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ABSTRACT
This paper develops 2 forecasting procedure tases cn 2
Bayesian method for estimeting vecter zuloregressicns. The 3ro-
cedure is applied *to ten m=croeconomic variables and Is shown €2
izprove out-of-sample forscasts relative 1o univariate equa-
tions. Althcugh ercss-variatles rasponses zre damped Ly the
es

(4]
(12

cricr, considerable interactlion arong the variabi is shewn =c

captured by the estimates.

We zprovide unccndi:ional Torecasts as o
1983:3, We also descrite how a medel such as thi

V]

meke conditiconal zprojeciicns and to analyze policy zliernatives.
As an example, we apalyze 2 Congressicnal 2udget Offize forecas:
made in 1982:12

While no autematic czusal interprezziicns zrise fronm
models like ours, they cravide a dezailed charzeterizaticn of ths2
dynamic statistical interdependence of =z set cf sccrnomiz varia
ables, which may hels in ‘ neses, witheous

hi
containing any such hypotheses themsel

The views excressed herein are those cof the zuther znd not necss-
sarily those ¢f <he Tederzl Peserve Zank of linnsazclis 2r <ha
Tederal Peserve Iystem., The meisrizl contained is of 2z zrelizis
nary nature, ls circulated to ssimailste discussion, 2nd iz not =2
te cuoted wizthou* permission of <he ausher.



Introduction

We apprecach the analysis of a group of econonmic time
series as the problem of using a prior joint distribution for the
obtserved values of the series with future wvalues to obtain a
posterior distribution for ~future data conditional on cbserved
data. The methods we suggest are Bayesian in spirit. We do not,
however, attempt to make our prior distributions fully reflect our
personal a priori knowledge and uncertainty. Instead we aim at a
prior distribution which is easily standardized and reproduced by
other researchers and reflects aspects of prior distributions
which are likely to be similar across many researchers. The
posterior distrivution produced by our analysis is, of course,
Just the likelihood functicn weighted by the pricr p.d.f. Cur
methods can be thought of as a way of reporting the likelihood
function to other researchers; it provides a report more useful
than the unweighted likeiihood function itself for researchers who
themselves put little pricor prebability on regicns of the param-
eter space given low probability by cur prior.

We regard conventicnal methods of developing protabiliiy
models for eccnometric time series as unreliazble tecause they do
not give probahilistic treatment to the uncertainty arising frem
researchers' inexact knowledge of the *rue '"model specifica-
tion." Conventional approaches produce rmodels which can be helr-
ful adjuncts to Judgment in producing forecasts, tut the irmrlied
probability distributions about the forecast which such models
generate are almost invarizbly teoo optimistic. {(The ideas in
these first two paragrephs are discussed 2t more lengih in Sims

(1982) and Littermen [1cR2),!
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Specifying a Jjoint distribution over the hundreds or
thousands of interrelated data points available in mcst applica-
tions is a complex task. Any explicit joint probability model we
may write down is likely to contain hidden implications which we
would reject if we confronted them. Yet there is no jeoint distri-
bution representing "ignorance" con which we can rely as in some
sense conservative. For example, if we take a large-variance
Jjoint normal prior on the coefficients of an unrestricted vector
autoregressive model for the data as representing ignorance, we
are in fact putting high probability on medels with very large
coefficients. Such models produce erratic, poor forecasts and
imply explosive bhehavior of future data. Most researchers would
think it unlikely that such models actually characterize the data,
yet use of nonBayesian estimation methods is roughly equivalent tc
use of the flat priors which put high probability on such mod-
els. This is why those making practical use of nonBayesian meth-
ods are forced to impose arbitrary or conventional restrictions to
simplify their models, eliminating many parameters which it must
be admitfed are not xnown to be zero.

Since we and the profession as a whole have little
experience with specifying Jeoint distributicons for these contexts,
in this paper we experiment with a range of pricr distiributions.
The range we consider is indexed by a set of eight parameters.
Our view is that a gocd standard public srior may well be some
weighted average of the priors indexed by these parameters. Since
the priors with all parameters Zixed are much more tractable than

would be a weighted integral over the parameters, our hope is that
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we will emerge with evidence that for many purposes it will ke
possible to obtain good results with a2 single setting of the
parameters, without making the extensive explorations which under-
lie this paper's results. This would occur iIf cover a wide range
of reascnable settings for the parameters the model generated
similar conditional distributions of the future given past values
of the variables in the system.

Another peossibtility is that, while conditicnel distri-
butions are sensitive to the parameter setting, the data are fit
well only by parameter values in a certain narrow range, and
within this range conditicnal distributions of the future are all
similar. This would imply that, though we need to search to find
a good parameter vector, we can then generate conditional distri-
butions with a single "good" vector. The inconvenience of having
tc compute many such conditicnal distributions and then take
weighted averages of the results would be avoided.

While our explorations are in some ways like fitting the
parameters of a conventional model--we examine varicus points in a
parameter space and check how well the resulting models fit the
data--the motivation and implications of the results are different
in important respects. Cur 1ideal conclusion would be that the
parameters are "ill-determined”--that the fit is similar across =z
wide range of parameter settings which all have similar implica-
tions.

Cf course, there is a question as to what we mean by 2
particular prior's "fitting" the data well or badly. The Eayesian

interpretation is that we have specified our pricr incompletaly.
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The usual Bayesian formulation has a model for the data y speci-
fied as a density function p(y'e) for y conditional on parameters
9, yielding a Joint density for y and § as the product p(yfejq(e),
where q is a prior density on the parameters 8. We are introduc-
ing an exira layer of parameterizaticon. We specify 2 model for
the. data conditional on rparameters § which we call "eoeffi-
cients”". We specify a prior cver 9 conditional on a second set of
parameters Tw, so that our Jjeint density for the data and the
coefficients conditional on T is p(ylﬁ)q(a’v). We leave inexpli-
¢it our prior over m, which we need to fully specify the proba-
bility distribution of the data. We can in principle integrate
p(yle) q(e[ﬂ) with respect to & to obtain the marginal distribu-
tion for y given 7w, which we could call m(y,n). If we are not

directly interested in 8, we can treat m(y[w) as our model for the

™)

data. For a fixed set of observed data y, the behavior of nly

1

as a function of 7 plays tne formal role of a likelihcod func-
tion. As usual in such a context, if our prior density is flat in
the region where m(y*w) is large, our posterior p.d.f. for m will
be proporticnal te m(yfﬁ) and we can think of ourselves as making
inferences about the likely values of w. 2ut since here 7w is
interesting mainly for its implications about 2, we do not focus
inference on "estimating” .

Qur posterior p.d.f. on 8, for a fully specified pricr,
would be obtained by forming the marginal jeint p.d.f. for ¢ and y¥
by integrating over 7w, then applying Bayes' rule. In the case
where our prior p.d.f. on 7 is flat in the relevant region, this

leads to a posterior p.d.f. for 8 which iz 2 weighted average of
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those obtained conditional on w, with the relative weight on 7
given bty m(ylv). Thus, when we measure the fit of the model we
ought naturally to use the relative size of m(y[ﬂ). This is
formally much Llike wusing the Ilikelihood function, and we will
cecasionally henceforth refer to m(y‘W) as the likelihood, but it
is nonetheless a Bayesian notion, since it is derived bty taking
the coefficients § as a priori random.

In fact, we shall see that this Bayesian noticn of how
well a prior fits the data corresponds to measuring the fit by
forecasting performance. That is, with a particular setting of 7,
we can generate recursively through the sample one-step-azhead
forecasts of data at £t + 1 given data up through t. The measure
of fit based on cur Bayesian likelihoed turns out under our as-
sumptions to ke a weighted sum of squares of the one-step-zhead
forecast errorsw Readers uncomfortable with the Bayesian termi-
nology can think of what we are doing as using 7 to index fore-
casting procedures, choosing among procedures by how well they
forecast in the sample period. From this perspective, we are
taking the large parameter space indexed by 9 and reducing it to a
smaller one indexed by 7. What we are doing is quite different,

however, from the conventicnal parsimonious parametrization"”

v

approach, which would use some subspace of the 8-space, judi-
cicusly chosen, as if it were +the whole parameter space. Cur
approach will, for any given choice of 7, allcw the 5 used in
forecasting to te more and more sircngly data-determined as data
accumzlates through time, with no subspaces of the 9-space ruled

out.




The Forecasting Procedure

The procedures we are about to describe in detail were
developed in Littermen (1980, 1981, 1982} and Sims (1980, 1982).
Though the procedures are described in generzl terms, it may help
to bear in mind that we will be applying them to a specific set of
data. We consider a set of ten wvariables, measuring output,
prices, money, federal government revenues and cutlays, stock
prices, interest rates, the value of the dollar, the flow of total
nonfinancial debt, and the change in btusiness inventories. The
data are described fully in the Apprendix. Observations begin in
1948:1 and end as of 1983:3. All variables are logged except
changes in business inventories and the interest rate; all vari-
ables are seasonally adjusted except the interest rate, stock
price index, and the trade-weighted dollar; ncone of which show
evidence of a ssasonal pattern. .

Starting from an unrestricted, time-varying, m'th-order

vector autoregressive representation for the n-vector, X,

(1) X, =A (L)X ,+C_ +¢

t y

where A.(L) is for esch t a polynomial of order m in strictly
vositive powers of the lag cperator L, we express our Drior sepa-
rately for each egquaticn as a distribution over the coefficients
in A and C. In principle we should alsc treat the variance of €y
as uncertain, tut instead this is treated as ¢ne of the parameters
of our prior. Our approech can be thought of as irposing "fuzzy"”

restrictions on the equaticn, striking a balance btetween decreas-

ing variance and increasing bias as the restrictions are tighitened
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up. VWhat we d¢ thus has antecedents in the literature on shrink-
age estimetion and its Bayesian interpretaticon, for example, the
works by Hoerl and Kennard (1970}, Stein {197L), Shiller (1973)
and Leamer (1972, 1978).

The prior is specified as 2 multivariate normal distri-
tution for the ccefficients of the vector autoregression. We
refer to changes in the parameters of the pricr which lead to
smller (larger) variances of coefficients as tightening (locsen-
ing} the prior. The prior means for all ccefficients are zero,
except for a mean of one at the first lag of the dependent vari-
able in each equation. Thus, in the limit as the prior is tight-
ened around its mean each equation %takes the form of a randor

walk.
(2) X, = X + €

Because most of the variables we use have persistent trends, we
always keep the prior for the constant in each equation flat in
the relevant region of the parameter space, s¢ the limiting Zform
for. each eguation is essentially a randem walkx with drift fit teo

the data.

(3) X, = X IR

t-1

While we recognize that a mores accurate representation of our
prior beliefs would give less weight to systems with explosive
rcots than is implied by our symmetric distrivutions around +his
mean, we doubt that the gain that could be achieved by avandening

the Gaussian form for our prior would be worth the rtrice. In
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particular, the likellhood function for data which is not explod-
ing will be quite clear in its rejection of roots significantly
outside the unit circle.

We denote by Gt the parameter vector obtained by stack-
ing up all the coefficients of the wvector autoregression. The
initial wvector 80 is given a mltivariate normal pricr density
function with mean 3 . The covariance matrix of the prior, de-
noted EO, is generated as e function, F, of a vector of prior

parameters, T. Thus, at time 0, we have.

(&) = F(n)

ZO
(5) 8y~ w(E,2).

