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ABSTRACT

We study an overlapping generations model which contains a capital
good that resembles actual gold. This capital good can he stored
without physically depreciating and can, by using other resources,
be converted back and forth bhetween gold Jjewelry which yields
utility directly and raw gold which does not. Under the assump-
tion that the three utility-yielding objects--first and second
period consumption and Jjewelry--are gross substitutes, stationary
equilibria are shown to exist and are characterized; for some
parameter values, there are irefficient equilibria, while for
others there are efficient equilibria. Both types can be inter-
preted as commodity money equilibria.

*¥An earlier version of this paper was presented at a seminar at
MIT. We are indebted to the participants for comments, many of
which are reflected in the present version. The views expressed
herein are those of the authors and not necessarily those of the
Federal Reserve Bank of Minneapolis or the Federal Reserve System.



One widely-held notion about commodity money systems is
that they are inefficient if using the commodity as money pre-
cludes using it as a consumption good or as a productive input.
One coherent but not widely accepted interpretation of this in-
efficiency notion involves identifying it with the inefficient or
overaccurulation-of-capital equilibria of overlapping generations
models.i/ This interpretation seems not to be widely accepted in
part because the capital goods of most overlapping generations
models do not resemble the objects used as commodity monies--for
example, the precious metals. Our goal in this paper is to over-
come this objection and, thereby, to make the above identification
more palatable. Ve do this hy displaying and analyzing an over-
lapping generations model in which the capital good displays some
of the technological features of actual commodity monies.

The capital of our overlapping generations model, which
we label "gold," has features that make it resemble a precious
metal like gold. There is a fixed and indestructible stock of it
which can potentially take three forms at each discrete date t:
"new jewelry," '"raw gold," and '"old jewelry." The first gives
utility to those who hold it from t to t + 1. However, at t + 1,
it automatically becomes old jewelry, which does not give utility
to other people who hold it subsequently. 01d jewelry can, how-
ever, be turned inteo utility-yielding new jewelry bty expending
nongold resources. It must first, via a costly technology, be
turned into raw gold and then the raw gold, via another costly
technology, gets turned into new jewelry. As we will see, whether

an equilibrium for our model is efficient or not depends on the
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form in which gold ends up being held. In particular, although
neither old jewelry nor raw gold yields utility, only holdings of
the latter (forever) imply inefficiency.

The paper is organized and its main results are as
follows. The model is described in detail in Section 1. The
conditions for a perfect foresight competitive equilibrium are
developed and set out in Section 2. In Section 3, we prove the
existence of and partly characterize stationary equilibria. It
turns out that the assumption of gross substitution among the
three utility-yielding objects--nongold consumption when young and
when old and new Jjewelry--plays a crucial role in the existence
proof. Indeed, as argued in Apperdix 2, such an assumption is
necessary for existence even of a steady state. In Section k4, we
characterize stationary equilibria in terms of Pareto-optimal-
ity. It turns out that there is no price characterization of
optimality, but that there is one in terms of the objects held in
an equilibrium. A necessary and sufficient condition for ineffi-
ciency of a stationary equilibrium is that raw gold is held. In
Section 5, we introduce fiat money and examine the relationship
between its equilibrium value and the equilibrium relative price
of gold and nongold goods. The implied relationship is consistent
with the.notion that a commodity (gold) is more valuable in terms
of other commodities the more important is its role as a commodity

money. Most of the proofs appear in Appendix 1.
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1. The Model

The model is of a discrete time economy defined over
integer dates t > 1. It is an overlapping generations model of
two-period lived generations, which differs from other such models

because of the role played by the capital good which we call gold.

Resources and Technologies

At each date t, the economy has a new social endowment
of W > 0 units of a good, which we call time t bread. Time t
bread cannot he converted via a production process into time t + )
bread, for any j # O.

The only other resource of this economy is a positive
stock of gold at t = 1. Ve assume that this is in the form of
"old jewelry." Gold can potentially take three forms at each
date; old jewelry, raw gold, and new jewelry. As described helow,
only new jewelry is an argument of utility functions.

There are simple, fixed proportion technologies avail-
able for producing each form of gold. For any q > 0, g units of
new Jjewelry at t can be produced using q units of raw gold at t
and aqq units of time t bread, where a; 2 0. There are two ways
to produce raw gold at t. For any q > 0, q units of raw gold at t
can be produced from q units of raw gold at t - 1 (by storing the
raw gold at t - 1); it can also be produced using q units of old
jewelry at t and anq units of time t bread, where ap > 0. There
are also two ways to produce old jewelry at t. For any q 2 0, q
units of old jewelry at t can be produced from g units of old

Jewelry at t - 1 or from q units of new Jewelry at t - 1. In
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other words, both raw gold and old jewelry can be stored without
physically depreciating or appreciating and new Jjewelry at t - 1
automatically becomes old Jewelry at t. 0ld jewelry at t can at a
cost of ap per unit in terms of bread at t be turned into raw gold
at t and the latter can at a cost of a, per unit in terms of bread
at t be turned into new jewelry at t.

