal conditions are satisfied. Second. note
that with (24), (25), and the proposed choices of i( ) + kd( ), the marginal
conditions for the representative agent in the market problem exactly match the
planner's marginal condition (23). For example, with the suggested substi-

tutions condition (9) becomes



- 23 -

~u (£(K,)8,~I(K,,0.,¢.),¢.)

+B [{u (£(x (I, ,,8

P TR L A PP TP PP

[0 (R, 1) 8y q# (1= 8)u  (F(Ry )8 4 -T(Ry 156 408, 1)s 6 +1)
BIvglUI=OR, 1 +T(R, 1y 8 108, 1)s 8upr up) F( G SOILISPR )

dF (e 0

41 t41)

with equality if I(Kt,et,et) > 0. But notice that from (22), the term in braces

simply equals VK(Kt+1’et+1’€t+1)° Therefore the above inequality becomes
-uc(f(Kt)et-I(Kt,Gt,et),st)
+B) V(K 108 g0 80, )OF(8 1,6 1) < 05 = 0 if I, > 0.

This is equivalent with (23), as claimed.

Martingale Properties

From (17) and the first-order necessary condition (23) we have

Vg (K ) & ) = Vg ((1- 5)K +I(Kt 17 t 1 t 1), AP t)

> [£1(R,)6,+(1-8)]1 Bfv, ((1-8)K K )

R )

)’ t+1’ t+1

with equality for I(Kt,et,et) > 0. Integrating both sides with respect to

dF(et,st) gives

B Jv((1-8)K,_+T(R 1,8, 1,5 _1), 85 & )AF(E,, &)

28] [£7 (k) 8+(1-8)] B[v ((1-OIK +I(K, , 0 8, 1)

&)s 8,108 9

AF(By g9 Bppq JAF (O, &)
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or
u (c(Kt,et,at) & )

(26) £ %1 oy 3 o (e(K, _

Pgi_q1 > Eyq LI(1-8)+81 (K }

where c(K, 6, ¢) = f(K)® - I(K, 6, €). Expression (26) shows that even adjusted for
"dividends" and time preference, the relative price of existing capital is not a
martingale, for essentially the same reason that the martingale property fails to
hold in the models of Lucas [11] and Danthine [7]: the presence of corners,
making (26) an inequality, and the presence of risk aversion, which is reflected
in the failure of ue( ) to be constant as a function of consumption. The same
message emphasized by Lucas and Danthine is ecarried by the present model:
failure of the relative price Py to be a martingale does not reflect on whether

or not markets are in equilibrium.

4, Sample Economies

The preceding section shows that aggregate investment It and the

relative price of existing capital Dgy can each be expressed as continuous

functions of the aggregate state (Kt’et’st)
Pry = PrlKerOpy8p)
I, = L(K,,0,,¢,).

It was shown that each of these functions reflects all of the parameters of the
economy. In particular, the forms of both pK(') and I(+) depend on (i) the form
of the utility function u(e,e), (ii) the form of the production function f(K)e,
and (iii) the nature of the distribution of random shocks F(et,et). Thus, while
the model can be seen to imply a pattern of covariation between It and Pri» the
nature of that covariation reflects consumers' preferences, technology, and the

probability distribution of the shocks 6 and .
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To make this point more formally, let
P(k'|K) = Prob{k__ <K' |k, =3
= Jﬂ dF(e’ 8)

A(KT,K)

where

ACK',K) = {(9,€):(1-8)K+I(K,©, e)<K' ],

Here the stochastic kernel P(K'lK) defines a first-order Markov process for

capital per man. Let
¥,(K) = Prob {KO_<_K}

be given. In Appendix C, it is proved that the Markov process for K possesses a

unique stationary distribution {(K) which is approached by iterations on
) - 1
Ve (KN = [P R At (K)

where ¢t+1(K') = Prob{Kt+1gK'}. The stationary distribution ¢£K) uniquely

solves
¥k = [pxrlR)ai(x).

The stationary distribution is approached for any initial distribution ¢O(K)
assigning positive probability to positive capital.

Since (£,8) is a serially independent process, it follows that (K,8,e)
are mutually independent contemporaneously. Therefore, the stationary moments

of Py and I can be calculated, for example, by
E(I-py) = [[pe(K,8,€)  I(K,0,¢)dF(8,e)ay(K)

B(pp) = [[p2(K,0,)dr(8,e)ab (k).
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It is then clear that, for example, the regression coefficient of I on Py» is in
general a function of all of the parameters in the model. Further, the strong
law of large numbers for Markov processes stated by Doob [8] tells us that sample

moments such as

=]

1 1 2 1 T
— Z I p y ™ p s ™ 2 p ’ etc.,
T'C:'l t Kt Tt:'] Kt T‘b=1 Kt

M

converge with probability one to the corresponding moments of the stationary
distribution EIpK, Epg, EpK, etec., respectively.