We postulate change in the coefficients of the auto-

regression over %time according to

3

(&) et = mg * at_l + (1-11'8) * 5 + My o

The parameter g controls the rate of decay toward the
prior mean. When it is set to 1, as in a number e¢f our experi-
ments, we are modeling the coefficient wariation as a random
walk. The randcm change in the parameter vecicr, M., is assunmed
to be drawn from a distribution with zero mean, and covariance

matrix proporticonal to EO..];/

-E/Except that the variance in changes in the constant
term 1s kept equal to the variance of changes in the ccefficient
on the first own lag, rather than set preportional to the effec-
tively infinite prior wvariance on the constant term.
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The factoer of proportionality, Ty which scales ZO to
determine the covariance wmatrix of u,, determines the amount of
time variation allowed in the parameter vector.

Having specified the probability model, we apply the
Kalman filter equation by equation to obtain recursively posterior
modes ét for Gt besed on data through t-l. When we have passed
through the full sample this way, we end up with a value f{or the
likelihood of the sample and a full-sample estimate of the param-
eter vector applying at the first post-sample date.

The Xalman filter ig easiest to understand for the case
where the prior 1s normal with a fixed covariance matrix and the
equation disturbance fterms €4 have known wvariance. In practice,
of course, we do not know the eguation disturbance variances sz
priori. Qur procedure is toc use 02, +2 times the vector of vari-
ances of residuals in a univariate autoregressions of order £, as
if it were exactly the vector of variances of equation distur-
bances for the mailtivariate sgystem. The results of the filter
depend only on the ratios of equation disturbance variances to the
elements of EO. We can examine how the likelihoodgf value behaves
as a function of'cz for equation i, keeping all parameter esti-
mates unchanged. At the highest value of the likelihood, we have
the modal estimate of equation disturbance wvariance for the fixed
ratio of ¢, to ZO which generated our estimetes, assuming & flat

pricr on ¢ . We will also have an implied rescaling of both our

[EOEAVIE TR

initial c?_ and our initial I,.

-

EyThe reader is reminded of cur special use for the ter
the

likelihood: the marginal ».d.7. for the data conditisnal c¢n
parameters T.
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The value of the likelihood for the rescaled c? and Lp
at which the postericer p.d.f. is maximized provides a natural
measure of fit for individual equations. The likelihood measure
is a kind of estimate of the one-stepr ahead forecast standard
error. Scaled to have units of standard errors of one-step ahead

prediction errors, it is given by

- 2
(,T) {T-l ' tat"'l

L R
t=l (sy,/s%)

5

= ; 2
where _€ is the one-step ahead forecast error; s, 1iIs the
t t+l it
, ; ; 2,
theoretical prediction error for equation I at t, s; 1s the sample

; 2 : .
geometric mean of si It differs from the ordinary root rean

.
square forecast error In that it weights squared forecast errors
by the inverses bf'thgir theoretical variances. The theoretical
variances vary wacross observations because the component of fore-
cast error variance due to parameter change depends on the values
of the independent variabvles.

We have not seriously explored the pectential gains from
treafing the equations of the system Jeintly. Least sguares
equation by equation 1is fully asymptotically efficient for an
unconstrained wvector autoregression, because the same variables
appear on the right-hand side ¢f each equation. The BRayesian
posterior mode is not correctly captured by single equation meth-
ods, however, even if priors are neormal and independent across
equations, unless the prior covariance matrices are proportional

to one znother and the same multiple of equation disturbance

variance in each equation. Furthermore, in a system as large
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variables) as the one we examine in this paper, there are many
tSS) free parameters in the disturbance covariance matrix, all of
which affect the posterior distribution. It is likely that by
imposing an informative prior on the 60C coefficients on lagged
variables while using a "flat" prior on the 55 parameters of the
covariance matrix we are missing an avenue for improving reliabil-
ity of these methods.3/

The single-equation measures of fit which emerge natu-
rally from the Kalman filter have a multivariste analogue, tut it
cannot be computed without using a multivariate wversicon of <the
Kelman filter. We have therefore put primary emphasis on a2 dif-
ferent class of mltivariate measures of fit, the log-determinants
of matrices of cross products of k-step ahead cut-of-sarple fore-
cast errors. The likelihood measure of fit would differ from one
based on the determinant of the cross product of one-step ahead
forecasts mainly in weighting the errors by the inverses of their
conditional variances.

The log-determinants of the matrices of summed cross-
products cf k-step ocut-of-sample forecast errcrs which we rely on

as our primary measures of fit are defined by

éfWe could parameterize the model initially in recursive
form, with the J}'th equation expressing Xit as a linear function
of lagged Xt's and current Xit’s for i % : and the covariance
matrix of equation disturbances specified as diagonal. In such a
model single-equation procedures would ceincide with mltiple~
equation procedures becazuse of the diagonality of the disturbance
matrix, and most of the free parameters of the covariance matrix
of residuals would become coefficients on right-hand-gide vari-
ables. The difficulty with this approach 1s that normal gprior
distributions on coefficients in such a recursive system cannot be
chosen to treat variables symmetrically. The potential advantages
of including conterpcraneous relaticons among disturtances in the
prior distribution are great encugh that this epproach should ke
explored, however.



(8) R T
T -
(9) B = Lo (B Fand
s=1
(19) k-step-ahead log-determinant = log (lEk]).

Six parameters determine the generzl form of our func-

tion, ¥. The parameters and their roles are as follows:

parameter controls:
L3 ] relative tightness on own lags
g relative tightness on lags of

other wvariables

T relative tightness on constant
3 g

term
T differential tightness among

other variables

g overall tightness
Tg tightness on sums of coefficia
ents

Let the ith component of X, xi have the scalar repre-
sentation:
(11) % = ai,lxt-l * ai,zxt~2 et ai,mxt—m
* a;,lxi-l N a;,exi-a T ¥ a;,‘x*-m
* a;,lx:-l * a;,exz-e T ? ai,m*i-m veae,

The first five components of 7, together with the ele-
-

2 and a set of relative weights, w-, for i=l,...,n;

j!

J=1,.4s,n, define a diagenal matrix of variances for the coeffici~

ments of <

i
k= 1,2,-..,.'!1,

ents. Tor ccefficients of own lags, thet is, 27 o !
- N

we assume the variance is given by
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W=

(12) Var (a; k) = > 1 T
" k'exp(ﬁﬁw.)
i
For lags of other variables in a given equation, that is, a? K? k
k]

= 1,2,60.,m, and i not equal to j, we assume the variance is given

by

J L V]

) 527
keexp(w

(13) Var (ai

for not equal to J.
Jrk

2
L‘J)J

For the constant term in each equation we assume the variance is

given by

(14) Var (eI} = n_ o7 e m. « g .

fl

The c? scale factors are present to take account of the
units of the data in determining the pricr +tightness for ccefflici-
ents on different variatles.

The relative weights, wj , are a sat of number; which we
specify to refiect our a priocri knowledge about the likelihood
that lags of variable J will have nonzerc ccefficients in equation
i. The larger is wj ,the closer to zero we feel that coefficient
is likely *o be. For most of the wvariables we have specified

i i . . - .
w, equal to 0 and @, equal tc 1 for i not equal to j. Feor the
- D)

interest rate and the irade-~weighted dollar we specified w;}

5
-

egual
i : -
to 1 and mj equal to 2 for 1 not equal te J. Thesge weights,

relative to the others, reflect our helief +that these wvariatles

are a priori more likely to behave like random walkxs. Finally,

po

i

for the stoek price index we specified w, egqual te 1 and w. equal

e
o

to 5 to reflect our strong belief that this variable behaves like

a rapdom walk.
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Given the above tightnesses on individual coefficients,
based on L2 through Ts, we also wished to impeose a prior belief
that the sums of coefficients on own lags are close to 1, and on
lags of other wvariables are c¢lose to 0. This does not affect the
mean of our prior. Consider a diagonal block of variances, M, for
a vector of coefficients, 8, on lags of variable J in eguaticn i,
defined by parameters m, through Mo Let the vector 3 be defined
by
6%

(15} s = { T SN RO § I

J

J
Then following the heuristic logic of Theil's mixed estimation

rocedure, we can introduce a "d observation” of the form
P . umny

(16) S6 = v,

with the wvariance of v set to cne, by medifying M to teke the new

fora
MSS'M
(17) N=M {m}

Improving Forecast Accuracy

Before we search over the prior parameters, we generate
a set of Dbenchmerk univariate, f{ixed-coefficient, autcregres-
sions. PRased on the results in Litterman (1982), which viswed
out-ofw«sample forecast performance as a functicn of lag length for
many of these variables, we checse to include six lags in each
equation and a constant term. For this set of equations, and all
subseguent specifications, we calculats sets of 1, 3, &, and 12«

step ahead forecast errors for each month frem 1951:1 <through
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1680:12. We compute log-determinant measures of fit as well as
standard errors for each variable, and we look at three ten-year
sub-periods, as well as the overall fit in order to gauge the
consistency of the results. The overall measure of forecast
accuracy to which we gzive primery attention is the full-pericd
log-determinant of the covariance matrix of one-step ahead fore-

cast errors. The univariate results are presented in Table 1.



Variable
1-3tep Horizon

Standard Errors

Real GNP .

GNP deflator

M1 ‘

Stock Price Index
Treasury bill rate
Trade weighted dollar
Flow of total debt
Change in inventories
Federal outlays
Federal receipts

Log determinant
3-Step Horizon

Standard Errors

Real GNP

GNP deflator

M1

Stock Price Index
Treasury bill rate
Trade weighted dollar
Flow of total debt
Chenge in inventories
Federal outlays
Federal receipts

Log determinant
f£~Step Horizon

Standard Errors

Real GNP

GNP deflator

M1

Stock Price Index
Treasury bill rate
Trade weighted dollar
Flow of total debt
Change in inventories
Federal outlays
Federal receipts

Log determinant

Univariate Forecasting Performance

Period 1

0.965
0.204
0.292
2.895
0.231
0.295
18.863
L.967
5.209
L.300

-69.035

1.h92
0.506
0.651
5.301
0.502
0.562
Lo.328
5.868
S.64T
5.279

-58 . 2TT

2.5L9
0.568
1.151
9.598
0.910
0.882
LE,127
£.700
$.336
8.073

-50-336
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Table 1

Pericd 2

0.796
0.136
0.321
3.280
0.233
0.355
8.9L5
L.981
3.839
k.330

-700?h1

1.059
0-368
0.616
$.608
0.588
0.753

16.757
5.507
L.819
5.263

-£0.593

1.k90
0.673
1.137
10.751
0.902
1.060
21.069
5.866
6.986
£.0%0

-5L.438

Period 3

0.818
0.208
0.498
3.695
0.871
1.681
T+155
6.531
4.383
3.905

-62.81¢

—

1.337
0.kgs5
1.01%
T.532
1.849
L.k2g
1L4.865
8.185
L.532
L,178

-52.840

Overall

10309
0.L4E0
0.782
F.T1lL
1.157
2,614
28,6L2
£.627
5.022
4.3k

‘53-523



12-Step Horizon

Standard Errors
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Real GNP 4.564 2.T49 3.176 3.581
GNP deflator 2.880 1.349 1.722 2.088
ML 24335 2.0k1 1.875 2.093
Stock Price Index 17.924 1L,.725 15.505 16.1009
Treasury bill rate 1.18L 1.3%0 2.717 1.878
Trade weighted dollar 2.315 1.275 9.811 5.866
Flow of total debt 64,439 32.025 24,778 L3.939
Change in inventories 7.680 F.562 10.340 8.346
Federal outlays 16.970 11.555 10.316 13.263
Federal receipts 15.904 10.006 T.516 13.57%
Log determinant -39.560 -L8.346 =4z,100 -38.284

The extent of our investigation of different settings of

the 7 wvector was constrained by the expense of evaluating the
forecast performance for each value. Although ocur calculations

were performed on a Cray-l computer at the University of Minnesota

which is both extremely fast and inexpensive, each evaluation of.

forecast performance for a given value of T required a2pproximately

60 seconds and cost about $30. About half of the time for a given
run was involved in the recursive estimation of the ;t's, the rest
was used in generating the 12-step ahead forecasts each period and
doing the accounting necessary +o generate forecast accuracy
statistics.