Our technological assumptions, represented schematically
in Figure 1, imply the following definition for feasible, utility-
yielding aggregates. In stating the definition, we use the fol-
lowing notation: Cy_;(t) [Ci(t)] is total consumption of time t
bread hy the members of generation t - 1 [t], Dt is the stock of
new Jewelry at t, and G (Kt) is the stock of raw gold (old jew-

elry) held fromt to t + 1,

Definition. Given KO > 0, Gg = Dy = 0, a nonnegative sequence
{Cy_1(¢),C(t),Dy} is feasible if there exists a nonnegative

sequence {G,,K.} that for all t » 1 satisfies
t

(1) Dy + Kg + G =D 1+ K _q+ 06 4
(3) D + G, =G _q >0

Fquality (1) 1imits the stock of gold at t in all its
forms to the stock at t - 1. Irmposing equality here is without
loss of generality since old jewelry (and raw gold) can be cost-
lessly stored from one date to the next. Inequality (2) is the
constraint on uses of time t bread. The first two terms are

direct consumption by members of generations t - 1 and t, respec-
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tively. The third is bread used in producing new jewelry from raw
gold, and the fourth is bread used in transforming part of the
stock of old jewelry into raw gold. Inequality (3) expresses the
irreversibility of the process for converting old jewelry into raw
gold. Imposing it rules out allocations that call for converting

raw gold at t into old jewelry at t and time t bread.

Preferences and Endowments

We distinguish between the "old" at t = 1, the members
of generation 0, and everyone else. Fach member of generation O
maximizes his or her consumption of time 1 bread. Fach is endowed
with some time 1 bread and with some 0ld jewelry. Among them, the
members of generation O own K,, the entire initial stock of old
Jewelry.

All other generations are identical as regards prefer-
ence and endowment types and numbers. Member h in generation t, t
> 1, maximizes utility, denoted uh(ci(t),c:(tﬂ),d};), where the
subscript denotes generation and the first argument is time t
bread, the second is time t + 1 bread, and the third is new jew-
elry at t that is held from t to t + 1 (at which time it bhecomes
old jewelry). There are H members in each generation.

We assume that u" is twice continuously differentiable,
strictly quasi-concave, and is such that all goods are gross
substitutes. As regards endowments, h in generation t is endowed
with some time t bread, w: (t) > 0, and with some time t + 1 bread
w: (t+1) > 0, but is not endowed with new Jewelry or gold in any

form.
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As we will show, this specification implies that there
is a stationary or constant-over-time equilibrium. The gross
substitutes assumption turns out to be important for existence of

such an equilibrium.

2. Choice, Demands, and Fguilibrium

We assume competitive behavior and, because we will be
looking at perfect foresight equilibria, will not distinguish
hetween actual and anticipated prices.

For t > 1, h in generation t faces the following con-

straints:
h h_ h h h h
[ - =% s
(4) ct(t) + (pt+al)dt wt(t) 1t PL&, vtkt
h h h h h. h
(5) ey (t+1) € w (641) + r 1y + py gy + vy (dp¥ky)

where Py is the price of raw gold at t in units of time t bread,
1: is loans granted by h, g: 2 0 is raw gold that h carries from t
to t + 1, v; is the price of old jewelry at t in units of time t
bread, k: > 0 is old jewelry that h carries from t to t + 1, and
ry is the gross real return on loans granted in time t bread and
paid back in time t + 1 bread.

Constraints (4) and (5) are wvalid constraints on the
arguments of " for nonnegative prices that satisfy Vi ? Py -
ane This inequality is satisfied in any equilibrium because it
expresses the requirement that profits from turning old Jewelry
into raw gold are not positive.

Since we assume that 1: is unconstrained, which is to

say that h can either borrow or lend at ry, (k) and (5) are equiv-
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alent to the following single constraint obtained by eliminating

h
lt'
(6) c:(t) - (lfrt)c:(t+1) - fa1+pt-vt+l/rt)d: <
h h h Lh
wi(t) + (lfrt)W£(t+l) + gtgt + 4t5t
where

S = (Praa /g Pe)s & = (v vy )-

In any equilibrium, h mst face a budget set that is
bounded in the objects that give utility. Therefore, in any
equilibrium, the coefficient of g:, Et, and that of k:, Gt, cannot
be positive. Moreover, g: > 0 implies & = 0, & < 0 implies
gl =0, ! > 0 inplies § = 0, and 8, < O implies kj = 0. Thus,

in any equilibrium

h, _ hey _
(1) £, <0, 8 <0, g & =0, ks =0

It follows that for prices that satisfy the inequalities of (7),

h

the budget set constraining the arguments of u can be written

with the terms in gr and k: omitted or as

h h h h h
(R) sltct(t) + Stht(t+1) + SBtdt < sltwt{t) - S?ﬁwt(t+1)
where
(9) Sip 5 1o 8y T U, 85 Ba) vp -V, /n.

h

Under our assumptions about u’, maximization of "

subject to (8) implies (8) (and (4) and (5)) at equality and

differentiable demand functions, ch(st) for ch(t+1) (second period

t
consurption of bread) and dh(st) for ﬁ: (new JeWery), where Sy =
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(Slt’SQt’SBt)' The gross substitutes assumption says that ch(st)
is nondecreasing in sq; and S3¢ and decreasing in spy and that
dh(st) is nondecreasing siy and sy, and decreasing in sgq.

Now let C(s.) and D(s.) denote zhch(st) and Ehdh(st),
respectively, where the summation is over all members of genera-
tion t. These aggregate functions possess the properties of the
corresponding individual functions noted above.ﬁf Moreover, as
the notation indicates, these functions do not depend on time
because different generations are identical. It is convenient to
define Wy = Zhw},gft) and W, = Ehv.r?(t+1), and to note that G, = zhg?,
and Ky = Ehk‘l}-l,'—’ where these summations are also over the members of
generation t.