We carried out some calculations designed to illustrate how the
regression of I on Py depends on various parameters. We assumed that the

distributions of g and Gi were concentrated on two points with

Prob {86} = p,

=€ = (= =
Prob {®& 2} = 1-p; =0p,
PI‘Ob{E:E% = q,
Prob{e=e,} = 1-q, = q,

Pr'ob{ezei,E:ej} = P;d; i=1, 2; j=1, 2.

We specified a grid of admissible points along the capital-labor axis,
restricting the planner to choose among this finite set of feasible points, call

it X. The functional equation for the optimal value function is

27) V(Ka’ ei’ z-:j) = 1:1[123 {u(f‘(Ka) 8-I, ej)+B§..§v((1-6)Ka+I, es, em)psqm}
T+(1-8K_ &

where Kaef. Notice that next period's capital stoek I+(1-8 )Ka is required to
belong to the set K. The grid of feasible points X was chosen as follows. Where
the grid contains n points and ¥ was chosen as the highest capital-labor ratio in

the grid, we chose
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1oy d2.% .
Kn-j+1 = (1=-8) K J=1, eeey n

where z is a positive integer. Notice that the grid is chosen so that the "corner
points" (1-0)K are included. In practice, F and z were chosen so that the grid at
least covered the set of ergodic states for the capital-labor ratio.

We solved the functional equation (27) by in effect iterating on the "T
mapping" described in the discussion of Proposition 1. 1In practice we used an
algorithm described by Bertsekas [4, p. 237-241] to speed up the convergence. We
are constrained to consider variations in the investment rate of A where Ais the
distance between adjacent points in K. The necessary condition for the maximum
problem on the right side of (27) is that for T optimal

u(f‘(Ka) ei—I, ej) +B’§ iv((1-5)Ka+I, es, z-:m)psqm

2 £k )0 =(Ted), €)) +B E?ﬂv((1—6)Ka+(_'f+A), 85 &P

for all A >0 and for all I + A >0 or A > -1, where I + (1-5)Ka€f and
f + A +(1-—6)Ka€f. The optimizing I thus satisfies the condition that it is the
largest value of I for which

(28) u(r(k )8, -I, £)-u(£(K,)8;~(1+4), €5

B§ §(V((“5>Ka+I+A’ Ogs&p)=v((1-8)K_+I,6_,8 ))p_a_

A
for all admissible A > 0. For the smallest admissible A, we take the left side

of (28) as our estimate of uc(c,ej), while we take the right side as our estimate
of pK’-uc(c, g). We form our estimate of pK(Ka,ei,s J.) by dividing the latter by
the former. The optimum policy funection I(Ka, ei, SJ.) is obtained as a by=-product

of solving for the optimal value function.
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We generated the stochastic matrix associated with the Markov process

for K from

P, = Prob &, 17K th=Kj}

Prob {I(Kj, 8, E)+(1-6)Kj=Ki}

Z pa
sS,meS sm

where S = {(s,m):I(Kj,GS,Em)+(1-6)Kj=Ki}. An (nxn) stochastic matrix P with

elements Pij was formed, with n being the number of points in the set of

admissible capital stocks XK. Then the stationary distribution of K was deter-

mined by taking any column of ii%th (in the limit the columns of Pt are all the
- -

same, if P possesses a unique stationary distribution). For the stationary

distribution of Kt we denote
Prob {KtzKi} =Ty, KisE, iz, +.., n.

We calculated the population moments of I and Py from, e.g.,

n 2 2
EI(K,6,e) = ¥ ¥ T I(X ,6,,&. ), p.q.
h=1iz1j=1 2 1 37 B17]
n 2 2
EI(K, 8, &)*p (K, 0,¢) = % = DIk, e, sj)pK(Kh, Gi,sj)ﬂhpiqj-
h=1i=1j=1
Table 1
u(e) = e*ln ¢ § = .05
£(K) = x(+25) § = .95
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Economy 1 (64 points in K)
pP{6=.9} = .5, P{6=1.1} = .5

p{6=.9} = .75, p{6=1.1} = .25

cov(I,pK)
—Vaﬁ;{—- - 105798
cov(I,pK)
= 4213
V/var Ievar Pr
cov(I,pK)
W = .1123
Economy 2 (64 points in K)

P{6=.9} = .5, P{6=1.1} = .5

P{6=.93} = .5, p{e=1.1} = .75

cov(I,pK)
—_— = 8653
var py
cov(I,pK)
= .0934

V/'var' I.var pK

cov(I,pK)
—5ar T = -0101

Economy 3
p{6=.9} = .5, P{e=1.1} = .5
P{e=.9} = .5, P{e=1.1} = .5
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(32 states in K) (48 states in K) (64 states in K) (80 states in K)

cov(I,pK)