We chose to focus primarily on two dimensions of the
prior, the overall tightness and the degree of time wvariation of
the parameters. Cur previous experience with pricrs of this form
has suggested that the degree of parameterization of an equaticn
is an important determinant of forecast accuracy. Viewing the
specification of a forecasting eguation as the construstion o7 =
signal extraction filter, it is clear that equations with too many

free parameters tend to pick up excess noise and to gsnerate veor
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cut-of-sample forecasts. Equations with too few parameters fail
to pick up the signal. The specification of a pricr provides a
flexible format through which one can confront the tradeoff hbe-
tween increasing signal extraction capabilities and over-fitting
the data. By adjusting the tightness of the prior, one can tune
the filter zlong this dimension.

We focus on the forecast perfermance as a function of
the amount of time variation in order to investigate the degree to
which results might be Improved by relaxing the usual assumption
of constant coefficients. We hope not only to increase forecast
accuracy, but alsc to generate a more realistic description of the
uncertainty of Cforecasts, particularly of those at multi-step
horizons.

As a first step in this iInvestigation we focused on how
mich improvement in forecasting would te possible %y searching

along these two dimensions. Taking as given the parameter values:

T = .05
“2 = 001
Ty = 10°
My = 2

we began by minimizing the c¢ne-step ahead log-determinant as a

function of s and Tre An informal search requiring abhout 30

function evaluations led us to the wvalues Tg = 1.k and Too= .23 ¢ AReI
Up to this point we had not yet begun to constrain the

sum of coefficients or %o allow decay of the parameter esti-
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mates. In effect we had, by default, set mg = 0 and wg = 1. Over
the range we examined, forecast performance varied little as we
changed Ty and Tere It was clear, though, that for these param~
eters we had found values in a neighborhood of no more than a few
percent from the point at which our one-step log-determinant
measure was minimized.

The amount of parameter variation allowed at this speci-
fication is small. The implied standard error of the change in
the first own lag, for example, over the entire sample is on the
order of .001. Since the prior mean of this parameter is 1,
parameter drift might be taken as negligible. This result may
seem surprising at first, but it should not be. In a model with
61 coefficients on the right-hand side, any very substantial
amount of parameter drift implies large standard errors of one-
step ahead forecasts. The fact that simple random walk models
forecast economic time series as well as they dc over relatively
leng time spans is inconsistent with large amounts of parameter
variability. One way to read cur ceonclusion is that allowing for
parameter drift improves forecasts very little and that since
dcing so is expensive, in many applications it will be reasonatle
to use fixed-coefficient models.

Yowever, in a model with 61 coefficients on the right-
hand side of each equation, even small amounts of variance in
parameter changes can contribute a substantial amount to forecast
error. rurthermore in mltiple-step forecasts, markov paranpeter
drift of the type our model allews builds up very rapidly in the

estimated standard errors of forecast. Therefcre, it is icportant
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to allew for parameter drift if one wants to obtain more than
point forecasts.

One puzzle we found was that the 12-step ahead log-
determinant reached a minirmum with priors that were both tighter
and that allowed less time-variation than the prior which was best
at the shortest forecast horizon. Though the differences in fit
are small, the pattern of tighter priors leading to relatively
better performance at distant horizons motivated our making fur-
ther experiments with the form of the prior.

Since cur conclusion about the amount of time wvariztion
seems to us important, we examined the possibility that it is
dependent on the particular form in which we allow parameter
variation. We performed the following experiment: we compared
the forecasting performance of twﬁ constant—coefficient specifica-
tions, the first of which uses all available observations at each
point in time, and the seccnd of which uses only the 120 most
recent observations (if that many are available). By the one-step
ahead log-determinant measure, the first specification perfornms
better. Thus, dropping observations, even those more than ten
years old, causes the log-determinant to rise. Interestingly, the
forecasting performance at longer horizeons did improve with the
0ld observations dropped. The conclusion that time wvariation is
small relative to sampling error in ccefficient estimates seems to
be upheld. Since dropping observations gives more weight to the
prior, it appears that long-horizen forecasts might be improved by

assuming decay of parameters toward their pricr means.
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An additional restriction which we considered in the
hope that it would allow more time variation in parameters was to
impose that the sums of coefficients on lags of each variable in
each equation do not vary too mich. We found that if this re-
striction was imposed wvery tightly, then considerably more time-
variation in individual ccefficients was possible before <the
forecasting performance worsened. However, ncone of these sgpeci-
fications performed as well as those without the tight restric-
tion. The Dbest performance along this added dimension was
achieved when m¢ was between 5. and 1., that is, with standard
deviations around sums of coefficients of between .2 and 1. In
choosing  Tg we also considered various values of Toy but the
returns to this search were not large. Of the combinations of
values that we tried, the best was 7g = 1 and T = 10-7. At this
specification the standard error of parameter change over the full
sample is approximately double what it was at the previous test-
fitting specification.

A second type of structure we Iimposed on the time.
variation of parameters was to specify that the coefficients
slowly decay toward the prior mean. This structurs is implemented
by choosing wvalues of the decay parameter, TR slightly less than
1.

In performing this experiment we reestimated the coef-
ficients with each new observation, btut ccst consideraticns pre-
vented us from revising the coefficient estimates at each step in
the forecasting recursion. In one sample ferecast where we 4id

take account of parameter decay at the .9975 psr period rate, we
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found that the forecasts changed only by about .1 percent at the

12-step horizon and about 1.5 percent at the L8-step horizon.

Letting 7mg = .999 in this type of specification was
somewhat successful in terms of Iimproving forecast performance,
but it did not provide mch recom for allowing a larger degree of
time variation. At this value for 7g, doubling the time-variation

&

parameter, T-, 10 2 * 1077 marginally improved the one-step fore-
casts, but led tc a much larger decrease in accuracy at longer
horizons. Increasing the rate of decay to .9975 caused the fore-
cast performance at a one-step horizon to worsen by about the same
amount as that at a 12-step horizon improved, with both changes
very small. Larger amounts of decay caused decreases in accuracy
at all horizons.

Based on these findings, we adopted as our opreferred

specification the following parameter values:

Tl'l = .05
Ty = 005
Ty = 10°
T”-L = 2
Trs = lnh
Tg = 1.0
fy = 10-7
g = .9G8

The forecast accuracy statistics at this specification are given

in Table 2.

o
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Table 2

Final Specification Forecast Performance

Variable
l~Step Horizon

Standard Errors

Real GNP

GNP deflator

Ml ‘

Stock Price Index
Treasury bill rate
Trade weighted dollar
Flow of total debt
Change in inventories
Pederal outlays
Federal receipts

Log determinant
3-3tep Horizon

Standard Errors

Real GNP

GNP deflator

M

Stock Price Index
Treasury bill rate
Trade weighted dollar
Flow of total debt
Change in inventories
Federal cutlays
Federal receipts

Log determinant
6-Step Horizon

Standard Errors

Real GNP

GNP deflator

M1

Stock Price Index
Treasury bill rate
Trade weighted dollar
Flow of total debt
Change in inventories
Federal outlays
Federal receipts

Log determinant

Period 1

0.925
0.199
0.269
2.832
C.229
0.319
180087
4.839
L.879
5.267

-69.497

1.355
0.506
0.580
5.841
0.493
0.670
36.154
50610
5.568
L.931

-59.2L0

2,172
0.826
1.073
9.7C9
0.810
1.135
39.0L5
£.140
8.T9h
£.900

-52.102

Period 2

0.800
0.131
0.320
3.294
0.2l
00323
8.248
L.963
3.500
L.325

-71.310

1.083
C.329
0.625
64567
0.560C
0.677
13.336
5,402
b.20L
5.151

-61.£80

1.677
0.567
1.205
10.563
0.793
0,990
15.522
5.899
541L5
5.969

-55.858

Period 3

0.759
0.210
0.L74
3.73%
0.847
1.957
6.604
B hl6
L4.485
4.008

-63.11h

1.178
0.518
0.9kk
70556
1.7L46
4,339
13,101
8.247
L.416
L. Lbo

'53-379

Oversll

0.831
0.183
00365
3.208
0.525
1.160
12,110
5.k65
b.327
§.202

-£4.829

l.211
N.459
2.735
£.6692
1.096
2,565
23,409
5.549
L,767
4,850

-sk,3kL9




12-3tep Horizon

Standard Errors
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Real GNP 3.500 3.235 3.113 3.287
GNP deflator 1.627 1.122 1.992 1.620
M1 2.150 2.339 1.925 2.1L5
Stock Price Index 17.891 1L.460 16,367 16.300
Treasury bill rate 1.033 1.108 2.k6o 1.672
Trade weighted dollar 1.984 1.187 9.510 5.651
Flow of total debt 53.879 20.877 8.59L 35,045
Change in inventories £.6LL 6.800 10.318 8.100
Federal outlays 17.87¢C T.1Th 8.061 12.052
Federal receipts 14.370 9.269 9.113 11.137
Log determinant -Lh,207 -50.265 =Lk1.723 -4c.680

In comparing the performance of different systems it 1s

useful to note that,

aside from covariance terms, changes in the

log-deternminant represent a sum of the percent changes in the

variance of forecast errors from each equation.

Multiplying the

change by five (divide by 20 to get standard errors for ten vari-
ables and multiply by 100 to get percent) gives a rough estimate
of the average percent change in forecast standard errors of the
equations. Thus, we observe an average of about 2 percent im-
provement in the one-step forecast errors in going from univariate
to the final specification, about 12 percent at the 12-step hori-
zZon.

In searching informally over parameters of our pricr we
were enccuraged by our finding that forecast performance was
generally insensitive toc the variation in parameters that we
looked at. All of the sets of parameter vaelues we lcoked at had
log-determinants closer to our final choice than tc the univari-

ate, indicating the lack of sensitivity of forecast performance

over the range of priors we investigated.
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In order to investigate this sensitivity more carefully,
however, we looked at forecast performance over a larger grid of
values for the overall tightness and time wvariation parameters of
our prior. The grid was chosen to cover a region several orders
of magnitude wide along both dimensions, far outside the range we
would consider reasonable.

Qur preferred prior overall tightness of 1.4 represents
a scaling uvp of the variances of 2ll coefficient prior distri-
butions by LO percent from our original specificaticn. TFor our
grid search we chese to loock at the velues: 014, .14, .7, 1.4,
2.8, and 14. The final value for our time variation parameter was
10=T, We chose a grid along this dimension of 107%%, 1077, 1077,
and 10"5. The first velue represents essentially no parameter
variation, while the last specifies an ocrder of magnituée larger
than our preferred wvalue.