We are now ready to define a perfect foresight competi-
tive equilibrium, or, simply, from now on, an equilibrium.
Definition. Given KO > 0, an equilibrium consists of a positive
sequence for ry and nonnegative sequences for Prs Vi Gt, and Kt.

that for all t > 1 satisfy (7), v > py - an, and

(10) Clsg) = Wo = Ppyq[Gpya#D(spun) ] + vpaKeng
= 8pIDlsy )4 Ky oy |
(11) D(sy) + Ky + Gy = K.

Fquation (10) expresses equality between the excess
demand for time t + 1 bread on the part of generation t (the left-
hand side) and the net excess supply of that good by members of
generation t + 1, net of the amount used to convert old jewelry

into raw gold, the term in a, (the right-hand side). Fquation



(11) requires that the demand for gold in all its forms he equal
to the inherited amount. (Imposing equality in (11) is innocuous
since at a zero price for old jewelry (Vt = 0), individuals are
indifferent about the amount of old jewelry they hold.)

We will concern ourselves only with the existence and
properties of stationary equilibria, equilibria for which the ry

Pis Vi Gt’ and K{ sequences are constant sequences.
3. Existence of Stationary Equilibria

Let us define C'(r,p) = C(sl,s?,s3) and D'(r,p) = D(sl,sg,s3)
where s; = 1, sp = 1/r, and s3 = a) + a/r + p(1-1/r). VNote that
this expression for 53 follows from imposing Vi = Py - ap for all
t. (Stationary equilibria with Vi > piy - ap do not exist, because
the inequality implies that old jewelry is not converted into new
jewelry at t.) Note that at r = 1, s = aj + ap, and, in particu-
lar, does not depend on p. Thus, C'(1,p) = C(1,1,ay+a,) = C¥ and
n'(1,p) = D(1,1,aq+ap) = D¥, The magnitudes C¥ and D¥* are the
quantities demanded of second period consumption of bread and of
new jewelry, respectively, when the real rate of interest is zero
(rt = 1) and when the price of raw gold is not changing and is
consistent with producing raw gold from old jewelry. By (7),
these are necessarily the equilibrium guantities in a stationary
equilibrium in which raw gold or old jewelry is stored. In prop-
osition 1, we will be characterizing stationary equilibria in
terms of the signs of C¥ - W, and D¥ - K.

Our definition of an equilibrium implies the following

definition of a stationary equilibrium,
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Definition. A stationary equilibrium consists of a positive

scalar r and nonnegative scalars p - a5, G, and K that satisfy
(12) C'(r,p) = Wy = pC + (p-8,) [K+D'(r,p)],
(13) D'(r,p) + K + G = K,,

and r > 1 with r = 1 if G + (p-aQ)K > 0, these last being the sta-
tionary version of (7). (For Vi = Py - 8o, @ necessary condition
for a stationary equilibrium, (12) and (13) are the stationary
versions of (10) and (11).)

The following four lemmas (their proofs appear in Ap-
pendix 1) establish properties of the C' and D' functions. These
are used in establishing existence and some properties of sta-
tionary equilibria.

Lemma 1. For any p 3 ap, (a) Wy > C'(r,p) - Wys (b) cilr,p) >
0; and (¢) C'(r,p) + ®as r + =,

In Figure 2, for an arbitrary p » ap, we illustrate two
alternative C'(r,p) functions, one for C* - W, > 0, the other for
C* - W2 < 0. The positive slope--i.e., property (b)--is a conse-
quence of our gross substitutes assumption.

Lemma 2. Let p* = max[aQ,(C*—W2+azKO)/KO] and define Y(p) for p >

p* by
(1k) C'(¥(p),p) = W, = (p-ay)K,

Then Y(p) is a continuous function such that ¥(p) > (p—ag)Kofwlféy
The locus (p,¥(p)) consists of all pairs (p,r) consis-

tent with (12) and (13) combined and with G = 0, In Figure 3, we
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illustrate the points (p,r) = (p,¥(p)) for two cases, C¥* - Wy >0
and C* -1V, < O,

Lemma 3. (a) For any r > 1, D'(r,p) + = as p > -(aj+ay/r)
r/(r-1), D'(r,p) » O as p > =, and D < 0. (b) For any p > a,, Dy
< 0.

Lemma 4. For any r > 1, let ¢(r) be defined hy
(15) D'(r,¢(r)) = Kq.

Then (a) ¢(r) is a continuous function that is decreasing whenever
¢(r) > ap; (b) if D* > K, then ¢(r) » » as r » 1; (c) all pairs
(r,p) with p > ¢(r) satisfy D'(r,p) < K43 (d) if D* < K,, then all
pairs (r,p) with r > 1 and p > a, satisfy D'(r,p) < K, and with
slack unless D¥ = K, and r = 1,

The 1locus (¢(r),r) consists of all pairs (p,r) that
equate the demand for Jjewelry to the total stock of gold, all
pairs that satisfy (13) and G = K = 0. TFor the case D* > K;, we
show two possible ¢(r) functions in Figure 3. Note that parts (b)
and (c) of Lemma 4 imply that if D¥ > Ky, then any stationary
equilibrium has r > 1 and, therefore, G = K = 0,

We are now ready to prove existence of and to partially
characterize stationary equilibria.