= 1.31913 2.1889 2.5057 2.7491

cov(I,pK)
Jwar I.var Py
cov(I,pK)
—ar T ° .0735 .0955 .0971 . 1007

Table 1 gives examples for an economy in which u(ec) = e€lnc and £(K) =
K'25, B = .95, and § = .05. The set K included sixty-four states, except where
otherwise noted. For the parameters of economy 3, we have calculated the sample
moments for alternative K's including 48, 64, and 80 states. These calculations
for increasingly fine grids on K are interesting if one views these finite
economies as approximations to the oontinuous-étate economy analyzed in previous
sections. From the behavior of these moments with increasingly fine grids, our
grids are evidently not yet fine enough to approximate the corresponding
continuous-state economies very well. An alternative way to view these calcula-
tions is not as giving approximations but exact evaluations of the population
moments of the indicated finite-state economies. The three economies are
identical except that they are characterized by different distributions of the
shock to preferences {e}. Notice the effects of alterations in the distribution

on the population values of the regression coefficient of I on Pgs given by

cov(I,pK)/var Pgs and on the correlation coefficient between I and Pgs given by

cov(I,PK)A/var I.var P+ The table illustrates how, in the jargon of macro-
economists, shifts in the distribution of the consumption function cannot be
expected to leave the regression of I on Pg unaltered. Figure 6 depiets the
population discrete density function giving the unique stationary distribution

associated with economy 3 with 64 states.



Figure 6

Stationary Distribution onK for Economy 3

K (1) (= capital/labor ratio in state 1) = 2.118238
K (64) = 4.7514702

1 I%
08 08
07 -.07
06 —.06
05~ -.05
04 .04
wb do
02 —.02
Ii ! ll
O z!al“lzu' T ‘aa"souL “as "@“'s!l 0
i
State II; State II; State II;
1 .000000 26 014426 51 004128
2 000000 27 019485 52 004685
3 .000001 28 032343 53 .001323
4 000002 29 024945 54 001244
5 .000003 30 030884 55 000386
6 .000009 31 043868 56 000338
7 000012 32 039169 57 000103
8 000034 33 035644 38 .000086
9 000047 34 058756 59 000048
10 000134 35 076250 60 000012
11 000184 36 059213 61 000003
12 .000185 37 048279 62 000001
13 000327 38 049524 63 .000000
14 .000693 39 068342 64 000000
15 000680 40 054608
16 .001093 41 056144
17 002452 42 044587
18 002349 43 037053
19 .003157 44 029894
20 004323 45 .02790%9
21 004464 46 024824
22 006848 47 022069
23 008950 48 012234
24 .012308 19 008601
25 012164 50 008171
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These examples illustrate how in such an economy, the regression of
investment on Pr does not recover the law governing the demand to accumulate
capital. The problem is not a failure to correct for simultaneous equation bias,
say by using instrumental variables, nor is it a failure to include enough lagged
values of q. In these economies it would be impossible to recover a structural
investment schedule by pursuing such modifications.

It is straightforward to describe econometric procedures that would
permit recovery of the economy's structural parameters from time series data on
Vo Kt’ and Pgi It would be necessary to specify functional forms for ule, g)
and £(K) 6, as well as a form for the distribution F(6,e). Then for each point in
the space of parameters determining B, &, u(-,*), £( ), and F( , ), there is a
unique pair of functions I(K,®,t) and pK(K,G,E). The likelihood function of a
vector of time series on (yt,Kt;pKt) can then be characterized as a function of
the free parameters of {B, 8, u(-,*), £(-), and F(+,+)}. The method of maximum
likelihood could then be used to estimate the structural parameters of the
economy. As of now, such procedures would be very expensive even for the very
simple economy that we have described. They would be prohibitively expensive for
any "realistic" model.

Of course, in our sample economies the least squares regression of I on
Py is predicted to remain the same so long as the distributions of all shocks
remain unaltered. It is possible to construct examples, as we have in Table 1,
in which Pg explains a large part of the variation in investment. But one wants a
structural model of investment in order to be able to analyze interventions in
the forms of alterations in certain random processes, in particular, in processes
describing various aspects of fiscal policy. It is for analyzing such policy
changes that our analysis suggests that it will be inadequate to rely on the

maintenance of historical patterns between I and Pg+
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5. Concluding Remarks

The following two features of our model deserve brief discussion:
first, whenever Py is less than unity, the aggregate rate of investment is zero;
and second, it is impossible for Py ever to be above unity. It is easy to
conceive of variations on the present model in which aggregate investment is
positive even when an aggregate index corresponding to pK is less than unity.
For example, consider a model with two goods, x and y, both of which are consumed
while good y can also be used to augment the capital stock of industries x and Ve
Assume that new output of y can be costlessly allocated across consumption,
investment in industry x, or investment in industry y. But once in place,
capital in industries x and y cannot be consumed. This setup will give rise to
two distinet prices of existing capital in industries x and Y, say, Pp, and pKy’
respectively, relative to newly produced capital. Investment in industry x will
be positive only if Prx is unity, and investment in industry y will be positive
only if pKy is unity. But aggregate investment can be positive when an aggregate
index of the price of existing capital relative to newly produced capital is less
than equity. Conceptually, analysis of such a model is no more complicated than
the one-sector model studied in this paper; it is only much more cumbersome
notationally.