The overall accuracy of forecasts generated by our
vector autoregressions turns out to be a well behaved funciicn of
the prier parameters over which we searched. We present the
results of the grid search as a series of charts. The overall
forecast accuracy is shown from two different views in Charts 1
and 2. Here forecast accuracy is represented by the height of a

surface for each point on our grid. The height is given by

(18) 5+ llog|E, | - log|g, (r.,7,)]]

1’ -

where El is the cross-product matrix of the one-step ahead fore-

cast errors for our preferred specification and E1(ﬁ5,ﬂq) is the
- |

cross-product matrix of cne-step ahead Sfcrecast errors for the

point on the grid (rs,ﬁT).




Chartst and 2

How Forecast Accuracy Varies
With Two Dimensions of the Prior
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It can be clearly seen in these charts that the accuracy
surface 1is not sensitive to even order-of-magnitude changes in
these parameters of our prior. Because we would give low weight
to regions of our grid away from the center, we interpret this
result as indicating that if we think of ourselves as having a
prior which is a mixture of normal priors indexed by the values of
7, we would end up with a posterior much like that for our final
chosen specification.

A slightly more detailed picture of the forecast perfor-
mance over our grid is given in Charts 3 threugh 8. FHere we
display the accuracy surfaces for esch of our three ncnoverlapring
sub-periods for the one-step ahead and the 12-step ahead hori-
Zons. The consistency of the shape of this surface over the
different periods is reassuring: It would appear reasonable to
assume that any choice of wvalues for g and e in a wide range
around the center of this grid would be likely to remain close to
the optimal choice, at lesst for one-step forecasts.

The results for the 12-step ahead horizon, displayed in
Charts & through 8 are less consistent over time. In general,
though, they reflect the finding that tighter priors with less
time variation of parameters appear to perform better at forecast-
ing over longer horizens.

What have we accomplished through this specification
search? By some standards, the answer would appear to be not
ruch. After a complex and somewhat expensive (the total computing
cost was about $£3000) search we find a specification which gene-

rates out-of-sample forecast errors which average a f2vw perzent




Charts 3-8
Forecast Accuracy Surfaces in Three Nonoverlapping Subperiods

All axes ol these charls have the same scales as those of Chart 1,

Charts 3-5. One-Slep-Ahead Forecast Horizon

Chart 3. From January 1952 Chart 4. From January 1962 Chart 5. From January 1972
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Charts 6-8. Twelve-Step-Ahead Forecast Horizon

Chart &. From Jonuary 1952 Chant 7. From January 1962 Chast 8. From January 1972
to December 1961 to Dacember 1971 to Dacamber 1981

P o

\\




—27 -

smaller than simple univariate autoregressions. Cn the other
hand, as we pointed cut earlier, our search here has been aimed at
testing the usefulness of certain ways of specifying a prior.
Nearly all the advantage of the multivariate procedures over the
univariate procedures in forecasting performance could have been
cbtained without sallowing for parameter drife (a maler scurce of
computational expense) and without searching over most of the
dimensions we explored. A more difficult gquestion is whether by
gsearching as we have, we have ended up with a reliable probability
distrivution for future data.

Degpite the small absolute gain in ferecast accuracy, it
is significant that we have documented a consistent gain frem the
use of a formally explicit multivariate method in a system of this
size. This has not been done bhefore, to our knowledge. The
difference in aecuracy between multivariate and univariate methods
wnich we find is substantial relative to differences in forecaét
accuracy ordinarily turned up in comparisons across methods, even
though it is not large relative to total forecast error. More-
over, if we think of a decomposition of movements in the data into
signal and noise, with noise being the dominant component, then a
2 percent increase in forecast accuracy mst represent a2 mch
larger percentage increase in the amount of signal that is being
captured. And with a mltivariate probability model which has
some claim to accuracy, we can generate conditional distributions
of future time paths of a vector of economic wvariables whichk

capture the nost irmportant cross-variable relations.
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Forecasts and Conditicnal Projection

The main purpose of generating 2 model like curs is to
use data at a given date t to make assessments of what Is likely
to happen after t. We describe here some ideas for making such
assessments which are in some ways new, yet which could be applied
to any time series model, not just models like that we have con-
structed.

Obvicusly one can construct a forecast of the most
likely path of the eccnomy. For our model this is just a matter
of recursively forecasting one-step ahead with the autoregressive
equations, using forecast values as if they were actual data as
the date is advanced into the future. The appropriate procedure
is to use the most recent estimate of the randomly varying param-
efers and vary them during the forecasting recursicn according %o
their equation of evolution (6), ignoring the random term in that
equation. Of course, when mg is 1.C, this amounts %o holding the
parameters constant. ZRecause the forecasts after the first pericd
data are nonlinear functions of the parameters, they =are not
unbiased. That is, they do not represent the conditional expecta-
tion of future data. One can, at considerable expense, evaluate
the conditional expectation by stochastically simulating the model
and integrating the posterior distribution of forecasts by Mente
Carlo methods. In one experiment using data through 1982:12 we
found that the differences in forecasts tased on time invariant
coefficients, coefficients decaying at the rate .999, and those
generated by Monte Carle integration were quite small relative to

the uncertainty in the forecasts.
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We present in Charts 9 through 24 two forecasts from the
model for 1983 through 1986. The first is based on data through
December 1982, the second is based on data through March 1983,
The charts in both cases show a forecast of an extremely vigorous
recovery, ccmpared to those published forecasts circulating in
February 19$83. The Congressional Budget Office (CBO), for exam-
ple, forecast real GNP growth cduring calendar 1983 of only L
percent, with inflaticn at 4.7 percent and the Treasury bill rate
at 6.8 percent. As of December, the model forecast real GNP
growth at 8.8 percent combined with 5.9 percent inflation and an
interest rate of 8.7 percent. Data for the first quarter sug-
gested that the recovery began with less strength than the model
anticipated. Thesge observations did not have a significant irpact
on the forecast growth rates in future quarters, however.

Perhaps the most obvious Tfirst step beyond preparing a
forecast in using a model tc evelutate future prespects 1s to ask
how likely are other possible paths. We can ask, for example, how
likely it is that the CEO's projected output and price level
growth rates and Treasury bill rates will be realized. In answer-
ing these questions, however, we will be taking sericusly the
cross-variable relaticnships estimated by the model. Befcre doing
so, it 1is perhaps useful to investigate those aspects of +the
model.

The favorable comparison between the forecast perfor-
mance of our final specification and that of the univariate egua-
tions suggests that the cross-variable interactions which are

captured by our equations regresent predictabtle responses. lore-
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over, it turns out that these responses explain 2 significant
proportion of the variation in most of the variables in the model
and, with a few exceptions, they remmin fairly stable across
different sub-periods of the sample.

One measure of the size of the cross-variable interac-
tions is the proportion of the forecast error variance of a vari-
able explained by orthogonalized innovations in the other vari-
ables in the system. This measure is based on a decomposition of
the variance of the k-step forecast intc a sum of componentis
asscciated with each of a set of orthogonal innovetions. See Bims
(1980). Although the decomposition depends on the ordering chosen
for the orthogonalization, our point here is merely to¢ demonstrate
the extent to which interactions amoung variables are captured.
We have locked at several orderings, and this aspect of the de-
composition is mot affected.

For some variables, such as the sitsock price index, ocur
rrior against cross-variable response 1s so strong that virtually
none is allcwed. Own innovaticns explain over 95 percent of stock
price forecast errors, even at a 48 month horizon. For other
variables in the system, however, the c¢ross-variable responses,

shown in Table 3, are significant.
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Table 3

Variance Decompositicn

Below are the proportions of forecast variance at a L8-month
horizen explained by own innovations. The orthogonalizaticn

order for this decomposition is the order shown.

ML 29.2
Stock price index 95.1
Treasury bill rate 58.9
Flow of total debt 76.9
GNP deflator 28.L
Change in inventories T6.0
Real GRP 11.7
Federal cutlays T9.T
Federal receipts 65.1
T;ade Weighted Dollar 54.0

We next display the responses of real GNP to the ortho-
gonalized innovations. These respeonses also demonstrate the
extent to which the model is capable of incorporating multivariate
interactions, as well as the extent to which such respconses are
stable over time. The responses, shown in Charts 25 through 3k,
were estimated independently over <three nenoverlapping sub-
periecds, the same prior being imposed at the beginning of each.
Many of the responses are of substantial magnitude relative tc the
size of the response to cown innovations, and for the more signi-
ficant responses there appear to be sirong similarities across the

time periocds.
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Charts 25-34
Responses of Real GNP in Three Nonoverlapping Periods
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Chart 29. To an Innovation in the Flow of
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Chart 30. Toan Innovation in Federal Governmant Outlays
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The responses are scaled to show percent movements In
real GNP following orthogonalized innovations in each of the other
variables. The size of the shock, which is the same for each
period, is normalized to te one standard error of the distribution
of innovations over the entire period; The largest responses of
real GNP are to innovations in real GNP, the change in btusiness
inventories and the stock price index. These responses are all
similar across the different sub-periods. The responses of ocutputl
tc interest rates and money inncvations are also substantial, and
alse relatively similar in their dynamic pattern in different sub-
pericds. The other responses are not particularly consistent over
time periods, but for the most part they are not large either.

With regard to the question ¢f consistency across sub-
periods, sgome readers will undoubtedly be more impressed at first
glance bty the wariations in some of the responses than by the
similarities of others. Perhaps the most =natural metric for
measuring the degree of stability of the responses through time,
though, is the out-of-sample forecasting accuracy metric which we
have already stressed., We know that our specification dces well
by +that measure. What we find encouraging in locking at these
response patierns, and the earlier decorpositions of forecast
variance, is that the prior which led *to relatively accurate
forecasts is also capable of capturing significant cross-variable
interacticn, even in these three sub-periods, which each includes
only a very limited amcount of data.

There is no unambiguously correct way Q0 measure ncw

likely it is that a particular condition on the prolected future
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path of the ecconomy will be realized., Of course the protability
that any set of equality restrictions will be exactly realized is
zero. When we ask how likely a projected path is we ordinarily
mean to ask how likely it is that the actual path will differ from
the model's most likely projection as much as the projected path
and "in.the same direction". There is no mechanical way to deter-
mine, from +the path elone, what paths "differing in the same
direction" might be. In our example, we might be interested in
the probebility that real GNP growth will be at least as low as
CBO's 4 percent and inflation and the interest rate also at least
as low as their projections. But one might instead consider that
only the GIP growth rate differences are Iinteresting, so that
forecasts differing in the same direction as CBO's are all those
with growth rates at least as low. Or one might suppoese that the
critical thing ebout the CEC forecast is its lower real interest
rate and desire therefore to check the plausibkility of its rro-
Jected gap between inflaticn rates and interest rates.

If a class of future paths is specified, one can measursz
the probability of the class directly--by stochastically simlat-
ing the model if no computationally cheaper analytic method Iis
available. The methed is expensive, however, both in computer
time and in its requirement for careful thought about the class of
paths to be assessed. Instead, one can mechanically construct =2
class of paths from specified restrictions. A natural way cf
doing this is available when the joint density funciion of future
paths is unimodal and has convex level surfaces (like a normal

density). We can construct first the most likely rpath ssgisfying
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the restrictions, then consider the c¢lass of all paths lying cn
the downhill side of the tangent plane to the level surface at
that point in the space of future paths. Chart 35 shows the
nature of the set of paths whose probability would be measured in
a two-dimensional special case.