Proposition 1.

(i) There exists at least one stationary equilibrium.

11 > or 1 R < . 1len r > 1l; otherwlse r = 1,
(ii) If D= KO if C¥ Ws, th 1; oth i 1
(iii) If D* < K, and C* > W,, then there exist equilibria with

G > 0.
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We proceed by considering cases delineated by the magni-

tudes of C¥* and D¥,

Case 1.

(a)

Case 2.

(b)

D¥* > Kqe

C¥ - W, > 0, Here, ty Lemmas 2 and 4, there exists an
(r,p) that satisfies (1L4) and (15). This (r,p) and C = K
= 0 is an equilibrium.

C¥ - Wy < 0. If there is no (r,p) satisfying (14) and
(15), one of the situations illustrated in Figure 3, then
p =as, r=1Ylay), G =0, and K = K5 - D' (¥(ap),a5) is an
equilibrium, If there is an (r,p) satisfying (1k) and
(15), then it and G = K = 0 is an equilibrium.

D¥ < K.

C*¥ - W, > as(Ky-D¥): We show that r =1, K =0, G = K; -
D*¥ is an equilibrium. Since (13) is satisfied hy con-
struction, we have only to find a p > a, satisfying (12) s
namely, one that satisfies C¥ - W, = p(Ky-D*¥) + (p-a,)D*
= (p—a2)KO + ay(Ko-D¥). The hypothesis of this case
implies that there is a solution satisfying p 2 an.

0 < C*¥ - W, < angO—D*): Here r = 1, p = a5, and G =
(C*—Wz)/ag satisfy (12). The hypothesis implies that
these and a positive ¥ satisfy (13). Note that this and
the given construction of a Case 2a equilibrium imply
conclusion (iii).

C*¥ - W, < 0. BHere, p = ay, r =Y(ay), G =K =0 is an
equilibrium. In this case, r = 1 could not be an equi-
librium because the right-hand side of (12) mst be

nonnegative., This and the remark made after the proof of

Lemma L4 imply the first part of conclusion (ii).
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Since Cases 1 and 2 and their subcases cover all possi-
bilities, we have proved conclusion (i) of the proposition.
To complete the proof, we must establish the second part

of conclusion (ii). That is, we must show that Cases 2a and 2b do

not have an equilibrium with r > 1, If r > 1, then G + (p-a,)K

0 and ty Lemma U4 part (d), D'(r,p) < K5. These and (13) imply p

I

ao. By (12) these imply C'(r,a,) - W, = 0, which contradicts C¥
Wo >0and r >1. A

The reader mey bhave noticed that there are additional
stationary equilibria in Cases 2a and 2b, ones with smaller G and
larger K than those described in the proof. Indeed, each econory
satisfying the Case 2a or 2b hypotheses has a continuum of sta-

tionary equilibria. To see this, write (12) at r = 1 as
(16) C* - WQ = p(G-'-K) - 32}{ + (p_ag}[}*

Then, if we solve (13) at r = 1 for G + K and substitute the

result into (16), we get
(17) C* - W, + ayD* = pKy - a5k

In Figure 4, we show the (p,K) pairs that satisfy (17) and p > a,.

The different equilibria have the following features.
At any p 2 an and v = p - 8o, the 0ld are indifferent bhetween
supplying old jewelry and raw gold. They are, however, better off
the higher is p. The higher is p, the smaller the quantity of old
jewelry that gets converted into raw gold. The equilibrium with
the highest p (and highest K) is one with K = Ky - D* and G = O.

The welfare of the young does not vary across these equilibria.
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The multiplicity of Case 2a and 2b equilibria displayed
in Figure 4 depends on the assumption that a sufficient amount of
the initial stock of gold is in the form of old jewelry. Having
displayed the equilibria for an economy in which the entire ini-
tial stock is in the form of old Jjewelry, we can describe the
equilibria for alternative economies, ones that differ only with
regard to the composition of the starting stock of gold.

We let initial conditions, (K('),G{')), for such an alter-
native economy be given by Kj = Ky - D¥ - a(KO-D*) and G4 = D¥ +
a(Ky-D*), where a is a parameter between O and 1. Notice that K
+ Gj = Kje For a = 0, the alternative economy has the same set of
(p,K) equilibria as the original econony. For o > 0, it does
not. For a > 0, the alternative economy does not have a (station-
ary) G = 0 equilibrium. More generslly, as we increase a we
eliminate equilibria from the right in Figure 4. Thus it is easy
to construct a large class of economies all of whose stationary

equilibria have G > O..E‘_/
4. Optimality Characterization of Stationary Equilibria

Before we state and prove a proposition, we restate the
standard definitions.
Definitions. An allocation, {Et-l(t)’gt (t),gt}, t > 1, is Pareto
superior to the allocation, {;t—l(t)’gt (t),(;l]', t » 1, if for all

h,—h —h —h b,*h “h “h
t > 1 and all h, u (ct(t),ct(tu),dt) >u (ct(t),ct(t+1),dt)

and Eg(l) >c18(1}, with at least one strict inequality. (Here

cy_1(t)s cy(t), and d are H-element vectors with typical ele-
h
(

(t), cy t), and d:.) An allocation is

h
ments, respectively, Ci_1
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Pareto optimal if there is no feasible allocation Pareto superior
fo it.
We now prove the following.

