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Notes on Difference Equations and Lag Operators

The backward shift or lag operator is defined by

(1) L X =X forn = ... -2,-1,0,1,2,...

Multiplying a variable Xt by L" thus gives the value of X shifted back
n periods. Notice that if n < 0 in (1), the effect of multiplying Xt by
. is to shift X forward in time by (-n) periods.

We shall consider polynomials in the lag operator

a. +a, L+a, L + ...

A(L) = a5 + a; 2

"
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rooa, LJ,
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j=0
where the aj's are constants and LO = 1. Multiplying Xt by A(L) vields

a moving gum of X's:

2
A(L) Xt = (a0+alL+a2L +...) Xt

It is generally convenient to work with polynomials A(L) that
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are "rational,'" meaning that they can be expressed as the ratio of two

(finite order) polynomials in L:

{ aw) = 2



where

B(L) =
i

I~ 2

b, ), o) =

C. LJ where
0 - i J

=1 3

0

the bj;s and Cj's are constant. Assuming that A(L) is rational amounts

to imposing a more economical and restrictive parameterization on the aj's.
To take the simplest example of a rational polynomial in L,

consider
(2) ALY = T -

For the scalar ’C| < 1, we know that

1 2
To=l4+Cc+C 4L,
(3) g l1+Cc+C

This suggests treating AL of (2) exactly like the C of (3) to get

2 .2
(4) —— =1+ )L+ L™+ ...,

"useful" so long as |x| < 1. To

an expansion which is sometimes only
prove that the equality (4) is true, multiply both sides of (4) by

(1-1L) to obtain

i:;% =1 = auuh i) -oraeranie. ) = 1,

which holds for any value of X, not just values of ) obeying || < 1.
The reason that sometimes we say that (4) is "useful" only if [a] < 1

derives from the following argument. We intend often to multiply

1/(1-2L) by X, to obtain the infinite moving sum

(5) —x 2

i

(1-!-}\L+)\2L +...) Xt




Consider this sum for a path of X which is constant over time, so that

Xt . = X for all i and all t. Then the sum of (5) becomes

The sum ¥ A equals (1/(1-))) if || < 1.
i=0

But if || >1 that sum is unbounded, being + « if A > 1. We will sometimes
(though not always) be applying the polynomial in the lag operator (4)

in situations in which it is appropriate to go infinitely far back in

time; and we sometimes find it necessary to insist that in such cases the
infinite sum in (5) exist where X has been constant through time. This

i{s what leads to the requirement sometimes imposed that [i] < 1 in (4).

As we shall see, however, In standard analyses of difference equaticns, which

take the starting point of all processes as some point only finitely far
back into the past, the requirement that |A| <1 need not be imposed in (4).
It is useful to note that there is an alternative expansicn for

the "seometric” polynomial 1/(1-AL). For notice that

_ 1
1 AL
(6) 1-AL 1 -1
1- = 1
A
_ -1 1. -1 1,2 -2
T L+ L+ ML+ )
-1 -1 1.2 -2 1,3 -3
=, L (A) L (A) L .y

an expansion which is especially "useful" where |3 > 1, i.e., where

[l/x} < 1. So (6) implies that

o0 e T



ao l '
= % (;)1 X
i=1

t+i’

which shows (1/(1-3L)) X, to be a geometrically declining welghted
sum of future values of X. Notice that for this infinite sum to be

finite for a constant time path Xt+ = X for all i and t, the series

i

must be convergent, which requires that !%ﬁ < 1.

To illustrate how polynomials in the lag operator can be

manipulated, consider the difference equation

(7) Y =AY, +bX +a t = -,...,0,1,2,..

where Xt is an exogenous variable and Yt is an endogenous variable.

Write the above equation as
1-3L) Y =a+b X .
( ) t t

Dividing both sides of the equation by (1-AL) gives

_ a b
e T1or tomor fe
= 2 i
(8) Y= 35 4 1o x
i=0
since a/{l1-AL) = % 2" a=a % A" = a/(1-)) provided A} < 1. so
i=0 i=0

the first-order difference equation (7) and the geometric distributed
lag equation (8) are equivalent. Equation (8) can be regarded as the
"solution” to (7), since it describes the entire path of Y associated with

a gilven time path for X. Notice that for the Yt defined by (8) to be




.. i . . :
finite, ) Xt—i must be "small" for large i, More precisely, we require

(9) Iim
n»o i

= 0, for all t.