For a normal p.d.f., this leads to using the square root
of the usual chi-squared statistic as if it were a normal random
variable and measuring plausibility by the probability in the
upper tail of the normal p.d.f. at the level of this statistic.
One might wonder why it is not best, for the case of a normal
distribution over future paths, to measurs the plausibility of a
set of linear restrictions directly by the significance level of
its associated chi-squared statistie, using as degrees of freedonm
the number of restrictions applied. This is, after 211, how we
would "test" whether the restrictions are "true" using classical
methods. Such =2 procedure +treats as the class of gaths whose
probability is to be measured all paths with lower likelihood than
the most likely path satisfying the restrictions. Thus, if the
model asserts that real growth will be at & percent and inflation
at.f percent and someone claims that instead growth will Te at &
percent and inflation at 9 percent, the claim is in some sense
different from the model assertion in cone directicn--it is more
pessimistic. The standard use of the chi-squared statistic would
assess the likelihood of the pessimistic forecast by looking at
the prcbability of all paths at least as unlikely, including those
which are unlikely hbecause they are much more optimistic than the

model. The index we use here instead looks only at paths Iying on




Chart 35

Construction of an Implausibility Index

The impiausibility index is a measure of the

probability the model gives to

outcomes on the downhiil side of 2 tangent to the forecast's level curve at

the point of a conditional projection.
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"one side" of the claimed path. This includes some paths with
less inflation and mch less real growth as well as paths with
more inflation and less real growth, so it is not so narrow a
class as that of paths with both less real growth and more infla-
tion. However, the tradecff between inflation and real growth
implicit in defining the class of paths "more pessimistic” than
that claimed is constructed mechanically from the covariance
matrix of paths. This will at best approximate the way we would
construct a class of more pessimistic paths if we thought about it
carefully. Nonetheless we apply this measure of plausibility
here.

To do so, we must first find the model's projection of
the most likely future path for the eccnory subject to the condi-
tion that the CBO forecasts for annual average growth rates are
satisfied. Such conditional projecticns may be interesting in
their own right as part of a description of the likelihood func-
tion, and for other applications we will mention below.

The principle is that the model prevides a2 joint condi-
tional  density function for future paths of the process. We
simply use that function teo find likelihood-maximizing rpaths
subject to certain restrictions on the future paths. These com-
putaticns cannot in general be carried out recursively forward in
time as can the point forecasts, because a constraint on future
values of a variable in the system can carry informaticn about the
likely current value of all variables. If, for example, I xnow
that money stock will grow slowly between 12 and 18 months frenm

new,s and if I know that money stock is negatively correlated with
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disturbances in the interest rate 12 to 18 months earlier, then I
should think it likely that interest rates will rise soon.

The computations are simplest when the model is sta-
tiocnary and concerned only with second-order properties, sc we
first describe our procedure within the confines of the predietion
problem for covariance stationary rprocesses. The wvector sto~
chastic process xg: b= cee,=2,-1,0,1,2,4u¢ 1is assumed to be
covariance stationary and linearly regular. The moving average

representation (MAR) is

(19) Xy = By, _

Il 18

s=0
where the innovations u, are uncorrelated both across time and
contemporaneously. The MAR is normalized sc that Efutu;) + I.

A linear constraint upon fﬁture values of X is a linear
constraint upon: future values of the innovations process u. The
constraint on x is transformed into the equivalent constraint on
us. This has some corputational advantages when, as is likely for
models of this type, we have already computed the coefficients of
the MAR in any case. The least squares estimate of the con-
strained u's is computed, and the least sguares projection of x
subject to this constraint is obtained by constructing the path
for x implied by the computed innovations.

Let IyIQ] dencte the orthogonal projection of the random
variable y onto the e¢losed subspace @ in the Hilbert space of
finite variasnce random variables on the underlying probability
space. If y 1s a vector, the projection is done conmponent by

component. Hx(t) is the cleosure of the subspace of finite linear
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combinations of x_ for s < t. Consider the projection of x.,;, on

the information set consisting of H (t) and

» [- -3
{20) S x = J=§u ijt—j R
where
(21) =Ew sjsj <™,

SJ is dimension qxn, where g is the numbher of constraints and n is
the dimension of Xy The sequence S contains the coefficients on
past and future x values in a set of constraints. The projecticn
we are considering can be thought of as the best linear predictor
of Xi4; glven knowledge of x values up to time t and in addition
knowledge of the linear combinaticns of past and future x's whose
coefficients are in 8. In practice, the S seguence will be zero
except for a finite number of terms. Applying the law of recur-

sive projections:

(22) (%, 4y |5 (8) +span(s"x) ] t)] «+

= {xt+lex(

[(xyppm (%, o JB (8)]) | span(s x-18 x| 2 _(£)])]

and
k-1
{23) Xy i Xy e | B (8] = sioBSut+k*S
Now,
(24) s"x-18"x] (8)] = 8" (x=[x[H (£)])

(25) xs-[xs Hx(t)] =0 for s & %
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s-t+1

(26) xS—Ixsle(t)] = L BJ oy TOr s>t
sS0
(21 s"(xeIx]E (8)0) = mgls )
(28) Tt
28 = ; ()8 u,

k=1 j=0 97X By P
(29) =Ru= gajut_j

By linearity, the second projection in (22} can be written

(30) z B [u |2*u]

s=0 t+k-s
It can be verified, using the orthogenality principle

for projections, that the projection | is

(31) R 1 R.R } l(R ule

J-k{ Jd

J==

These are the least squares rprojections of the future Innova-

tions. The projection (22) is thus the sum of the unconstrained
forecast plus
kel

(32} L B U
s=0

t+k-5
which can be obtained by simulating the model beginning at t+l1,
uging the u as the innovations. In a particular appliication, a
* . . * .
value for S x is usually supplied; the equivalent value for R u Is
3 * el 2 b ] *
the difference between S x and the fcrecast value for S5 x.
To see how this works in a simple case, suppose that
dataz on ML are available only with a two week delay, while inter-

est rate TB iz available on a daily basis. We have a weeXly wodel

which we wish to use to forecast, but at t have data on M enly
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for s < t-1. Here, "purely for forecasting purposes, we need %o
meke a projection conditional on TB. , and T3..

With the VAR normalized so that By is lower triangular
and TB comes above ML in the ordering of variables, the moving
average ccefficients needed are the responses of to orthogona-
lized shocks in itself at zero and one step and in ML at one step;
call these be’ bbl’ and bml' With vy and Wy as the innovations

in TB and ML at ¢,

-~ r
(33) TBe 1-TBeoq| = |P0 © [Vt-l
m bl
T8, ~TB, Be1 Ppid o1
+ 0 0 vy
be w

The 2x2 matrices in this are, respectively, R, and R_»
in the notation: above. The most convenlent way to do this com-
putation is to stack the set of innovations. With

-

(i

(34) ASELIRAN
b, 0 0 0
(35) R="° .,
bl ml. 0
TB, .-TB
(36) re= | et At
Tt

-~

the formila for the constrained U vector becomes U = R'{BR')~1r,

which is the solution of the problem: min U'U subject to RU = r.
One important wvariant on this procedure is to add the

additional constraint that only certain innovations are allowed %o

be nonzero. We might want to do this if we had in nind interpre-
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tations for certain innovations. For example, if we regarded
money and interest rates as "monetary policy varisbles'", we might
suppose that innovations in those variables represented changes in
policy. Then a forecast conditional on low inflation and on
innovations being zerc in all variables other than these monetary
policy wvariables would display the most likely way for monetary
pelicy to generate low inflation..‘y

Holding certain innovations to zero in the conditional
projection can be accomplished simply by eliminating the columns
in the R matrix which correspond to the variables whose innova-
ticns must be zero. For computing constrained paths, the normali-
zation of the MAR used to obtain orthonormal u's has no effect
except on the computational burden: if E(utut‘) = L, the formulsa,

~

using the stacking from above, is U = (X @ I)R"[R(Z 8 I)R"™

.
~ where

a different R 'matrix is obtained using the nonorthogonalized
MAR. Orthogonalization eliminates the need for the I 2y incor-
porating a factorization of I into the MAR and thus into the R
matrix. Bowever, when Inncovations for certain variables are
constrained to be zeroc orthogonalization is no longer innccucus,
since the definition of a2 variable's innovaticns depends on the

orthogonalization. For example, the least scuarss constrained

-}"-/'I‘here are a number of models in the literature which
identify innovations in certain wvariables as generated by policy
or which go still further and treat certain pelicy variables as
exogenous, hence Granger causally pricr, and as entirely deter-
mined by policy. In fact, this kind of assumption is probably the
norm in models which are used to generate implications for pol-
icy. We regard such assumptions as frequently bteing interesting
speculative hypotheses, but seldom sclidly Justifiable as "a
priori knowledge."
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path may prove to be obtained primarily through innovations in the
policy wvariables when one ordering is used, but through innova-
tions in the nonpolicy wvariables in anosther.

Though the proofs above were limited te covariance
stationary processes, the method will still work, e.g., if x has
an invariant autoregressive representation with unstable rcots.

Qur experience suggested that, though models with time-
invariant ccefficients generate reasonable forecasts, they have a
tendency to generate unreasonably optimistic estimates of the
likely size of future forecast errors--even when sampling error in
the estimated coefficients (which we ignored above) is allowed
for. Ohe of the oblectives of our research has been to discover
whether our random parameter specification aveids this optimistic
tendency. |

We will compare four different estimates cf the covari-
ance matrix of forecast errors. The first matrix, ¥, is generzted
from the usual innovation covariance matrix, Z, estimated by
taking cross products of inesample residuals based on & fixed-
coefficients model. The k-step forecast error covariance matrix

is given as
(37) g, = I B_LB

where the Bs's are the coefficients in the MAR associated with the
fixed-coefficient model.
fur second estimate of the forecast error covariance

matrix is o, the estimate obtained by using a time-~varying coeffi-

cient model, but taking the end-of-pericd coefficient estimater as
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fixed and using the out-of-sample one-step ahead forecast errors
to estimate to covariance matrix of innovations.

Another estimate of the forecast error covariance meirix
is obtained Ly a2 Monte Carlo simmlation of the full random param-
eter model from the end-of-sarple initial conditions. This esti-
mate we will call M.

Finally, another way to assess likely forecast accuracy
which is in scme sense conservative is to recursively generate
forecasts over a range of horizons at esch sample point, using
data only up tc the forecast date in making each set of fore-
casts. Forming the sample covariance matrix, V, of realized
forecast errors at varicus horizons gives us a direct measure of
likely forecast error variances at those horizons. This procedure
assumes that the stochastic process for the véctor of {orecast
errors by horizon is jointly stationary, but reguires no assump-
tion that the model Justifying the forecast procedure is also
generating the data.