The second peculiarity of our model, the inability of pK to rise above
unity, stems from the asymmetry in the "friection" that we have posited. That is,
the technological rigidity that we have posited impedes rapid decreases in the
capital stock, but not increases. It remains to be seen what would be the
implications of general equilibrium versions of the cost-of-change model of
Lucas [12], Gould {10], and Treadway [23] which posit more or less symmetrical

costs of adjustment.
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There is little reason to believe that modifications along either of
these lines would alter the basic message of this paper: that the same
"frictions" or "adjustment costs" that make it possible for Py or q to diverge
from unity also establish a presumption that agents' investment decisions at time

t are not expressible in any simple way as a function of Pgi*
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Appendix A

Properties of vj(K,e,E) and Ij(K,e,E) Sequences

We consider a sequence of n+1 period problems, n=0, 1, 2, ..., With

value functions satisfying

n+1 o ot
v (X,8,8) = max E, 8 u(Ct,E )

t=0 t

where the maximization is subject to

Ct + It < f(Kt)et

Kt+1 = (1-5)Kt + It'

n+1

The sequence v = (K,9,e) is generated by iterating on vO(K,e,s) =0 with T

defined by equation (12), i.e.,

(A1) ¥k, e,¢)

max{u(£(K)6-I,&)+B[v*((1-8)K+I,0,et)dF(6",e")]}
I>0

or

Pk, 0,e) = TvR(K,8,e) = TP WO(k, 8, ¢).

The right-hand side of (A1) is uniquely attained by the poliey function I =
1?(K,0,¢), so that I"(K, 6 ¢ is the optimal first-period choice of investment for
the (n+1) period problem. It is known that as n—-® , In(K,e,s) converges point-
wise to I(K,0, ), where recall that I(X,8,e) is the optimal investment policy

function for the infinite horizon problem.
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We can now prove:

Proposition A1: For all n > 1 and all (X,9,s),

1™(K,0,¢) > I" (K, 8, ¢)

vp(K,8,0) » vET(k,6,6).
Proof: Starting with n = 0 and VO(K,G,e) = 0, we have

v1(K,e,€) = max {u(f(K)e-IO,e)} = u(f(X) o, ¢)

1%0

where IO(K,e,e) = 0 attains v1(K,9,8). Further, we have

(42)

v;{(K, 8 €) = u (£(K) 8, )£ (K) 6.

For n = 1, we have

(K, 8 &) = max fu(£(R) 61", 9+ Bfa(r[(1-8)+I'] @, e)aF( @, e1)].

1129

Further, we have from (17)

(A3)

Since I1(K,9,s) >0 = IO(K, 8 8, and since ue(f(K)e-I(K,e,a),e) is increasing in

I, it follows that, comparing expressions (A2) and (A3) for vé and VE, we have

(K, 0, &) = u_(F(K)e-I'(K,0,e),€)¢" (K)8

+ B(1-8) [vp ((1-8)R+I' (K, 8, ), 01, €")aF (0", e1).

VE(K,G,S)‘Z v;(K,e,a).
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Now consider the first-order necessary condition for the Jj+1 period problem:
(a4) u (£(K)8-I7, €) > Bfvy((1-8)R+I7,07,e")dF(q",e")
= ir 19 > o.

Since the right-hand side is decreasing in 19 and the left-hand side is
inereasing in IY, it follows that if vé(K,e,s) > v§'1(K,e,s), then IV(K,0,e) >
13-1(K,e,e). (Refer to Figure (A1) where we have graphed the situation off

rners where v& | > vB2 )
co re vy > Vg -

Now assume that v§'1 (K,9,8) > vﬁ"z(K,e,s) and that as a consequence

-1 (K,0,8) > In-Z(K,e,E). Then we have that
vK,8,¢) = u (£(K)8-I"71(K,8,¢),6) 1 (K)O
+ B(1-6)[vE 1 ((1-8)K+1"7"(K,0,8),07,e )aF (6", e 1)
> uc(f(K)e-In"z(K,G,e),s)f'(K)e