Proposition 2. G = 0 (zero storage of raw gold) is necessary and

sufficient for Pareto optimality of a stationary equilibrium.

Proof: The proof of sufficiency is in Appendix 1. To prove
necessity, we proceed W contradiction as follows. Suppose that
the equilibrium bhas G > 0. Then for any date t 2 1 and any h in
generation t, it is feasible to raise the utility of h, while
leaving intact the allocation of everyone else--everyone else in
generation t and everyone else in all other generations. This can

be done hy reducing ch(t), h's consurption of time t bread, and

t
using the freed time t bread and some of the time t raw gold to
produce some time t Jewelry for h. Since at the equilibrium
allocation, the ratio of marginal utilities, ug /11}{, is equal to a,
+ ap, and since it is feasibhle to produce g units of extra jewelry
by reducing c:(t) by a9 units, it is possihble to choose a q €
(0,¢] which raises h's utility. Although there is less raw gold

available thereafter, that does not make infeasible anyone else's

equilibrium allocation. A

Propositions 1 and 2 imply that if D¥ > K, or if C¥* <
Wy, then any stationary eguilibria is optimal. In these equilib-
ria, no raw gold (or old jewelry) is stored. However, since the
price of raw gold is determined and raw gold is present momen-
tarily at each date, nothing would seem to prevent raw gold from

serving as a numeraire in these equilibria.



=16<

Propositions 1 and 2 also imply that the conditions D¥* <
Ky and C* > 1\72 are necessary and sufficient for the existence of a
stationary nonoptimal equilibrium. They are not, however, suffi-
cient to imply that any stationary equilibrium is nonoptimal.
Such an implication does follow for the alternative class of
economies described above, those with a sufficiently large portion
of the initial gold stock in the form of raw gold, since all
stationary equilibria for such economies have G > 0., Note that
our proof of the necessity part of Proposition 2 applies to such
economies because the proof does not rely at all on the waste
involved in converting some of the initial stock of old jewelry

into raw gold that gets stored.zf
5. The Relative Price of a Commodity Money

It turns out that economies with D¥ < K, and C* > W,
have a larger class of mltiplicities than those displayed in
Figure 4. They also have equilibria with a valued fixed stock of
fiat money. It is in terms of this broader class of eguilibria
that we interpret the notion that a commodity is more valuable in
terms of other commodities the more important is its role as a
cormodity money.

As we interpret this notion, it is about multiple equi-
libria and about an association, among equilibria, between rela-
tive prices, p in our case, and the extent or degree to which a
commodity is playing the role of a commodity money. Ve interpret
the degree to which gold plays a commodity money role as inversely

related to the value of fiat money. In other words, we interpret
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the notion as one which calls for a negative association between p
and the value of fiat money among multiple equilibria.

To examine whether there is such an association, we
suppose that the members of generation O are endowed in the aggre-
gate with one unit of fiat money in addition to their gold. Ve
suppose also that this quantity does not change over time and we
let Mt denote the value of this unit of fiat money at date t in
units of time t bread. Note that the equilibria of Proposition 1
are also equilibria for the econormy with the endowment of fiat
money ; they are equilibria with Mt =0 for all t > 1.

Without going through the obvious amendments to (h)-(T),
we will display all the r = 1 stationary equilibria for economies
with D*¥ < K, and C* > W,., 'These are equilibria with My = M > 0
for all t » 1.

Instead of (16), we have
(1R) C* - Wy = p(G+K) - agk + (p-az)D* + M
Then, if we substitute for G + K from (13) at r = 1, we get
(19) C* - W, + a,D¥ = pKy - a K + M

In Figure 5, the shaded area depicts all (p,M) pairs that are
equilibria.

For each M, there is an interval of p's which are equi-
libria. This is the mltiplicity remsrked upon in the M = 0
case. There is an inverse association between M and p in the
sense that for each M, the midpoint of the corresponding p inter-
val is decreasing in M. Moreover, the following can be verified

directly.
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Proposition 3. If there exists a stationary equilibrium in which

K +G > 0, then there is an equilibrium with K = G = 0, M = C* -
W2 and p = ane

The equilibrium with M = C¥ - W, and p = a5 is one in
which gold in any form is not serving as wealth (old jewelry is
free) and in which the relative price of raw gold is at the mini-
mum consistent with the production of new jewelry from old jew-
elry.

As was true for the continuum of equilibria depicted in
Figure L4, the allocations corresponding to the equilibria depicted
in Figure 5 differ by at most the amount that the t = 1 o0ld con-
sume, a difference that corresponds to the difference in the
amount of consumption good used to turn old Jjewelry into raw
gold. Moreover, the addition of fiat money adds no new consump-
tion allocations; every allocation implied by a point in Figure 5
is present in the one-dimensional continuum of Figure 4. A more
significant role for fiat currency would arise in settings in
which storage and trading of old jewelry is not a perfect substi-

tute for storage and trading of fiat currency.ﬁj
f. Concluding Remarks

We have described efficient and inefficient equilibria
that can be interpreted as commodity money equilibria in a model
in which markets are perfect in the sense that borrowers are free
to issue claims in any form. In particular, borrowers are free to
issue claims in forms--analogous to banknotes, for example--that