Our experiments with these four different ways of esti-
mating forecast error covariance matrices gave nc clear ranking of
the methods. The estimated sfandard errors of forecasts at 12 and
48 menth horizons are shown in Table 4. TFach of our difference
estimates, F, O, M, and V at times gives btoth the largest and the
smallest estimated standard errors. This result is certainly due
in part to the small samples we are using. In our Monte Carlo
estimates we used only 200 draws, and for the generation of his-
torical second moments in V we use 240 observations, which rerre-

sent cnly S nonoverlarping 48-month periods.
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tx

*r

M1
.0136
0111
.0233
.0129
OUTL

L0857
.0890
.0826
.09k9

.0352
L0277
0834

.0882

Estimating fixed coefficient model, using
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Table L

Standard errors of l2-month forecasts,
estimated various ways

STOCKS
.1360
.1130
.1136
+0999
RCPT
.0958
.1008
.0927

0952

TBILL
1.4123
1.3225
1.2549
1.3039

TRDOL

LOLsT

.0koo

.0293

0b12

DEBT
«26€6
2822
2394
«2917

PGNP
0126
.0088
0202

0136

CBI
T.9992
8.3%99
7.2900
7.8663

Standard errors for h8-month forecasts
estimated wvarious ways

STOCKS
2022
2399
1255
.2191
RCPT
.1218
.135L
+1530

TBILL
1.5435
1.5542
1.3493
1.8737
TRDOL
.0889
.0891
0826
.034L

innovation covariance matrix.

DEBT

.3010
3359
.1906

L1500

PGNP
.02k5
L0250
L0871
.09L8

€31

3.2787
8.9611
7.1102

11.0C07T0

RGP
.0233
.0188
.0293

.02C6

PGNP
L0651
0612
.0589
.1083

in-sample residuals tc estimate
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Using end-of-sample time-varying coefficient estimates as if fixed, treat-
ing historical out-of-sample cne-step forecast error second moment matrix
as if it were the innovation covariance matrix.
Historical second moments of out-of-sampie forecast errors.
Monte~carlo estimates of forecast errors based on time-varying cceffi-
cients model started up from end-of-sample initial conditions.
. Qur coriginal suspicion, that estimates of uncertainty,
such as F based on fixed coefficient models, weculd badly under-
estimate the average ocut-of-sample multi~step forecast errors as
measured in V, was only occasionally observed. At the L48-step
horizon ¥ badly underestimates the size of otserved errors only
for money and prices. In those two cases the Monte Carlo esti-
mates in M, based on the time-varying specifications, did give
estimates much closer to the observed results. More often, how-
ever, the estimates in 7 were larger than the observed forecast
variance, and the Monte Carlec estimate in some of those cases gave
even larger estimates. It is rossible, of course, that the use of
V as a standard of comparison is inappropriate. 'When parameters
are varying through time the uncertainty also varies, and at a
given time It mey be very different from an estimate based on
average errors in the past. For the trade-weighted dollar the
Monte Carlo estimate suggests rmich less uncertainty than the
others, and it is certainly conceivzble that this is correct.
The time-varying rarameters specification used in this
paper implies a cenditionally hetercoscedastic nongaussien distri-
bution for the forecast errors. If we form the sample covariance
matrix, V, of forecast errors and form conditional projectiions as
minimum mean sjguare errcor predictions using V, we are therefors

contradicting the protability model which fustifies our fcrecasti-
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ing procedure. However, it is not clear whether that medel is
more realistic than one which uses V to form conditional projec-
tions.

Using V to form conditional projections is only in e
sense conservative. It is unlikely to greatly underestimate the
magnitude of errcrs, even at long horizons. Zut when we estimate
the whole of V without applying Bayesian methods we are losing the
stability provided by Bayesian "shrinkage" toward a prior mean.
In particular when we start compering cenditional projections to
form conclusions about how much variables respond to each other,
use of V may give an exaggerated view of how strong the interac-
tion among variables in the data is.

A Gaussian covariance-stationary process generates a
normal Jjoint distribution for future paths given the past, with
some covariance' matrix. However, that covarisnce matrix has a
gpecial structure. To take the simplest case, consider the co-
variance matrix of one- and two~step azhead forecasts for a uni-
variate process. If innovation variance is one, the wvariance of
two-step ahead forecast errors, Soos is 1 + bg, that for one-sted
ahead forecast errors, sy;, 1s 1, and the covariance c¢f cne- and
two-step ahead forecasts, S12s is b, where % is the coefficient on
the first lagged innovation in the MAR. Thus, the sguare root c¢f
Spo=S1q is S1os But for a process such that minimum variance
forecasts are nonlinear functicns of the data such a restriction
on the covariance matrix of forecast errors is not in general
satisfied. For example, suppose y(t) = elt) + sgn(e(t-1)), where
e(t) is i.i.d. uniformly cn (-.5,.5) and the function sgn has

value 1 if its argument 1is positive and -1 17 its arzunent Is
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negative. Clearly we can determine sgn(e(t-1)) from knowledge of
y(t-1), so the one-step ahead forecast error variance is the
variance of e(t), i.e., 1/12. The variance of the two-step azhead
forecast error is 1+{1/12), and the covariance of one- and two-
step ahead forecasts 1s not (522—511)'5 = 1 but instead .25.

To find the best linear forecast for a2 given fixed V not
geherated by a covariance stationary process therefore requires
some modification of our procedure. For this case the difference
between the constrained forecast and the uncenstrained forecast is
VS’(SVS‘)'lr, where the matrix 3 is taken directly from the con=~
straints on x. A restricticn corresponding to the restriection
that only certain wvariables have nonzero innovations c¢an be cb-

tained by examining the meaning of a Choleski factorization I ¥

into LL”, L lower triangular. If EUU® = I, then if W = LU, EWW~
Ve The Choleski factorization transforms the forecast error ¥
inte LU, where each compeonent of U is created as that part of the
corresponding element of W which is uncorrelated with the pre-
viously defined U's. This 1is precisely how the orthogonalized
innovations decompose the forecast error in the covariance sta-
tionary case: the innovation for variable J at step k is the

{normalized) part of the forecast error which is orthogonal %o the

" innovaticns in all variables for steps < x and for wvariables <

-

at step k. L describes an analog of the meving average repre-
sentation: each column gives the response of the system to a unis
shock in the correspcnding component of Us If W = ‘.’S‘(S‘/S‘)'lr,
then U = L~'W, and if R is defined as SL, then U = R7{2R")~Ilr,
Again, by cutting the arpropriate columns cut of the matrix R,

restricticns that certain inrncvations remain at zerc can hte izple-

mented,
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In this paper we have conditicned on constraints which
involve projections 48 pericds into the  future. Because of the
size of the system, a full V or M matrix would be L8O x L80.
Rather than attempt to operate with such a huge nmatrix we have
restricted ocurselves to loocking st the conditiconal projections for
a nonconsecutive sequence of horizons between 1 and 48 steps into
the future, with all coastraints being put only on +hose included
horizons. That is, instead of forming the covariance matrix for 1
through 48 step ahead forecasts, we form the covariance matrix for
i, 2, 3, 6, 9, 12, 18, 24, 30, 36, and L8 step ahead forecasts.
The restrictions we consider on future paths must then be defined
in terms of these horizons.

Tables 5-8 show the unconditional forecast produced by
the model and forecasts conditional on the CEO's 1983 and 138k
averages for interest rates, inflation and real growth, using
three covariance matrices: M, V, and o. Though they were nct
constrained to match the CBO prejections for the deficit, these
forecasts agree with it fairly clesely. ¢€BO projects 194, 197,
214, and, 231 ©billion dollars for fiscal years 1983-85, and all ike

model projecticns are in this same range.
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Table 5

Unconditional Forecast

Continuously compounded precentage change at
annual rate from previous periocd on table
with period previcus to 83-1 taken as 52-12.
Except that TBILL iIs in percent and CBI and DEXICIT

are in billions of dollars at =annuel rates.

Key to wvariable names

ML Money Supply STOCKS Stock Price Index

TEILL Treasury Bill Rate DEBT Flow of Total Nonfinancial Debt

PGNP GNP deflator CBI Change in Business Inventories
RGNP Real GNP QUTL Federal Outlays
RCPT Federal Receipts TRDOL Trade weighted dollar

DEFICIT Federal Deficit (Monthly figures at annual rates, in $bill.)

YR MO ML STOCKS TBILL DEBT ‘PCNP CEI

83 1 9.38 - 14.38 8.01 1Lh .54 L.08 -15.61
83 2 9.46 15.70 8.13 111.67 L.26 -13.49
83 3 9.60 11.86 8.27 59.0€ 4.97 =T.70
83 € g.81 TbT 8.59 37.94 5.48 -3.11
83 9 9.36 £.38 8.85 30.21 5.91 Lo
83 12 9.12 £.03 9.08 16.31 6.33 3.24
8L 6 8.86 6.01 9.bkk 9.60 £.78 8.0k
8k 12 8.66 £.08 9.7k 6.80 T.20 7.9
85 & 8.57 6.17 9.98 T.84 T 4T T.57
85 12 8.56 6.28 10.20 9.96 T.56 7.€3

86 12 8.61 6eb5 10.60 12.93 7.85

=
.

=
o




83
83
83
83
83
83
8k
8k
85
85
86

¥R
83
83
83
83
83
83
84
8l
85
85

\0

12

12

12

12

Percentage Growth Rates at Annual Rates Between Listed Dates

MO

12

12

RGNP
977
8.38

10.62
9.00
8.47
7.83
T.06
.33
5.85
5.53
5.28

OUTL
-35.0L
.12
7.08
2.56
1.k0
k.ob
5.6L
7.80
9.38
10.58

11.75
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RCPT
~45.36
~3.96
10.32
2.72
S.6h
8.0
10.3C
11.44
11.88
12.06

12.19

Table 6

TRDOL
~13
4,02
5.60
5.81
L2k
3.23
2.23
1.k1

97
o
.59

DEFICIT
201.2L
203.22
202.86
203.93
198.40
193.86
184,75
179.85
179.71
183.87

203.03

Using the Simulated Random Coefficients M Matrix:
Model Forecast Conditional on CBO Average Real Growth,
Inflatién, and 3ill Rate for 1983 and 1984.

M1
7.56
T.20
T.68
8.72
8.48

10.08
8.68
T.18
8.72
6.3k

b.61

(Except TRILL, CBI and DEFICIT)

STOCKS

-11.52
2k
6.0
-15.08
12.60
-.6L
2.60
8.9k
13.96
9.18

4,02

TBILL

T.89
T«63
To43
6.66
6.56
6.2k
" 7.06
TeTl
8.78

9,76

DEBT
134.16
91.68
82.68
29.48
18.00
10.12
k0.16
19.52
~12.52
-S.68

=11.47



83
83
83
83
83
83
84
84
85
85
86

YR
83
83
83
83
83
83
84
8L
85

i2

12

12

12

12

12

RGNP
L.68
6.60
b.20
6.16
1.92
2.76
6.56
2.84
5.20
3.90

2437

OUTL
"'65. ho
2.40

15.60

£.00 .

L.80
12.00
-1.60

k.00

3.80
-1.20

12.70

~50 -

RCPT
-63.24
L2.00
8.40
-T+60
~T.20
5.20
L.80
-2.00
£.60
12.80

9.30

Table 7

TRDOL
3.24
.12
6.12
3.0k
2.28
-2.60
.14
Ak
2.08
2.80

L.51

DEFICIT
190.3k
171.62
177.43
200.22
220.02
236.64
216.09
238.32
234.L6
189.37

239.55

Using the Empirically Estimated V Matrix:
Model Forecast Conditional on CRBC Average Real Growth,
Inflation, and Bill Rate for 1983 and 198L.

Percentage Growth Rates at Annual Rates Between Listed Dates

ML
k.56
5.28
7.08
8.20
T.56
T.24
6.66
€.68

5.56

(Except TBILL, C2I and DEFICIT).