= 8
e
<

t~1
n

For the case of X constant for all time, Xt—i = X all i and t, this

condition becomes

_)\n
lim X 1 - o,
n-+0
which requires || < 1. Notice also that the infinite sum a ¢ i* in
i=0

(8) is finite only if JA| < 1, in which case it equais a/(1-3), or if
a4 = 0, 1n which case it equals zero regardless of the value of . We
tentatively assume that |A| < 1.

For analyzing difference equations with arbitrary initial

conditions given, it is convenient to rewrite (8) for t > 0 as

t-1 = -1
Yt=a,)\+a2)\+bFAXt_i
i=0 i=t i=0
X 4
+b 5 AT X

. t-1
1=t
t t-1
a{l-1") ax i
1=y Ty tb Lo Xy
i=0
+b2" ¢ atx
) 0-1
i=0
t t-1
- a(d-x) i
(10) Y= +boI AT X g
i=0
t a z i
+ 2 {1_)\ + b iio A XO_iJ t 2 1

The term in braces equals YO’ as reference to expression (8) will

confirm. So (10) becomes



a t
o5 + A (YO-

(11) Yt -

Now textbooks on difference equations often analyze the special
case in which Xt = 0 for all t » 0. Under this special circumstance

{11) becomes

- 8. t . (2
(12) Yoy Hat, - &,
which is the solution of the first-order difference equation Yt = a + }Yt-l

subject to the initial condition that Y equals the arbitrarily given

value YO at time. Notice that if YO = a/(1-1), then (12) implies

Yt = YO for all t > 0, which shows a/(1-3) to be a "stationary point"

or long-run equilibrium value of Y, Notice also that if, as we are
assuming, |A} < 1, then (12) implies that

limy = -—,
t

| et

which shows that the system is '"stable,"

tending to approach the
stationary point as time passes,
Now consider the first-order system (7) under the assumption
@ -
that a = 0, so that a I . equals zero regardless of the value of ).

i=0

Then the appropriate counterpart to (10) is



Assuming that condition (9} is met even where lAf > 1 (s0 that the
second term in the equation is finite), the above equation becomes
t-1

Y =b I \» X + 3 ¥ t »1
i=0

As before we analyze the special case where Xt 0 for all t » 0. Then

the above equation becomes

The stationary point of this solution is zero, since 1if YO =0, Y

will remain equal to zero forever, regardless of the value of ». However,
if |A| > 1, the system will diverge farther and farther from this

stationary point if either Y, » 0, or Y_ <« 0. 1If 3 > 1, Yt will tend

0 0

toward + « as t»o provided Y B - 0; Yt will tend toward -« as tow

0
if YO - 0. TIf x < -1, Yt will display explosive oscillations of periodicity
two time periods.

Where an arbitrary initial condition finitely far back in time
is not supplied, so that the process is thought of as starting up infinitely

far back in time, equation (8) is the solution te (7) provided that

]A\ - 1 and that condition (9) is met. (We require IA[ < 1 so that a

b3 A1 be finite.) 71t may seem that to the right side of (8) we could
i=0

t . .
add a term ) , where g is arbitrary, to get

a i
' = - 4 X +
(8") Yt i b k X . AT o,

which seems to be a sclution of (7). To see this, notice that (8')

implies

_ _ai
XYt-l =10 + b

[
P
-
+
P
-

i=1



Subtracting the above equation from (8') vields equation (7), so that
(8'") is indced a solution of (7). However, notice that we are requiring

(8') to be a solution for all t. But if @ > 0, for example, then

lim at 0 = 1lim 2"t a4 = »

t s i-m

if0- %<1, (If1<x< 0, the ' will display unbounded,
undamped oscillations as t+ -=»)., Thus, if we require that the limit of
EYLI must be finite as t* -», we must in general have that o = 0 in (8"},
so that (8') collapses to (8). The condition that 1lim |Y f <= ig,
proe ©
in effect, an initial condition that we are imposing on the solution.
If |A| > 1, then (8) is not the appropriate solution for

(7). A solution can be obtained by solving in the forward direction,

using equation (6). The solution to (7) is then

a
o 1.1 A
(8'") Y o=- I ) Xeyy - L
i=1 A
where we require that
: NI 1 ¢ _
{(g") lim (A) Xt+i = 0,

>  di=n
s0 that the above infinite sum is finite.
As before, (8'') remains a solution to (7) if the term

qkt, n arbitrary, is added to the right side of (8''):

a
R T By t
Y =- I () X ., - —— 4+ a\.
t i1 X t+i 1- %

To sce this, subtract AYt-l from both sides of the above equation.