+ BUID R 2 ((1-6)K+T"72(K,0,6),87, 6 )AF (61, 1)

v§-1 (K,9,¢)

where the middle inequality follows because u, is increasing in I and In_a(K,e,s)
< -1 (K,0,e) and from Figure (A1). So we have VE(K,G ) > v§-1 (K,9,8). But
from the first-order necessary condition (A4) or Figure A1, we have that
VE(K,G,E) > vE-1(K,9, €) implies IE(K, 88 > 12_1(1{,9 ,£). So we have proved that
it v, 69 > V2K, 8 9, then vX(K,8,6) > vi (K,8,&) and I%(K,0,8) »
In"‘I (K, 8 &). Since we have proved that vi(K,e,s) > v;{(K,e,e), by induction it
follows that VE(K,G,s) > V§-1 (K,8,e) and that In(K,e,s) > In-1(K,e,e) for all

n>1t.



u(f(K)6—1 ¢)

B/VE Y (1—-3)K+1, ¢, ¢')dF

BSVE A (1—-8)K+L, ¢, ¢')dF

Figure Al

Determination of Investment in Finite-Horizon Problems
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We now consider the two-period problem, which we have seen is

assoclated with the functional equation

v2(K,e,e) = max {u(f(K)e-I1,€)+Bfu[f[(1-5)K+I1]9',5']dF(9',8')}-
1
I'>0

The first-order necessary condition for the problem on the right-hand side is

(45) U (F(R) 611, @) »8 Ju (£1(1- OK+I'T 67, e £ [(1-8)K+IJo1dF(o?, &)

= if I1 > 0.

Recall that ea is the minimum possible value of 9, and that Ea is the maximum
possible value of £, and that we have assumed that the point (ea,sa) is assigned

positive probability by F(.,.). Then (A5) implies

(6) u () 8,-T (K, 8,6, 6)
2 Bu {FIC1-OKI(K, 6, 6178, e} £ [(1-6)k+T (K, 0_,¢ )] -
6, Proble_,¢e,).

We are now in a position to prove the following:

Proposition A2: There is a M > 0 such that for all K such that

1 1
0<K<mn b (K,ea,sa) = (1-8)K+I (K,ea,ea) > K.
Proof: If there were no suchm > 0, then we could find a sequence {Kn}
. . 1 :
decreasing to zero with Kn+1 = b (Kn,ea,aa) < Kn‘ We shall assume that such a
sequence can be found, and show that the assumption leads to a contradiction.

Letting {Kn} be the sequence in question, we note that I1(anea’sa) 5_6Kn by

assumption. Inequality (A6) implies
1
ue(f(Kn)ea-I (Kn’%a’ga)’%a)

> Bag (R, )0, ) +£1(K, )8 “Prob(6_,c_)

n+1
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or

1
uc(f(Kn+1)ea’€a)

> Bf' (K )6, -Proble_,e ).

n+1
. 1 . .

Since u, < 0andI (Kn,ea,ea) 5.6Kn, and since by assumption f(Kn+1) g_f(Kn), we

have uc[f(Kn)Ga-éKn,ga] > uc[f(Kn)ea-I(Kn,ea,aa),€a] and uc[f(Kn)ea,ea] <

uc[f(Kn)ea,sa]. Combining these with the above inequality gives

uc[f(Kn)G a'6 Kn9 Ea]
uc[f(Kn)Ga,sa]

(AT) > Bf'(K )e_-Prob(e_,e ).

By Taylor's theorem, there exists a § €0,1] such that the left-hand side of (A7)

can be expressed as

uc[f(Kn)ea, e,] -BKnuec[f(Kn) e-‘énSKn, e ]
u [£(K_)0_,e_] )
[¢] n a’ a

Then by property (0) assumed for u(.,.) and f(.), it follows that the limit as
Kn 1 0 of the left-hand side of (A7) is unity. But the limit of the right-hand
side as Kn § 0 is plus infinity. Therefore, we have been led into a contra-
diction. This proves the proposition.

Taken together, propositions A1 and A2 imply:

Proposition A3: There is a 1> 0 such that for all K such that

0< K< b(K,ea,ea) = (1-8)K + I(K,9 &) > K. Further, since I(K, 6, £) is non-
decreasing in © and nonincreasing in e it follows that b(XK,8,g) = (1-8)X +
I(K,6,g) > K for K such that 0 < K < Mand all (8,¢).

Propositions A2 and A3 and their proofs are relatively straightforward

modifications of theorems and proofs in Mirman [16].
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Appendix B

Restrictions on 'Slopes’

The evolution of the aggregate capital stock is governed by the

stochastic difference equation
= - = 8, .8 ).
Kt+1 (1 6)Kt + I(Kt,et,st) b(Kt’ £? t)

In studying the "stability"™ of this difference equation, we will need some
information about the slopes of b with respect to K, €, and & The following

argument is taken from Lucas.lg/ Rewrite the functional equation (11) as

(B1) v(K,9,¢g) = max {u[(1-5)K+f(K)9-Y,€]+BIV(Y;9',5')dF(9',5')}
y>(1=-8)K

where the right-hand side is uniquely attained by
vy = b(K,6,¢e) = I(K,0,€) + (1-8)K.