STOCKS

-3.00
5.k0
9.8L4

TBILL

T«T3
7.38
T.0k
6.56
6.79
€.81
T.k2
7.38
8.0L

DEBT

155.76
113.6L

49,80
30.84
2L.76
23.96
25.Ck
15.€8
11.75

4,08
L,08
L.68
L.E§
L.g2
4,92
L ug
5.7k

5.5k




85
86

83
83
83
83
83
83
84
84
8s
85
86

12

12

12

12

12

12

MO

6.32

5.40

RGNP
2.28
1.kb
k.80
3.20
bobk
5.52
5.00
4.bko
6.50
5.86
Lohk

13.54
8.84

QUTL
-3k.20
-3.60
-1.20
1.60
-5.60
2.00
6.00
L.80
.20
2.80

8.50

Using the Fixed Coefficients O Matrix:
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8.57
9.85

RCPT
-hE. kL
-12.00
7.20
-.k0
1.60
b,40o
3.80
6.20
4.20
5.60

11.30

Table 8

-3.32
-3.95

TRDCL
.84
2.6L
3.12
b.32

1.04

2,00
-3.36
2.96
.26
.58

6.08

6.40

DEFICIT
202.31
205.71
201.50
205.18
192.06
189.5k
201.87
202.51
19C.35
180.88

176.97

Model Forecast Conditional on CBO Average Real Growth,
Inflation, and Bill Rate for 1683 and 1$8L,

Percentage Growth Rates at Annual Rates Between Listed Dates

6.48
6.48
7.32
8.36
8.32
8.4k

7.72

(Except TBILL, CBI and DEFICIT).

STCCKS

-1L.16
~13.20
-15.2k
-18.6%
-14.56

~-8.88

~=2.76

TBILL

T.76
7.53
7.28
6.81
£a5h
6.57

?-214»

DEZT
109.20
76.08
2L, U8
18.6k
28.32
27.36
15,48

8.17

7.69
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85
85
86

83
83
83
83
83
€3
8L
8L
85
8s
86
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12 T.78 5.06 T.56 13.62 L.8L
6 9.06 8.30 8.39 16.96 7.90
12 8.58 8.48 9.04 5.16 8.12
12 8.43 8.52 9.91 Gl 8.26
RGNP QUTL RCPT TRDOL DEFICIT
1 4.g2 -39.00 -L1.6k .2k 196.89
2 L.08 -1.20 -3.60 3.48 197.85
3 6.36 £.00 8.40 b,32 197.68
6 L.16 1.20 0.00 L.48 200.02
9 3.88 -.40 1.20 2.32 197.49
12 2.8 .80 2.00 1.20 196.13
6 5.58 6.00 3.k0 .72 209.50
12 3.82 £.20 L.4o -1.18 222,01
& 8.32 5.20 11.00 -.48 209,48
12 €.82 8.00 12.80 -.66 201.77
12 5.58 10.70 13.50 ~.28 202.8¢%

The "implausibility index™ for the fixed coefficients
forecast, generated as the roct sum of squares of the standardized
shocks required to generate the forecast, is L.4, irprobable if
treated as a one-tailed normal or t test statistic. For the
forecast generated from the V matrix the index is 2.0 and for the
M matrix it is 3.3--both smaller than for the fixed coefficients
model, but still in the range of implaugibility.

All the conditional forecasts show an initial sharp
contraction in bYoth outlays and receipts, and all show slower

money growth than the uionditional forecast. On the other hand,

- 22
5.48
7.50

8-09
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the degree to which meney growth is reduced is much larger in the
V forecast than in either of the other two, and the reduction in
stock prices is much greater in the fixed—coefficients mcdel than
in the other two. We should note that the resulis from the simu-
lation-based M matrix differ noticeably between an M matrix tased
on 200 random draws and one based on 100 random draws, and because
the empirical V matrix is also based on a sample of only a few
hundred highly dependent observed forecast errors, it too is
probably infected by substantial sampling error. Thus, though
noticeable differences exist, they may be inherent statistical
error rather than fundamental differences in the results baseé on
thege different approaches.

To understand why it emerges as implausible, it may help
to examine the time sequence of standardized shocks irmplied by the
forecast, as displayed in Table & for the empirical V wversion.
Note that there are no standardized shccks after 138L.12 becauss

the constraints involved no dates after that.
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83
83
83
83
8l
8L

83
83
83
83
83
83
8l
8l
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Table §

Standardized Shocks Generating the Table T Projection

MO M1 STOCKS TBILL DEBT PGNP
1 -0.9 0.k -0.6 0.1 0.3
2 -0.4 -0.3 -0.6 0.1 0.3
3 -0.3 -0.3 -0.5 0.1 0.3
6 -0.3 -0.3 -0.9 0.3 Ouh
9 -0.3 -0.3 -0.6 0.2 0.3

12 ~0.h «0.2 ~0.k4 -0.0 0.2
6 -0.7 -0.2 0.1 -0.1 -0.1

12 -0.3 -0.1 -0.2 -0.1 2.1

RGNP OUTL RCPT TRDOL
1 -0.8 0.0 -0.0 0.2
2 0.7 0.0 -0.0 0.1
3 -0.5 0.0 0.0 0.2
& -0.8 -0.1 0.0 0.2
9 ~0.6 -0.2 C.1 0.2

12 -0.h -0.0 0.1 0.0
6 -0.6 0.0 0.0 0.0

12 -0.5 0.0 0.0 0.0

Because the model shows a strong connecticn of M inne-
vations and stock price innovations to subseguent ocutput and {to a
lesser extent) price movements, both these variables show a se-
quence of fairly large negative standardized shocks. One possible
interpretation of the projlection is an "irrational monetarist”

one. A less expansionary monetary policy than the nedel's uncon=-

=0.1
=0.0
=0.2

~Ouks
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strained forecast leads to correct anticipations of lower future
inflation and to lower nominal interest rates. Because of scome
kxind of price rigidity or money illusion (perhaps an inability of
wage contracts to lower their rates of increase fast encugh) the
lower inflation rate leads to persistentiy lower output.

As one of us (Sims {1983)) has recently argued, though,
the practice of identifying policy acticns with innovations in
policy wvariables, which underlies much standard manipulation of
econometric models for policy analysis as well as some rational
expectations macroeccnomics, regquires Justification, which may not
be easy to find. One could interpret Tables 7 and 8 as showing
the response of the economy %o public recognition that capacity
utilization is likely to remain leow and unemployment high, due to
continued slow adaptation of the industrial economies to high
energy prices dnd to the nominal inertia of %fthe wage and price
setting mechanism. On this interpretation new information appears
first in the financial variables meoney, the bill rate, and the
stock price index because all three (with 2 partially accommeda-
tive monetary policy) react quickly %o the public's anticipations
of the future. They therefore do not reflect policy decisicns and
the difference between the CBC and the central model prejection
cannot be read as displaying the effect of contractionary monetary
policy.

One interpretation which 1is not consistent with the
model is the idea that deficits might be critical to the differ-
ence between the model's expansionary centrazl forecast and the

less vigorous CBC forecast. Differences hetween the deficit
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predictions for these conditiconal projections and those for the
models central forecast are slight. Furthermore in an experiment
we do not report in detail we tried imposing a constraint that the
deficit be down to 2 percent of GNP by 1984.12. That projection
showed expenditures lower and revenues higher, with hardly any
other change in the forecast relative to the model's unconstrained
forecast. The implausibility index for this forecast ranged from
+62 to 1.2 for the three methods, indicating that it is not at all
unlikely.

In a more extreme experiment, the deficit was con-
strained to reach zerc at 1984.6 and stay there. This conditicnal
projection, and the shock associated with if, based on the H
covariance matrix are shown in Tables 10 and 11l. This projection
has an implausibility index ranging from 2.£ to 12, with the
lowest value doming from this variable-parameters prolection.
This range is large, but of course all put the constraint in the

region of great implausibility.
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Table 10

Projection Constrained to Produce Deficit of Zero for 1984.6

and Thereafter Percent Changes from Previous Date
{Except TBILL CBI and DEFICIT), Using Matrix M

Mi STOCKS TBILL
9.48 13.80 8.05
9.48 18.84 8.09

10.08 26,40 8.28
10.2k 16.92 §.56
9.92 9.00 8.72
9.96 12.64 8.93
9.22 7.66 9.70
9.22 4.3k 9.85
9.62 T.18 9.93
.42 5.64 10.34
9.40 ' 4.87 10.58
RGNP OUTL RCPT
9.96 -33.00 -35.2k
£.96 -T.20 ~T.20
11.88 1.20 7.20
9.48 3.60 5.20
9.0k -k.80 12.00
S.lih -18.00 11.60
8.0k -4.ko 29.80
.72 11.60 11.60
5.08 10.20 10.20

5.L0 12.20 12.20

5.29 15.60 15.60

DEBT
130.08
113.52

93.36
La.2L
-6.12
18.92
18.20
-9.40
10.60
15.08

10.08

TREOL

-.96
3.96
1.92
5.40
4,80
2.40

2.4b

PGNP
L.20
hobl
5.0b
576
6.08
7.52
8.3k
9.06
9.00
G.04
g.31
DEFICIT
199.62
108,42
195.73
195.16
167.95
116.1L
C.00
C.00
0.00
C.00

0.C0
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Table 11

Standardized Shocks Generating the Table 10 Projection

MO M1 STOCKS TBILL DEBT PGNP

1 0.0 -0.0 0.1 -0.1 0.0

2 0.0 0.1 -0.2 -0.0 0.1

3 0.1 0.3 0.2 0.1 -0.0

6 0.2 0.3 -0.1 0.1 0.1 -
9 0.1 0.1 -0.1 -0ub -0.0 -
12 0.3 c.1 -0.1 -0.2 0.3

6 0.0 0.2 0.3 0.1 0.3

12 -0.0 0.1 -0.0 -0.1 9.2

6 -0.0 0.0 -0.1 -0.1 0.1 -
12 0.0 0.0 0.0 -0.1 0.2

12 -0.0 0.0 0.0 -0.0 0.0 -

RGNP OUTL RCPT TRDCL

1 -0.0 0.1 0.1 -0.1

2 ~0.4 ~0.0 0.0 -0.0

3 0.0 -0.1 0.0 -0.3

6 0.0 ~0.0 C.l -0.0

9 0.1 -0.1 0.1 0.1

12 -0.0 -0.6 0.3 -0.1

6 ~0.1 0.7 0.9 =0.0

12 C.0 ~C.3 0.4 -0.0

6 0.0 -0.1 0.2 0.0

12 0.0 -0.2 0.3 ~C.0
12 0.0 -0.0 0.0 0.0

The constraint of a zero deficit by 1984.6 produces
noticeable effects on the projections for other wariables, with
even more rapid expansion than in the central fcrecast in the
period bYefore 1984.6, followed Yty a sharp reduction in output
growth rate and a rise in interest rates when the deficit takes

its sharpest dreop. . This is consistent with a "Xeynesian” inter-

CEI

Qo O O
- -
= O

Q.C
C.l
0.3
2.0

0.0
0.0
0.0
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pretation that expansion tends to reduce deficits by raising the
tax base faster than it raises government épending plans, at least
in the short run, and that when taxes are raised and expenditure
reduced, there are subsequent contractionary effects on the econ-
omy. The model then can be interpreted as saying that the most
likely way to arrive at a2 zero deficit is to have a lucky expan-
sion in output soon, combined with an unusually large rise in
taxes and decline in expenditures later.