But since |A| > 1, if o # 0, then the above equation implies that




for many X paths satisfying condition (9') (e.g., a path for which X
is constant for all times),

Lim [Y | = .

t o

This occurs because for ¢ # 0,

. t
Lim |ax | ==,
[ are)
since |a] ~ 1. Since we want Y to be finite for all t, we will impose

the requirement

1lim rY|<m
t

t »m
which implies that ¢ = 0. So (8'') is the solution te (7) for [i' =1

that satisfies the "terminal condition" summarized by the above inequality.

Second-Order Difference Equations
Consider the second-order difference equatieon

(13) ¥,om e Y tE Y, tatb X,

Using lag operators, (13) can be written as

(1-t,L - ¢t

2
1 9 L) Yt = a+ b Xt

or
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(14) Y, = a S+ b 5 X, -
1-t L-t,L 1-¢ Tt 1L

by long division it is easy to verify that

(15) SN G w Lt
lwtlL-tzL i=0
where Wy T bO
w, o= bOt1
w, = t. w +t,w for j > 2.

j=2

That is,

2..2 2 3
1+tlL+(t2+tl)L + (tl(t2+t1)+tlt2)L 4
1-t. L-t L2 |
17 "2 1
2
1-t1L—t2L
2
tlL + t2L
2 2 3
tlL - t1 L° - tltzL

2 3
(t2+tl)L + tltZL

2 2..3 2. 4
(t2+tl)L - tl(t2+t1)L - t2(t2+tl)L

Notice that the weights in (15) follow a geometric pattern if t, = 0,

2

as we would expect, since then (13) collapses to a first-order equatioen.

It is convenient to write the polynomial (1-t

2, .
1 L-t2L ) in

an alternative way, given by the "factorization"

2
(16) 1 ty L—t2 L (1—A1L)(l—l2L)

I

2
(l—(A1+A2)L + AIAZL Y,
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s0 that Al + Az = t1 and —A1A2 = tz. To see how Al and AZ are

related to the "roots" or "zeroes' of (l-—t1 L-t Lz), notice that

2
(1-3,1) (1-3,1) = a0, (= -L) &= -1).
1 2 1727 A
1 2
Therefore the equation
0 = (1-A.LY(1-2,L) = x a, (- -1) (& ~L)
1 2 172°3 A
1 2
is satisfied at the two "roots" L = %“ and L = %—. Given the polynomial
1 2

]—tl L—t2L2, the roots iW'and L are found from solving the
"1 2

"characteristic equation"

2 2 _
l—tlL - t2L = 0 or t2L + tl I-1 =0

for two values of L. The roots are given by the quadratic formula

[2
-ty + Uty + 4t2

2t2

{17 1. =

and Az for

Formula (17) enables us to obtain the reciprocals of )

1

given valucs of t1 and t2.

So without loss of generality, we can write the second-order

difference equation as

(1—A1L)(1—A2L)Yt =a+b Xt'

a b

(18) T = T3, 0 (1,1 + (T3, (1=3,1) Ry

Notice that if Al # AZ

1 1 A

1
(1 AlL)(l AZL) Al AZ 1

A

L 1-



which can be verified directly. Thus (18) can be written

. - a S G WV L 1
t (1—A1)(1-A2) A=Ay 1-A1L t A7, 1-A2L t
o R o . X b o .
) i j 1 i
(19) Yo=a & A I o+ I o X .
£ i=0 120 2 MThp gy 1 -
A,b o ,
2 i
- X .,
A1mA, i-—z~0 Ay feeg

where we are making use of the fact that for a constant a

H(LYa = 7 h.L a

Notice that

1 - i1 - i3
- . = L A1, I xg
1*A1L 1—A2L i=0 1 =0 2

s0 that the sum of the distributed lag weights

poadop ot is finite and equals L
=X -A
i=0 1 i=0 2 (1 l)(l 2)

provided that both [xlj <1, Ile < 1. So in writing (19), we

require either that both [All and [Azf be less than unity or that

Ai A% is defined. Furthermore, we
0 i=0

a = 0, so that a

N o1 8

It~ 8

i

require that
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3]