Let us choose VO(K,G,E) to be continuous, bounded, strictly concave, and twice
differentiable in K. Then it follows that for all j > 1, vI(K,8,¢) = T9vO(X, 6, €)
is twice differentiable in K (almost everywhere). This property is useful in
establishing restrictions on the "slopes" of b(K,§,«). To establish this
property, assume that vj(K,G,e) is almost everywhere twice differentiable in K.
Let bj(K,e,E) attain vj+1(K,9,e). Then off corners, the first-order necessary
conditions for the maximization of gl[(1-6)K+f(K)e-y,e]+Eﬂ}j(y,9',8')dF(9',a')}
are satisfied with equality. Differentiating the first-order condition shows
that off corners, bj(K,e,e) is differentiable with
B J ucc°[(1-5)+f'(K)9]

(B2) _ : .
ﬁ_— ucc+ BIVI%K(Y’ e', el)dF( e" E')
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J J u
(B3) gﬁ = §Z - T <0
ucc+aijK(y,e',e')dF<e',e')
J J u_ f£(K)
(BU) oI - =) - __¢cc > 0

0 [=13] ucc+ BIVéK(y’ o', e")dr( e, &)

Also, notice that since cj(K,e,a) = f(KXi-Ij(K,e,e) and since ®Y/236 = a1d/ 3¢, we

have

afhﬁgf,e) R - Ebj(gifze)

f(K)BIVgK(y,G',e')dF(e',s') .
= . > °
ucc+BIvéK(y’e"8')dF(9':5')

The terms jng(y,e',E')dF(e',E') are well defined by the assumed (almost
everywhere) twice differentiability of vj and the assumption that F(0,¢) has a
continuous density function and so assigns zero probability to points where
vI(K,6,6) is not twice differentiable.  Where bI(K,0,€) = (1-8)K and
éd(K,e,e) < 0 (i.e., in our region ii), bj(K,e,E) is differentiable with dbJ/3K =

(1=8), /2 = »I/39 = 0. In region (iii), which is a set of Lebesque measure

zero, bj(K,e,e) is not differentiable. Now write (17) as
j+1(K 0,e) = J '
g (K,9,8) = u (£(K)e+(1-8)K~b"(K,0,¢e),e) ' (K)o
+ B(1-6) [vl(bI(K,6,¢),0",e1)aF (0", €7).
Differentiating with respect to K gives
vk, 6,6) = u_ £1(R)BLE(K)6+(1-8)-bI(K, 0, £)]
KK ?T T~ “ee Krr T

+ 8(1-5)j§§K(bj(K,e,a),6',s')dF(e',8')~bg(K,e,s) + u £ (R)6.
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Since the right-hand side exists almost everywhere, so does the left. So we have
established that if vj(K,e,s) is twice differentiable (a.e.) in K, then so is
vj+1(K,e,s). It follows that iterating with T on a vO(K, 6 € that is continuous,
bounded, strictly concave, and twice differentiable in K gives rise to a sequence
bj(K,e,a) of approximate policy functions, each member of which satisfies (B2,
B3, BU4) off corners.

Notice that where vi: (K,9,¢) is attained with bI(K,0,e) > (1-8)K so

KK
that B2-BY apply, we have

vk, 0,6 = u_£11 (K9

KK
u
+u £1(K)O [£1(K)O+(1-8)- c¢ ((1=8)+F1(K)0)]
ucc+BIv§KdF(8',E')
. u
+ B(1-8) [vd_dF(er,er)- Ao ((1-8) + £1(X)8)
KK
ucc+8fvéKdF(9',s')

or

Bfviedr (o, e)

VgE'I(K’ e, €) = .[(1_6)+f'(K)e]2 + ucf"(K) e.

- u
J ce
ucc+BJ}KKdF(9',s')

It follows that off corners

(B5) VgE1(K,9,E) > ucc’[(1—6)+fv(K)G]2 + ucf"(K)e.
"On corners," i.e., when VJ+1(K,9,E) is attained where bj(K,e,e) = (1-8)K, we
KK
have
j+1 2
(B6) ex K28 = u - [£7(K)6]% + u £rH(R) 0

+ 5(1-5)2jng((1-6 )K, 8', &' )dF( @', ¢').
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Evidently, (B5) and (B6) imply that JbgK(bj(K,e,s),e',s')dF(e',a) is uniformly
(in j and K) bounded in absolute value on the compact interval [Ke,Ku], where
Ku > Ke > 0.

The boundedness of‘rngdF(e',s') together with (B2), (B3), and (Bl)
imply that off corners for K in the compact interval [Ke,Ku], Ku > Ke > 0, the
derivatives 3bj/aK, Bbjlae, abj/ae remain uniformly strictly bounded away from
zero in the directions given by (B2)-(BY).