It should also te noted that there are several ways to
model the effects of a correctly anticipated future reduction in
the deficit which imply that it weould have current expansionary
effects on demand, combined with contractionary effects when It
actually occurs. Since there is more than one way to get such a
result and none of them are simple, we omit laying out such a
theory. We only point out that it is possible to interprst the
initial expansion in the projection with small future deficit as
directly produced by anticipations of the small future deficit.

The model shows less Impact of drastic changes in future
deficits than many economists would think likely. Though the
modest implausibility index for the drastic deficit reduction of
Tables 10 and 11 shows thet the model's deficit forecasts have
shown substantial error in the historical sample, probably an-
ncunced and believed changes of such magnitude have not cccurred
vefore. In that case the conditicnal forecast in these Tables
would not be a good guide to the likely effects of an anncunced
and believed change. On the other hand, if changes of this magni-

tude have not been announced and believed before, that 1s reason
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to question whether a believable announcement of this type Iis
possibhle.

The model does systematically assoclate the lower growth
path of the CBC forecast with a sharp initial reduction in the
total size of the federal budget, with expenditures and receipts
moving down together, This kind of effect suggests either a
substantial short run balanced budget mitiplier, or real inter-
actions of federal expenditures with the private sector--phenomena
which play a miner role in currently fashionable approaches %o
macroeconomics.

As a kind of consistency check of these results, we also
investigated the posterior distribution directly using the Monte
Carlo method to integrate wvariocus regipns and to evaluate condi-
tional expectations. For example, to Jjudge the plaus;'.bility of
the CRO forecast in ancother way, we counted how many of cur 200
similaticons had real GNF growth lower than the CBO projected in
1983 and 1984. There were only four such simlations, confirming
the implausibility of the CBO forecast according to our model. In
a similar experiment we found 37 simulations had the price level
growing less rapidly than the CBD forecast. There was only one
similation which had both real GNP and price level growth lower
than the CBC.

A forecast conditioned on low deficits was formed by
averaging the 60 simulations with the lowest deficit forecasts for
the period ‘19811:6 to 198€:12, The average deficit path for this
group was negative for the period, smecothly declining from current

levels to zero in March 1985, and ending the period with a 100
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billion dollar surplus. Consistent with the conditional projec-
tions above, this subset of the similaztions had lower interest
rates, higher stock prices, and more rapid growth of money, prices
and output. The deficit fcrecast here is not forced to zero as in
the earlier experiment, and growth in output stays above the
overall average until late in 1986.
Conc lusion

As is clear from these examples, when models like this
one are used for policy analysis they yield no autometic causal
interpretations. They provide a detailed characterization of
dynamic statistical interdependence of a set of economic vari-
ables, which may help in evaluating causal hypotheses, without

containing any such hypotheses themselves.
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Deta Appendix

The data for this study consist of ten series of monthly
observations for the period 1948:1 through 1983:3. Some of the
series were taken directly from sources given btelow, others were
constructed by interpolating quarterly data. Where data was
published in seasconally adjusted f{orm, it was used. In other
cases, in which only not seasonally adjusted data was published
and where there was evidence of a seascnal pattern, the data was
adJusted by us prior to use. Details of the data construction
procedures are given below. The data set itselfl, which is based
on datz published as of May 1983, is available from Litterman for
a nominal charge.

The four series. which rely on interpclaticn are real
GNP, the Change in Business fnventories, the GNP deflsator, and the
Flow of Total Nonfinancial Debt. Real GNP iz generated as the sum
of nine components, three of which are components of consumption
and are available on a monthly basis. The other six components,
one of which, the Change in- Business Inventories, is included
separately, and the GNP deflator are btased con interpolation of the
quarterly National Income and Product Accounts. The Flow of Total
Nonfinancial Debt is an interpolation of a quarterly series in-
cluded in the Federal Reserve Flow of Funds accounts. The inter-
polations use related monthly series following the procedures of
Chow~Lin [1972! and Lititermen [1983].

Seasonal adjustment was reguired rfor federal government
receipts and expenditures and for several ¢f the monthly seriles

used in the interpoleticns. 3Selow we describe the internclation
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and seasonal adJjustment procedures and the steps used for con-

struction of each of the individual series.

Interpolation

Two interpolation procedures are used; cone is the Chow

Lin [1972] procedure where errors are assumed to follow a first-
order markov process, the other is a wvariation of Chow-Lin when
the error process follows a random walk with a first-order markeov
driving process. The latter method, denoted RW below, was tried
irst when interpolation was requirede It is based on the assump-
tion that the unobserved monthly series of interest, Feo» is re-

lated to a vector of observed monthly series, Xt by the relation:

yt = xt B + ut

The error process u, is assumed to follow a random walk:

Up = Up 7 * 84

where e. is a first-order markov process:

Litterman [1983] shows how to estimate o, 3 and the monthly values
of ¥y, given quarterly averages of y and the monthly wvalues cof x.
He finds that relative to other standard approaches, this proce-
dure reduces the interpolation error in several cases where quar-
terly averages of observed monthly data were considered. In cases
where the estimated markov parameter, a, for this procedure was
negétive, however, the FW procedure did not perform well. For

this reason, where we encountered negative estimstes of &, we used
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the Chow-Lin procedure, denoted CL below. In the CL model the

error term, W, itself follows a first-order markov process.

Seasonal Adjustment

Where seasonal adjustment was rniecessary the procedure we
followed was a frequency domain method based on Nerlove [19€4] and

Geweke [1978]. 1In brief, the steps were as follows:

1. Deterministic constant, trend and monthly seasonals
were removed.

2. A short order autoregressive representation with
seasonal lags was used t¢ forecast and backeast fwo
years of data.l/

3« The series with deterministic part removed and exten-
sions appended is fourier transformed and the spec~
trim is estimated.

L. The fourier <transform of the data is divided at
seasonal frequencies hy the ratio of the estimated
spectrum to an estimate of the nonseascnal spectrum
at that frequency. The estimate of the nonseasonal
spectrum is obtained as a quadratic curve fit across
seasonal frequencies to periodogram ordinates at each

end of the seasonal band.

learLy versions of the data set, including thoses used
for the out-of-sarmple forecasting experiments left this step out
and padded with =zercs rather than forecasts. The seagonally
adjusted series generated without this step suffered at the ends
of the data from a2 detectable modulation of the seasonal pattern
which led te ocur adoption of this procedure.
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5. The adjusted fourier transform Is transformed back to

the time domain and constant and trend are added.

Individual Series

Money Supply

Seasonally adjusted monthly values for the money suprly,
Ml, as published by the Federal Reserve Board were used for %he
period 1959:1 to 1683:3. Values for ML during the period of
1948:1 through 1958:12 were generated by scaling the old ML series

Tty the ratio of the new to the old value for 1959:1.

Treasury Bill Rate
This series is monthly averages of yilelds on 3-month

Treasury securities.

Stock Price Index
This series 1s monthly averages of the Standard and

Poor's Index of 500 securities prices.

Flow of Total Neonfinancial Debt

This is an interpolated version of the guarterly Flow of
Total Nonfinancial Debt published in the Flow of Funds data set by
the Federal Reserve Board. The quarterly series was constructed
by summing seasonally adjusted Nonfinancial Sector Credit Market
Debt and Foreign Corporazte Eguities and subtracting Credit Market
Punds Raised by Foreigners. These series are labeled F30L104005,
F26316L4003, and 7264102005, respectively, in the Flow of Funds

accountsa.



- 66 -

The related monthly series used in the CL interpolation
were commercial and industrial 1loans; the change in consurmer
credit outstanding; the consumer price index, seasonally adjusted;
T-Bills; ML; stocks; and a constant and trend.

Because Flow of Funds data are releaged with essentially
a one-quarter lag, the equatiocn relating monthly variables to the
quarterly variable together with the projected residuals was used
to extend the data set through the first quarter of 1983, for
which no quarterly observation was yet available. Alsc, the f{low
of debt geries beging in 1952, requiring the use of the equaticn
in s similar menner to extend observations back over the first

four years of cur sample.

Trade-weighted Value of the U.3. Dollar

The Commerce Dlepartment's Index of the Weighited Average
Exchange Value ?f the U.S. Dollar was used for the pericd in which
it is available, 196T7:1 through 1983:3. For the earlier pericd a
trade-weighted dollar was constructed following the usual formula
and weights, except that it was based on only the exchange rates
between the U.3. and Germany, France, and the United Kingdoem,
rather than on the ten countries in the current index. The con-
structed series was scaled so that the value for 1967:1 coincides
with the current index. Over the period 1$67:1 through 1%969:12
the actual and the constructed indices were observed to move cuite

closely, differing at any point by less than .3 tercent.
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Federal Government Outlays

Federal government budget outlays on a unified basis are
available from the Treasury Department monthly, not seasonally
adjusted from 1968:2. Annual values are published for the priocr
years in our sample. The earlier annual deta was linearly inter-
poelated using the monthly cutlays series on a cash basis, which is
availeble for this period. The entire monthly series was then

seasonally adjusted as described above.

Federal Government Receipts
The federal government budget receipts series was con-
structed using data analogous te that available for outlays, and

was also seasonally adjusted as described azbove.

GNP Deflator

The monthly GNP deflator was based on a RW interpolation
using monthly data on the Consumer Price Index, the Froducer Price
Index, and a constant and trend. The two monthly price indices
are published in level form con a not seasonally adjusted hasis,
and thus were seasconally adjusted as described above prior to use

in the interpolation.

Change in Business Inventories

The monthly Change in Business Inventories was generated
bty summing monthly Nondurable and Durable Changes Iin Business
Inventories series which were each separately interpclated. The
Nondurable inventories was based on a CL interpolation. The
related monthly series were the Net Change in Tnventories on Hané

and on Order. Wholesale Inventcries on Nonduratle Goods, Total
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Inventories of HNondurable Goods, Finished Inventories of Non-
durable Goods, and a constant, trend and dummies for constant and
trend over the period 1948:1 through 1957:12, during which the
finished goods inventories are not available.

The Change in Business Inventories of Durable GCoocds
series was generated using a CL interpolation. The related menth-~
ly series were the Net Change in Inventcries on Hand and on Order
and the series for durable goods corresponding to those used in

the nondurables interpclation.

Real GNP

In addition to the change in business inventories, five
other components of Real GNP were interpolated: Feal Business
Tixed Investment, Residential Investment, Goverament Purchases,
Exports, and Imports. Real Busginess Fixed Investment was inter-
polated using the CL method. Related monthly series included the
Index of Industrial Production, the level of Contracts and Orders
for Plant and Equipment in 1972 dollars, the Composite Index of
Capital Investrment Commitments, New Orders for Capital Geoods, the
Treasury Bill Rate, Commercial and Industrial Locans, and a con-
stant and trend.

The interpolation of Residentisl Investment used the PW
method. Related monthly series were New Privete Constructicn in
constant dollars; Total Private Construction Put in Place, which
was seasonally adjusted and deflated using the GNP deflator;
Expenditures on Private Construction of Residential Zuildings,
which was deflated using the GNP deflatcr; and a constant, trend
and dummies for periods over which the monthly series were not

available.
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The interpolation of Government Purchases presented a
bit of a problem because we could not find series which would
explain its movements. We ended up using the RW interpolation
method with a constant and irend.

Exports and Imports were interpolated usging the CL
method. The related series were Merchandise Trade Exports and
Imports, respectively, with ccocnstant and trend. Both trade series

were deflated using the GNP deflator.
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