9") lim % X_; =0, all t,
I beer i=n

hold for j = 1, 2, so that the geometric sums in (19) are both

finite.
Suppose that a = 0. On this assumption write (19) as
A b t-1 A,b t-1 ,
1 i 2 i
(20) y, T o L oa X .- T, X o to>1
t MThy gog 1otL MM o 2 Tt-i -
t+1 t+1
M A
+ g n
Al—kz 0 Al AZ 0
. s
where UO =b & A XO_i
i=0
2o
fg = T Koy
i=0

The case in which Xt =0 for t > 1 is often analyzed, as for the

first-order case. On this assumption, (20) becomes

t+1 t+1
M A
(21) Y = 8, 1 n,y t > 1.
t kl Ao 0 Al Ay 0 -
If ”D = ny = 0, Yt = 0 for all t > 1, regardless of the values of

Al and Az. So Y = 0 is the stationary peint or long-run equilibrium

value of (21).

[f A, and ». are real, then lim Y will equal zero if
1 2 (o t

and only if both fkll < 1 and isz < 1, regardless of the values of the

parameters OO and no, so long as they are finite. If, however,
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N - 4 B - 1
Iy b L Ixgl < fa gl and 65 > 0, then lim Y = 4= If |),] < RESES T
t o
and UO < 0, then lim Yt = - =®, Thus, Y will tend toward the stationary
t oo

point zero as time passes provided that both Ikl: <1 and [AZE <1l. 1If

one or both of the A's exceed one.in absolute value, the behavior of Y
wlll cventually be "dominated" by the term in (21) associated with
the » that is larger in absolute value; that is, eventually Y will
grow approximately as X;, where Rm is the Aj with the larger absolute
value.

Now suppose that the roots are complex. If the roots are
complex, they will occur as a complex conjugate pair, as the quadratic

formula (17) verifies. So assume that the roots are complex, and write them

as

iw . .
A, = re =71 cos w + i sin w

—-iw .
A2 = re = r cos W -1 sin w

where the real part is r cos w and the imaginary part is + r sin w.

Notice that

(22) }l - AZ = r(e - ") = 2r i sin w.

Furthermore, notice that equation (21} can be written

b A;+l . . b A;+l - .
(2% Y, =g I AT X, o~ v I A0 X
— — X _)\. -
t Al Az =0 1 "0-1 )l 2 i=0 2 0-1
_ b tHi+l L th 4l
o O by ) Xy s

1 "2 3=0
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Notice that

+i X . tig s X

; i+l A:2:+J+l _ (relw)t 3+l (re 1w)t+3+l
-ttt (elw(t+_']+l) _ e—lw(t+_]+l))
= rt+3+l (21 sin (w(t+i+l)).

But from trigonemtric formulas sin{(wt+w(j+1}) = sin wt cos w(j+l)

*
+cos wt sin w(j+l). Substituting this inte the above formula gives

t+j+1 t+i+1 t+i+1
JEHIHL R ]

1 ) (2ilsin wt cos w(j+l) + cos wt sin w(i+1)]).

Substituting the above equation and (22) into (23) gives

*
Notice that

iw
e = cos w, +1 sin w
i 1
iw1 in
e a = (cos Wy + i sin wl)(cos 2 + 1 sin w2)
= 0s 0os w, - sin w i
(c W, c 9 , sin w2)

+ i(sin w 0s + s5in w, cos w.}.
( ] €08 vy o v, 1)

Also notice that

i(wl+w2)
= ¢0s (wl+w2) + i sin (wl+w2).