The differentiability of bj(K,e,e) does not necessarily carry-over to
the pointwise limit function b(K,6,¢). However, the restrictions that the
derivatives in (B2)-(B4) impose on the finite differences of bj(K,e,e) do carry

over to b(+, -, <). In particular, we have that off corners

b(Kz,e,s) - b(K1,9,e)_2 a1(K2—K1), @, >0

1

K1’ K2€[Ke’Ku]

b(K,Gz,s) - b(K,e1,a) 5-°é(92'e1)

o, < 0

2

b(k, 8, ¢,) - b(K,®, &) ga3(€2-€1), o 0.

3 >
We also need to evaluate

% u (£(K) &I(K,8,¢), o).

On corners, this total derivative equals Uy e > 0. Proceeding formally, we have

that off corners

d ) 3T
E uc(f(K)e—I(K,G,a),s) = —ucc —& + uce

UQEBIYKK(V’ e'ya')dF(e',E') 0
= > U,
ucc+BIﬁ§§(y,e',e')dF(e',e')
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It is to be understood that &[/3s exists only almost everywhere. (To be
rigorous, we should derive the inequality in terms of the jth iterates on the

policy and value function, and then proceed to the limit as above.)
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Appendix C

The Configuration of Fixed Points

This appendix is meant to be read alongside a copy of Mirman [16] or

Brock and Mirman [6]. Consider the nonstochastic difference equations

K b(K,,8,,¢e) = I(K.,0,,¢) + (1=K,

t+1

K

b(K,,8,,¢.) T(K.,0,,8) + (1-9)K, .

t+1

Let Ka be a stationary point of the first difference equation. Let Kb be a
stationary point of the second difference equation. Brock and Mirman say that

the model has a "stable configuration" of fixed points if it is true that Kb > Ka'
This means that the b(K, 6, €) functions at worst "look like" those in Figure C1.

We first prove two lemmas that imply that the model has a "stable®
configuration of fixed points. The lemmas afe the counterparts of important
results of Brock and Mirman [6], modified as necessitated by the presence of the
"corner" in our problem. The proof of lemma 1 essentially is identieal with
Brock and Mirman's proof, but the presence of "corners" means that their proof of
lemma 2 cannot be used here.

Lemma 1: At a fixed point Ka = b(Ka’ea’E%) the following inequality is

satisfied:
(c1) 1 - B(1=8) < Bf'(Ka)E(e').

Our proof parallels Brock and Mirman, since the "eorner" in our problem turns out

never to be a consideration at (Ka,e,e).
Proof: Let K, satisfy K, = b(Ka’ea’Ea) = (1_6)Ka + I(Ka’ea’sa)' The

first-order necessary condition at Ka is

u (£(K )0, -8K ;) = Bfvi(K_,0",e")dF(e", e").



(K. 9,¢)

b(Kv ebv eb)

b(K, 6,, €,)
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Ka Kb K
v Figure C1

Stable Configuration of Fixed Points
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But since b(K, 6, ¢) is nondecreasing in ¢ and noninecreasing in g, it follows that
I(Ka,e’,s') >98 Ka > 0 for all (©',e'). That is, starting from Ka’ we will always
have an interior solution for I for all values of (6',e'). Therefore, at Ka (18)

must hold with equality for j=5® s SO that we have
uo(f(Ka)Ga—éKa,sa)
= efuc(f(Ka) ev_I(Ka, Bt,er), er)[r? (Ka) Br+(1-8)]dF (o, er).

Since uc(f(Ka)G' - I(Ka, ¢, ¢'),e") is increasing in €' and decreasing in §' (see

Appendix B for the argument with respect to e'), it follows that
ue(f(Ka)ea-éKa,sa)
< Blu (F(R)O,-8K , e ) [£1(K,)6'+(1-8)]dF (0", er).
This implies the inequality

1< BJIET(R )O1+(1-8)]aF(0r, er)

or
(c1) 1 - B(1-98) < Bf'(Ka)E(e').

Lemma 2: At a fixed point Kb = b(Kb,eb,Eb) the following inequality is
satisfied:
(c2) 1 - B(1=8) > Bf'(Kb)E(e').