compete perfectly with any other nonutility yielding assetrzf In



some, if not most, actual commodity money systems, unfettered
private intermediation seems not to have been permitted. For
example, in 19th century England, Peel's Acts (18hk, L45) set a 100
percent marginal reserve requirement in gold against banknote
issue. And, in the United States, the National Ranking Act (1863)
set a 100 percent reserve requiremenrt in government bonds against
banknote issue.ﬁ/ Ve suspect that systems with binding restrie-
tions on private intermediation are characterized hy distortions,
some of which have nothing to do with the overaccumilation distor-
tion that characterizes our nonoptimal equilibria. Against the
background of such restrictions, the choice of a standard--say,
whether commodity or fiat--becomes a kind of second-best choice.
We have not attempted to analyze such choices--in part because
there is a strong presumption that no general results would emerge
and in part because the role of the monetary standard would not be
isolated if some essentially arbitrary distortion were taken as a

given.
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APPENDTX 1

Proof of Lemma 1

Property (a) is an immediate consequence of (8) summed
over the members of generation t. Property (b) is a consequence
of our gross substitutes assumption which gives us C, < O, Cq 2
0. Hence, C{ = 3C'/3r = Cy(3s,/3r) + Cy(ds,/dr) + 03(333/3r) =
-02/r2 - C3(p—a2)/r2 > 0. To establish (c), for each p > a,, let
I(p) = [ay+ap,aq+p]l. Then, bty the definition of s3, for any r >
1, s3(r,p) € I(p). TFor each x € I and any A, there exists r(x)
such that C(l,l/r‘,x) > A for any r 2 ?(x). (This follows from the
fact that C(sl,se,s-j) + @ as s, » 0 for fixed (51,53).) Let r* =
max[r(x)] for x € I(p). Then, if r > r* and x € I(p), C(1,1/r,x)

2 A, A

Proof of Lemma 2

For a fixed p > p¥, the right-hand side of (15) is a
constant function. It is a minirmum at p = p*. 1If C¥ - VW, > 0,
the minimum is C¥ - W2; otherwise it is 0. Thus for any p 2> p¥,
c'(1,p) - Wy < (p-a5)Ky. This and property (c) of Lemma 1 imply
existence of Y. Property (b) of Lemma 1 implies that ¢(p) is a
function. The continuity of C' implies that Y is continuous.
Finally, the last fact says only that the y(p) (or r) that solves
(14) lies to the right in Figure 2 of the r that solves rW; =
(p-ae)KO. This is an obvious consequence of Iemma 1(a). (Note,
by the way, that P(p) > 1 and with equality only at p = p¥* if C¥ -

Vi, > 0.) A
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Proof of Lemma 3

Since sy and s, do not depend on p, property (a) depends
only on how D(Sl,SQ,SB) varies with s3. The asserted limiting
behavior is implied by D + = as By * 0and D+ 0 as 8 o = and by
the following limiting behavior of s3; s3 > 0 as p * ~(aq+as/r)
r/(r-1) and §3 * ®as p * =, The asserted signs of the partial
derivatives of D' follow from the chain rule and our gross substi-

tutes assurption. A

Proof of Lemma L

(a) Lemma 3(a) implies that ¢(r) exists and is a func-
tion. Continuity of ¢ is implied by continuity of D'. That ¢(r)
is decreasing whenever ¢(r) > ap follows from Lemma 3(b).

(b) Suppose not and that B > ¢(r) for all r. Then, K, =
D(r,¢(r)) > D(r,B) for all r. In particular, the limit of D(r,B)
as r * 1 does not exceed KO. However, since this limit is D¥*, we
have a contradiction.

(c) This is an immediate consequence of D5 < O for r > 1
(Lemma 3).

(d) Since D* < K,, D'(1,p) < K, is satisfied by any p.
For any r > 1, D'(r,a,) = D(1,1/r,a +a,) < D¥, where the inequal-
ity follows from Dy < O (Lemma 3). Since D5 < 0 (Lemma 3), it
follows that D'(r,p) < D* for all r > 1 and p > ap and with slack

unless r = 1. A
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Proof of Proposition 2: Sufficiency

We derive a contradiction from the assumption that there
is an allocation, denoted the "-" allocation, that is feasible and
Pareto superior to the stationary G = 0 equilibrium allocation,
denoted the """ allocation. The proof proceeds by considering the
first date at which "-" differs from """ and by showing that the
difference and the other properties of "-" contradict its feasi-
bility. Infeasibility is established by showing that the sequence
faf(t+1)} is not bounded. This is done using properties of a
mapping g that, for each Ct_l(t), determines the minimum value of
Ct(t+1) consistent with feasibility and with individual utility
being as high as under the """ allocation.

The proof relies on three lemmas. The first, Lemma 5,
establishes that g is an increasing and strictly convex function

~

and g'(Cz) > 1, where C, denotes the

which satisfies g(C?) =C 5

2

constant value of total second period consumption under the """

allocation. One such function is displayed in Figure 6. Lemma 6
establishes that if t is the first departure of the "-" allocation
from the """ allocation, then Et(t-bl) > 62 (it lies to the right
of the fixed point of g). The details of the induction step are
in Lemma T.

The following notation and facts are used in the lemmas.