Therefore

sin (wl+w2) sin Wy cos w, + sin W, oS W,

and

cos w, - sin w, sin w,..

cos w 2 1 2

cos (w1+w2) 1
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t+1 w
_ br i c T : ; .
Yo © 971 sin w jEO r (21 [sin(wt) cos w(j+l) +cos wt sin w(j+1))] X
trt e . o .
Yy = - [sin wt T rJ cos w{j+l) + cos wt T r? sin w(j+1)1 X. .
t sin w . . 0-j
J:O :}=O
t>1
or
t t
_ _br . br
(24) Yt = Sin o | Sim wt ZO + cin w ©°s wt Zl’
sy '
where ZO £ r cos w{j+l) XO-j
j=0
_ I i . .
Z, = ' sin w(j+l) X_ ..
1 i=0 0-j

As before Y = 0 is the stationary point of the difference equation. For
arbitrary initial conditions, 1.e., for arbitrary values of the parameters
ZO and Zl’ Yt will approach zero as time passes provided that r < 1; for
(24) describes the evolution of Y over time as the sum of "damped" sin

and cosine functions, the damping factor being rt. (Notice that for it

to be possible to divide by sin w in (24), it is necessary that sin w # O,
which means that w cannot equal zero, w, 27,.... This will be satisfied

so long as the roots are complex (remember Al =rcosw+ 1 sinw)). If

r - 1, the oscillations are explosive, while if r < 1, the oscillations are
damped, and Yt approaches its stationary value of zero in an oscillatory

fashion as time passes.

Notice that if Al and AZ are complex, the distributed lag weights

of (19) oscillate. Rewrite (19) as

0-3



- 17 -

2 ¢ odth

- J+l) X
2 j=0

5 £y

i - .b
2 sin w

0 3

rd sin w (j+1) Xt—j

o1 8

0

Notice that the damping factor multiplying the sin curve is rJ, so that the
range of the weights decreases as the lag j increases, provided that r < 1.
As noted above, the roots Al and A2 are the reciprocals of the

roots of the polynomial

(61) 1—t1 L - t2 L™ = 0.

For we know that 1-t1 L-t2 L2 = (I-AIL)(I—AzL), with roots 1/%1 and

I/AZ. Alternatively, multiply the above equation by L_2 to obtain
-2 -1 N -1
L ° -1 T 0= (L ll)(L AZ)
or
(62) X2 - t, X~-t, =0
1 2

where X = L_l. Notice that the roots of (62) are the reciprocals of the

roots of (6l). Thus, Al and Az are the roots of (62).



It is interesting to know what values of t., and t, yield

1

complex roots. Using the quadratic formula we have that the roots of

(62) are

For the roots to be complex, the term whose square root is taken must

be ncgative, 1l.e.,

2
63 ty + 4t2 < 0,

which implies that t, < 0. 1In case (63) is satisfied, the roots are

2
t /—(t +4¢t,.)
1 12
Al =3 + 5 = a + bi
tl . .“/-(ti+ﬁt2)
. 2 =a-bi

To write a + bi in polar form we recall that

. . iw
a+ bi=1rcosw+ risinw= re

2 2
where r = a~ + b~ and where cos w = a/r., Thus we have that

We also have that



For the osclllations to be damped we require that r = NLE; < 1, which

requires that —t2 < 1.
, -1
The periodicity of the oscillations is 2¢/cos (tl/ﬂ/-tz);
i.e., this is the number of periods from peak to peak in the oscillations.

If the roots are real, movements will be damped if both

roots are less than one in absclute value., That requires

2
t; +-Jt1 + 4t
1< > <

- 1
and

_1<t1—‘ti+“2 < 1.

2

The condition

t1 +«/ti + 4t2 o1

2

implies

afti+4t2<2—tl

€+ he, < 4+ td - 4r
(64) t, +t, <1

The condition

+ 4t

t

[

|

<
C—

rr
=B Ll NS ]

[av]

implies that
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2
"\/tl+4t23—2"t1

f 2
«t1+4t2 < 2+t1

<t2+4+4t

2
t. + 4t 1 1

1 2

(65) t2 <1 + tl.

Conditions (64) and (65) must be satisfied for the roots, if real,
to be less than unity in absolute value.

Notice that both roots are negative and real if ti + 4t2 > 0 and

2
t+t+4t2

1 1 ]
5 < 0 which implies
2
t1 < - tl + &tz
2 2
tl > t1 + 4t2
0+ ¢t

1’ t2 plane for which conditions

(63), (64), or (65) are or are not satisfied. The graph shows combinations

Figure 1 depicts regions of the t

of t and ty that give rise to damped oscillations, explosive

ogscillations, etc.