Proof: Let Kb be a fixed point of b(Kb,Gb,ab), i.e., Kb satisfies Kb =

b(K,,8,¢). First, notice that (22) implies that
fog (K, 07, e)aF (0", €)= fu [£(K,)Or-I(K,, 0", e"), S'1£1(K,) O1dF (@', &)

+ B('I—S)IIVK[(1—5)Kb+I(Kb,e',E ')39"78"] dF(e",e")dF(G',e').
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In the second term on the right, replacing (9',&') with (Gb,eb) causes

I(Kb,e',e') to increase to 5Kb and causes Vg to fall, since v is concave in K,

implying
oy (Bps8'eM)aF(er,e") > [u [£(K)O'-I(K ,8%,¢"),e" 151 (K, )OTAF (6", e")
+ 5(1-5)jij[Kb,e",s"]dF(e",e")dF(e',ev)
or
Jrg(®y,01,e)aF (07, e1) > [u [£(K,)0'-T(K,,0%,e"), £ (K )0aF(6", &)
+ B(1-6)ij[Kb,e",s"]dF(en,sn)
or
{1-B(1-8)}[vy (k. , 07, e )dF (8", &)
> juc[f(Kb)e'-I(Kb,e',e'),sf]f'er)eadF(e',s')
or
(c3) JVg(K, .0, e")dF (e, e")

__.L_ 1 Yoy 1] £1 t
> ToRIo8y Yo LE (K ) OT-TI(K, ,8%,e 1) e 1] £1 (K, )6 aF (8", e ).,
Now at (Kb,eb,eb), the first-order necessary condition is
uc[f(Kb)eb—éKb,sb] = BI&K(Kb,s',e')dF(e',s').
By virtue of inequality (C3), it follows that
uc[f(Kb)eb-axb,eb]

z 1-B(i-5)jhc[f(Kb)9"I(Kb’e':8'),5']f'(Kb)G'dF(e',s'),
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Since u, is increasing in e and decreasing in 0 (see Appendix B for the proof for

e), we have

u [£(K, )8, ~8K, .1 > T:E%%:gjfuc[f(Kb)eb-éKb,sb]f'(Kb)e'dF(G*,s')
or
(c2) 1 - B(1-8) > BF'(K IE(8"). g.e.d.

We can now prove the following:

Proposition C1: If K, is a fixed point of b(Kb,Gb,€b) and K, is a

fixed point of b(Ka,ea,Ea), then Ka < Kb'

Proof: Suppose to the contrary that Ka E-Kb' Then, since f"(") < 0, a
contradition is implied by inequalities (C1) and (C2). This proves the

proposition.
Proposition C1 implies that the maximal fixed point K_ of b(K_,8_,€.)

is strictly less than the minimal fixed point K. of b(K This fact in

b IR

conjunction with the results in Mirman [16, Section 3] are sufficient to imply:

Proposition C2: The stochastic difference equation Kt+1 = b(Kt,et,st)

generates a Markov process for {Kt} with stochastie kernel P(K'lK) =
Prob{Kt+15K'|Kt=K} and with a unique stationary distribution §(K) = Prob{KtSKl}.

The stationary distribution is approached by iterations on
¥ &N = P& K)AY, (1), t=1,2,...

where 1%+1(K') = Prob(Kt+15K'), starting from any initial distribution ¢0(K)

that assigns positive probability to positive capital stocks. Further, V¥ (K)

assigns probability one to the interval Eé, Eb'
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Footnotes

l/The eurves b(K,Ga,ea) and b(K,Sb,eb) do not necessarily intersect

the 45-degree line in the fashion depicted in Figure 1 (see Brock and Mirman
[61). Each curve can intersect the 45-degee line a number of times. But it can
be proved (see Appendix C) that the configuration of fixed points is stable in
the sense of Brock and Mirman, which implies that in the stochastic stationary
state the model does settle down to an interval (Ka,Kb) like that depicted in

Figure 1. So our Figure 1 in general is an accurate description of the behavior
of the system on [Ka,Kb], but is not totally general outside that range.

g/For example, if Kt = K' in Figure 1, then for any (g, ¢) pair such that
B8 < 8" and > ¢', b(K',96,¢8) = (1-8)K.

/ . . . R
3 Lucas uses a single representative consumer in exactly this way

[11]'
E/The proof of this proposition exactly parallels Lucas's [11]
analogous proposition and will be omitted.
i/The proof parallels Luecas' [11]. Only the sum i + kd is determined
as a continuous function of the state variables k, 6, £, K. This is because when

pK(K,e,a) = 1, the agent is indifferent as to the breakdown of i + kd between i
d
and k.

é-/'I'he concavity of J(-) in k can be proved as in Luecas [11]. The
differentiability of J(-) can be proved by following an argument analogous to the
one used below in Section 3 to prove differentiability of v( ) with respect to K.

Z-/The condition that uo(O,E) =® rules out the possibility of corner
solutions with ¢ = 0.

§-/Calculat,ed using the methods in Section 3 below.

Q/See Naylor and Sell [17].

lQ/Propositions 1, 2, and 3 and their proofs mimie analogous
propositions in Lucas [11] and Lucas and Prescott [13, 14]. For this reason, we
only sketch the proofs.

ll/Again, corner solutions with ¢ = 0 are ruled out by the assumed form
of the utility function.

i-?=-/F‘r'om lectures in his Economies 337 class.