Tk fh(c’l“,dh} be defined by uh(cll’,f(cll‘,dh),dh) =g,

-

where uh is h's utility in the given G = 0 equilibrium, and let
F( =] et d) i

F(cq,d) = Eh c;»d ), the sum being over the H members of genera-
tion t, t 2 1. Since W is twice continuously differentiable and

strictly quasi-concave, the functions fh and F are twice continu-

ously differentiable and strictly convex.
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Also, for x € (0,W), let T(x) = {(cy(t),dy) eR
Ci(t) + (aj+ap)Dy < W - x and Dy < Kyle As is well known, I(x),
which is a special case of a budget correspondence, is a continu-
ous correspondence. Moreover, for fixed x, I(x) is convex and
compact.
Lemma 5. lLet g(x) = min F(cl,d) subject to (cl,d) e I(x). Then
(a) g(x) is a differentiable, strictly convex, and increasing

and is attained at, and only at,

)s

function of x; (b) g(Cg) = C;

(Clsd) = (;1,5); (c) g'(az) 2 1. (Here (cl,d)denotes (gt(t),d

~ ~ -

t
vectors of constants.)

Proof. (a) Given the strict convexity of F(+) and the convexity
of the set I(x), the values (cq,d) that attain g(x) are unique.
Then differentiability follows from twice differentiability of
F(+).

To establish convexity of g, let Xy and x, be any two
real numbers such that I(x;) and T'(x,) are nonempty. Let (ci,di)
be the unique minimizer associated with X5 i =1, 2, Pick any 0
i + (l-k]ci,

Al + (1-2)d°. Then it is straightforward to verify

< A < 1 and define x(A) = Axq + (l—l)xz, cl(k) = Ac

and d(A)

n

that (ci,dl) € P(xl) and (ci,de) € F(xz) imply  (eq(X),a(r)) e
I'(x(A)). This, the strict convexity of F, and the definition of g
imply g(x(A)) < Flep(A),a(n) < aF(el,ah) + (1-0)F(c?,0®) = ag(xy)
+ (1-2)g(x5).

Finally, if X1 > Xo, then P(xl) is a strict subset of
F(xe), strict in the sense that any element on the boundary of the
set I'(x,) does not belong to I'(xy). As F(e) is decreasing in each
argument, its minimum is achieved on the boundary. Therefore, g

is increasing.
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(b) From the definition of I'(Cg) and feasibility of the
"M gllocation (see (2)), it follows that (cl,d) € F(C2)' Given
the strict convexity of F‘(cl,d) and the convexity of the feasible

set I'(Cz), the first order conditions are necessary and sufficient

for a minimum and are attained at a unique point. These condi-

tions are: c}{(f?_ﬂ) 0 and @ [f;+(a1+a?)l+u] = 0 for each h;

A {Zc}l.'+( a,%a, )Edh-w-ég}

I

0; and u{Zdh-— KO} = 0, where A and u are

the nonnegative Lagrange multipliers associated with the con-

-~

straints that define the set TI'(C.). We now show that these 2§ + 2

2
equations are satisfied by 1 = Cq» d =d, A =7r, and u =
p(r-1) + ra; + ap - r(a1+a2).
*h _ .h,h b *h _ .h, h *h
Let f, = fl(cl,d ) and £, = fe(cl,d Y By construc-
. h,”h *h “h - ; £ RN
tion f (cl,d ) = c,e As the allocation is an equilibrium, the

following marginal conditions hold: f? = u;'_l/ul; =r » 1 and f; =
u3/u2 = p(r-1) + ra, + ap, where u, = uj{cl’CQ’d )e Tt follows

that our conjectured solution satisfies the first 2H equations.
Since the """ allocation satisfies (2) with equality, the next to

the last equation is also satisfied. As for the last equation,

-~ ~

notice that if r = 1 or ; = an, then py = 0. If r > 1 and ; > an,
then the proof of Proposition 1 shows that (;,r:) = (;,¢(;)) and,
consequently, Zgh = KO.

(¢) By the envelope theorenm, g'(ég) = A= ; > 1, A

Lemma 6. If t

t is the first date at which (c,_,(t),c (t),d,) #

), then for t = t, a't(t+1) > x. +a.G, for some

t 2%

(cp_3(t)se (6),d,

Xg > 02.

Proof. By the definition of t and feasibility (see (2)),

(]

=0

t
for all t < t. In addition, by the definition of t, Ef__l(t) >
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C:_l(t) for t =t. (If not, then some old person at t = t has

n_n mnan

less consumption under the allocation then under the

allocation, which violates the assumed Pareto superiority of the
former over the latter.) These two facts and (2) imply that for t

=4, Ct(t) + (a1+a2)Dt <W-¢C, - a2Gt and, therefore, that

(t) d ) & F(C We complete the proof of this lemma by

o*es t)

dealing separately with two cases.

G, =0fort =t: In this case, (ct

& (t),Et) € 1"(52). We

~ -

know that g(Ce) = C,and that this minirum of F is attained

A ~ ~

uniquely at (ct(t),dt). It follows that F(E;(t),a') > C

t

E;(t+1) > F(E;(t),ﬁ%), we have our result for this case.

Since

G, >0 for t =t: In this case, Ct(t+l) > g(02+553t) >

02 + a?Gt for t = E} where the strict inequality is a consequence

of Lemma 5. A.