An Example

Maybe the most famous second-order difference equation in
cconomics is the one associated with Samuelson's multiplier accelerator

model. Samuelson posited the model

C =c¥Y + n 1 >¢c >0 (consumption function)
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v » (0 (accelerator)

whe re Ct is consumption and It is investment. Substituting the first

two equations into the third gives

-
il

+ vY + «o

4
() Yo =2

1

ar

where t] = C + v, t2 = —-y. Notice that t1 + t2 = ¢, So variations

in the parameter y move the parameters tl and t2 downward and to the right

along the line tl + t, =¢ in figure 2. Using figure 2, the values of

¢ and y compatible with damped oscillations, explosive oscillations, and
s0 on, can easily be determined.

Figure 3 shows the path of Y over time for various values of ¢
and vy, and for the initial conditions Y. =Y. = 10.

0 1

Second-Order Difference Equations (Equal Roots)

The preceding treatment assumed that Al # 12. (Notice that

we divided by Ay = A to obtain (19).) If Al = 12, then the polynomial

2

we must study is

2.2

1 1
ST (LPALH L4 )

(1-AL) (1-AL)  1-

= (1+XL+A2L2+...) + 1L(1+AL+A2L2+...)

2

+ A2L2(1+AL+A2L +oaa) Faun



= 1+2AL+3R2L2+...

(25) e

(1-A2L) i

G+ Lt
0

It ™ B

The polynomial in (25) is called a second-order Pascal lag distribution.

Tt is the product of two geometric lag distributions with the same decay

parameter X,
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With the aid of (25) we can study the solution to difference

equations of the form
(1~ XJZ Y =a+b ¥,
t t

The solution is

[5-+]

(26) Y =a ¥ @G+ + b GA+DM x L.
. . . t-i
i=0 i=0

~ B

o~}

For a » (i+1)X' to be finite, either |A| <1 or a = 0 must be satisfied.
i=0

To aid in studying difference equations with arbitrary initial

conditions, we assume that a = 0 and rewrite (26) as

t-1 ) w0 .
(27) Y =b ¢ @G+ x L +b ¢ @+t xo .
t t~-1 . t-1i

1=0 i=t

The second sum can be written as

n

"
b o5 (1ot x

i=0

03
j J

(+1)» 1 Xop_; * P
0 3

1]

b
j

t

I~ 2
H t1 8

(xy

b A" 5 G x. L+ b et

1l

0 0-3 i

J

o 3
e
[rS
e

So for the special case Xt = O for t > 0, (27) becomes
(28) Yt = X% 0.+ tX “n

where (h =b I (j+1}AJ X

and



The starionary point of the equation is zero. For arbitrary initial

conditions 0. and n
0 0’

passes 1if IAI < 1. 1If |A| > 1, the value of Yt will diverge from the

Yt will approach the stationary point as time

stationary point zero as time passes, unless 90 = n,. Thus, if

x| ~ 1, the stationary point is a "razor's edge" equilibrium.

Nth—Order Difference Equations (distinct roots)

. : , . th .
Consider a rational polynomial with n order denominator:

- E(L) F(L)

D L. s L
G(L) ( AlT)( ;\21) ( }\n)

’ - = = E )\
The zerces of G(L) are L1 llkl, L2 1/A2,..., Ln""’ L 1/ .

since each of these values for L satisfies the equation

G(L) = (l—le)(l—AzL)...(l-AnL) = 0.

Suppose the n roots are distinct., Now the method of partial fractions

cnables us to express A(L) as

F(L) _
G(L)

F{Lr) -1

G'(Lr) o1

(29)

n
L

r=1

where Lr = %;-is the rth zero of G(L)},

G'(Lr} is the derivative of G(L) with respect to L evaluated at Lr, and



F(Lr) is F evaluated at Lr. Letting

G(L) =
i

oo B

gjLJ ]
0

we have G'({L) =

™~ 8

. j-1
L .
J gJ

j=1

As an example, consider applying (29) to the second-order

denominator polynomial

1 _ F)
(1-A1L)(1-A2L) G(L)

Since G(L) = 1-(A1+A2)L +2 AZLZ, we have

1

' = —
G'(L) = (A1+x2) + 2A1A2L.

The zeroes of G(L) are 1/)\1 and l/kz, so that

L L

Y- Yy = - + -+ = -
G (A ) (Aj Az) lexz 3 Az xl
1 i
G = - Oy + 200, = o
HERSY 1 "2 1°2 » 172
2 2
So applying (29) we have
1 _ 1 . -1 N 1 -1
(1—A1L)(1—x2L) (xz—xl) (l—le) (AI—AZ) (1-3,L)
_ 1 [ 1 ~ 1 ]
(Al—xz) (1~A1L) (1-3,L) i

which can be verified directly, and agrees with the calculations used
above to obtain (19).
Notice that F(Lr) and G'(Lx) in (29) are particular numbers,

possibly complex ones, since they are F(L) and G'(L) evaluated at particular



values of 1.,

th . .
Suppose we have an n order difference equation

(30) (l—AlL)(l—AzL)...(l—AnL)Yt =h Xt'

The solution to (30) is obtained by dividing by (l—le)...(l—AnL) to

obhtain

b

Y = X .
t (1—A1L)...(1—AHL) t

We suppose that the Aj's are all distinct. Then application of (29)

to the above equation gives

n
1 -1
Y =b ¥ ( ) X
t - vl 1-3 L t
r=1 G (Ar) T
! ©
(31) Yt =b y - E Ay Xt_l,

r=1 c'(-i—r—) 1=0
which shows that Yt can be expressed as the weighted sum of n geometric
distributed lags with decay coefficients Aps Agorevs A
Given n initial value of Y, and assuming Xt = 0 always, it

is possible to start up difference equation (30) finitely far back in

the past, and to obtain a solution of the form

Y =i, n, ¥+ i n, +...+ A n
n n

where n n_are constants chosen to satisfy the n initial wvalues.

1,...,

The ahove equation can be derived from (31} by applying calculations

analtogous to those applied above in the first and second order cases.
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Nth-Order Difference Equations (N equal roots)
th .
Consider the n order difference equation
(32) (- Y = b X,

which has the solution

Y, = ———ll—jq X, -
(1-3L)
] 1 , . . th
The polynomlal-————*wa is the one associated with an n order Pascal
(1-xL)

lag distribution, which is formed by multiplying (convolving) n geometric
lag distributions with the same decay parameter ). We have already
studied the second-order Pascal distribution. By induction, it is possible

to show that

(33) Akﬁl;fh = 3 (i+1)n-l AlLl,
{1-AL) i=0
which agrees with our earlier formulas for the special cases n = 1 and

n = 2.

With the aid of (33), the solution to (32) can be written

3

. n-1 i
(i+1) N

]

1
o
L]

0

i
Using calculations like those for the first and second order cases for
the special case in which Xt = 0 for all t, and in which n arbitrary

initial values are supplied to start up the process, it is straight-

forward to show that the solution obeys

_ .t t n-1 .t
Vo= A m+t 2 n, bt A

where “1,---,nn are constants chosen to satisfy the n initial values.
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An Example of a First Order System

*
Consider the following model studied by Cagan. Let @, be

e

the log of the money supply, P the log of the price level and Piyp

the log of the price expected to prevail at time t+1 given informaticn

available at time t. The model is

(34) mo-p

e
t - r“t(pr;+1~pt) * <0,

r

which is a portfolio equilibrium condition. The demand for real
balances varies inversely with expected inflation p:+1-pt. The
variable m is exogenous.

Suppose first that

- (5 _ _ _
(35) Pepp™Pe = Y(P P _y)

50 that the public expects inflation next period to be the current rate

of inflation, P, =P multiplied by the constant y. Then (34) becomes

t=1

RS

Using lag operators, this can be written as

[(oy+D)=ayL] py = m,

ar

M- f)p =——m h ' -
T4oy Pt T+ay Tt° The solution can be written

*
"The Monetary Dynamics of Hyperinflation"
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= 1
t 1oy

_ay 41
(1+{1'Y) mt'—i’

™~ 8

P

i=0

which will be finite for the time path m = m for all t, provided that

oy .
[1+ay| < 1.