Lemma 7. e (1) C, (t+1) > x, + 2,0, and (1) % > C,, then

el o
Ct+1(t+z_) > g(xt) + aEG‘t+l

- W ¢ c g T
Proof e have Ct+1(t+2) > g[Ct(t+1)+e. ((‘t 14 ) 12g(x 4-32(‘t+1)

where the first inequality follows from (2) and the assumed Pareto
superiority of "-" and where the second follows from hypothesis
(i) of the lemma and g' > 0. By hypothesis (ii) and Lemma 5 (see

)>g(x)+as A

Figure 6), g(x +a PONRE

2 t+1
Proof of Sufficiency. Lemmas 6 and T provide the ingredients of

an induction argument that implies that {E%(t+1)} is unbounded
and, hence, not feasible. TFor t = t and all positive integers k,

they imply that C,

t+k(t+k+1) > x vwhere for all such k, X,

t+k
g(xt+k_1) with X > C2' By Lemma 5, the sequence {xt+k} is un-

hounded. A
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APPENDIX 2

The main purpose of this appendix is to indicate the
sense in which our gross substitutes assurption is necessary for
existence of a stationary equilibrium (or even for existence of a
stationary point). The case of concern, the one for which the
assumption is used, is D¥ > K, and C* > W, (Case la of Proposition
1)

The crucial implication of gross substitutes is Lemma
1(b): Ci(r,p) > 0. Absent this property, instead of the situa-
tion illustrated in Figure 2, we could have a C'(r,p) function
with the properties illustrated in Figure T (recall that C'(1,p) =
C* for all p). In such a case, Y(p)--which is defined in Lemma 2
(equation (14))--is not a function and, in particular, is a cor-
respondence which is not lower hemicontinuous (see Figure 8). If,
in addition, ¢(r)--which is a function under very general assump-
tions--is as shown in Figure 8, then no stationary point exists.

A sufficient condition for nonlower hemicontinuity of
v(p) is Ci(l,p) < 0 for all p » p¥ in a neighborhood of p*. To
emphasize that nothing bizarre is required in order for this to
happen, we suggest conditions under which it happens even if there
is one person per generation.

Let h(sl,sz,s3,y) be the standard individual demand
function for second period bread as a function of prices and
income, ¥y = slwl + sgwe. Then, denoting the corresponding substi-

tution terms of the Slutsky matrix by hg, it follows that

(20) Ci(l,p) = —[hg-(C*—We)hh—(p—ag) ]

Ra



<

where all partial derivatives are evaluated at r = 1 and, there-
fore, at (31,52,33,y) = (1,1,a1+a,,W;+W5), which does not depend
on p.

Assuming normal goods, so that h), > 0, then (since C¥ >
Wy and p > a,) a necessary condition for Ci(l,p) < 0is hy < O.
If this necessary condition holds, then Ci(l,p) < Ci(l,p*) for all
p > p*. Thus, it suffices to examine Ci(l,p*).

By decomposing h3 into income and substitution terms, we

find that the right-hand side of (20) evaluated at p = p* is

negative if and only if

(21) I(C*-We)/KO] [(KO-D*)hh+h§] < h3.

Since D¥ > KO’ the income effect contributes to satisfying (21).
And, since h§ can be anything (negative if second period bread and
jewelry are net complements), it is clear that well-behaved pref-
erences can satisfy (21).

Although, as this discussion indicates, gross substi-
tution is necessary for existence of a stationary equilibrium (and
point), it is not necessary for existence of an equilibrium. Our
model satisfies the assumptions under which Mollew (1083) estab-
lishes existence of equilibrium for a general class of overlapping
generations models with production. Unfortunately, as is usual
with general existence results, M;ller's result does not describe
the equilibria. 8o, for example, it is unclear whether D¥* > Kq is

sufficient for existence of an optimal equilibrium in the absence

of the gross substitutes assumption.
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FOOTNOTES

ljFor examples of overlapping-generations models with
the possibility of capital over-accumulation, see Diamond (1965),
Cass-Yaari (1966), Wallace (1980), and Sargent-Wallace (1983).
Wallace and Sargent-Wallace also suggest identifying the capital
goods of these models with commodity monies.

EyNaturally, it is sufficient for all our results that C
and D satisfy the gross substitutes assumption.

éij it were not true that Ci > 0, then we could not
establish that ¢(p) is a function. It would be a correspondence.
8ince lower hemicontinuity could not be established, a stationary
equilibrium would, in general, fail to exist. See Appendix 2 for
further details.

EjOne way to rule out equilibria in which old jewelry is
stored is to impose a "transaction cost" on trade in o0ld jewelry--
a cost which could be thought of as depicting the need to have old

Jewelry appraised each time it is traded. If such a cost is

modeled as a cost in terms of bread resources that is proportional
to the amount of old jewelry traded and if it exceeds any corres-
ponding cost for the trading of raw gold, then there could not be
a stationary equilibrium in which o0ld jewelry is stored.

éyFor our original economy, an alternative proof of the
necessity part of Proposition 2 involves noting that some addi-
tional time 1 bread can be provided without sacrificing any other
utility-yielding object by producing less raw gold at t = 1. Both

our proof and this alternative rely on ap > 0.



s

fyThe "transaction cost" model described in footnote U
is an example.

IjOur model can easily accommodate real resource costs
of converting safe private loans into assets like banknotes pro-
vided that the technology is consistent with a competitive equi-
librium. If it is, then adding it to our model would not substan-
tially change the model or, therefore, Propositions 1 and 2.

fyAs these examples suggest, there is more to the design
of a financial system than the choice of a standard. The debates
about Peel's Act and those about a successor system to the Na-
tional Banking system in the United States all presumed a given

standard.
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