The above inequality is in the spirit of the "stability condition"
developed by Capan in his paper. It is a condition that delivers a

finite P, for all t for a certain time path of m. Notice that

P 1
1 b oY )i - 1+oy = 1.
].+0;Y . l+ay _o_ay
i=0 1 Troy

Thus, the long-run effect of a once-and-for-all jump in m is to drive
p up by an equal amount (provided the above "stability condition" is met).
Returning to (34), let us abandor (35) and now assume perfect

foresight:

e

(36) pt+1 = Pryye

Substituting (36) into (34) gives

or

+
~
T
[#]
~—r
el

t+

i}

=]

1 1-o 1
L + o] ) t «o mt
or
a-1 _1
(37) - Lp ="



. =1 , .
Notice that since @ < 0, it follows that'i[* ~ 1. This fact is an
invitation to solve (37) in the "forward" direction, that is, to use (6).

Dividing both sides of (37) by (1 - gé-LL) gives

which using (6) becomes

1 -1
C TGP T i,
Py 7 a -1 t~1 a-1 *, -1 t
1 -——1L i=0
a~1
g i
. 1 o)
(38) pt T 1-q .E a-1 mt+i
i=0

Notice that since a < 0, 0 < 1 < 1, so that the sum of the lag weights
iz finite. Equation (38) expresses the log of the curreat price as a

moving sum of current and future values of the log of the money supplv.

Notice that

a 1 _ -
1-nx 'X (q-l) - o L

so that p is a weighted average of current and future values of m.

An Example of a Second Order System

*
Consider the following model studied by Muth. Let P, be
the price of a commodity at t, Ct the demand for current consumption,

b the stock of inventories of the commodity, v

¢ the output of the

t

commodity, and p: the price previously expected to prevail at time t;

*
"Ratrional Expectations and the Theory of Price Movements."
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Xt represents the effects of the weather on supply. The model is

Ct = -8 pt, B >0 demand curve
Y = Ype + X, y >0 supply curve
t t t
e
= - > i
It a(pt+l pt) a >0 inventory demand

Y, = Ct + (It"It—l)

Let us suppose that there is perfect foresight

market clearing

e=
so that pt P for

all t. Making this assumption and substituting the first three equations

into the fourth gives
Y P+ X = u(pt+1-pt) - alp.p ) -

or

Y pt+1 - (20- +8+’Y) Pt + apt_l = Xt'
Dividing by o gives
_ (2a+B+y) _ _1
(Peyg a P~ @) TG K
aor
-1 1
(L - ¢ + L) P, = o Xt

where ¢ = Eil + 2 > 0. Multiplying by L gives

(39) gL+ L% p, =T x_,.

We need to factor the pelynomial {(1-¢L + LZ) as

Bpt
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(1-6L + L)

(l-AlL)(l—AZL)

2
(l—(l1+A2)L + AllzL )

s0 that we require that

The second equality establishes that Al = 1/12,
50 that the two roots appear as a reciprocal pair. So we can write
2 1
(1-¢L + L7) = (1-21)(1- KL)
. 1
where A is chosen to satisfy 3 + 3 o
So (39) can be written

(19') (1-3L) (1- %L) P, = T X

R |

t-1'

Since §§I‘> 0, it follows that A = §§I-+ 2 » 2. That implies that

» does not equal 1, since X + 1/) =¢ . Notice that if 3 > 1, 1/x < 1.
So onc of our roots necessarily exceeds 1, the other necessarily is
less than 1.

We divide both sides of (39') by (1-AL)(1-(1/X)L) to obtain

b, == : X

€Y gLy (- %L)

t-1"

Without loss of generality, suppose } < 1 and let Ay = 1/x. Use

{(6) and (19) to write the solution as
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1
1 1 - -
= X = A
Pe T2 (o x o . S
A=2 1-AL t~1 (A- 2.)) 1 -1 t-1
2 2 1- — L
A
2
1
= 1 1 -1
o 1 e = AL
= () X +a A ) X
=i - -
A-% 1-AL t-1 . T 1 1 t-1
A
1 1
a 1 o 1
- G X+ —-—p X
- % 1-AL t-1 - 1 1-AL t
1 w i
rt i o o i
p. = L A" x .+ AT X
LV Lk S § 150 t+i
X A
. B
0, i
(40) Pe T 1, ) Xeot
)‘._ T ju=—co

The solution (40) expresses P, as 2 "two-sided" distributed lag of
X, that is, as a weighted sum of past, present, and future values of
X. In this model, the current price depends on the entire path of

the exogenous shock X over the entire past and the entire future.






