Preliminary: Comments Welcomefﬁ
}_} : _}., b0k __..,'"'I

J

Systematically Missing Data in Econometric Models:
Some Identification Considerations¥*

by Gary Skoog

Department of Economics
University of Minnesota

.June 1975

w i Y %

*The Social Science Research Foundation and the Federal Reserve Bank
of Minneapolis have given generous financial support for this project,
which the author gratefully acknowledges.




Systematically Missing Data in Econometric Models--
Some Identification Considerations

L. Introduction

The variables which enter macroeconometric models are measured
regularly, but at different time intervals. Thus, net national product
data are available quarterly; money stock, biweekly; and interest rates,
daily. This heterogeneity poses both theoretical and practical problems
for the model builder. Despite attempts to construct "fine'" models (in
which the variables are, for example, measured monthly) it is fair to
say that the method of resolution to date has been to construct '"coarse"
models (measuring all variables, say, quarterly), ignoring, or using in
a nonsystematic or aggregated manner, the intraquarter observationms.

The approach taken in this paper assumes the variables (which
in practice will be residuals from fitted trends) are realizations of a
continuous, second-order stationary stochastic process. Identification;/
is achieved by projection of the dependent process onto the independent
process. Thus, if we had the continuous autocovariance and cross-
covariance functions, or, equivalently, all of the own and cross-spectral
densities, we would know the continuous model's parameters (lag distribu-
tions). It is with respect to this (idealized) data set that the continuous
model is identified; with respect a set of data consisting only of
regular point samplings, the continuous process is no longer identified.
Nevertheless, by projecting the sampled dependent process onto the
sampled independent process, a discrete model is identified with respect
to the sampled data set. Relationships between the parameters of the
discrete and continuous models were developed by Sims in [10], for

scalar processes. Emphasis was placed on conditions under which the




parameters for the continuous and discrete models would be "close" to
one another. In [3]}, Geweke extended Sims' results to the vector case.
All data was gathered at the same time intervals in both of these papers.

We can now imagine that the discrete model just mentioned is a
"fine'" model in which, for example, all variables are observed, say,
daily. With such frequent data this model is identified by projection
and is thus analogous to the continuous model above., Further, with
nonhomogeneously sampled time series or with uniformly less frequently
sampled data, the "fine'" model ceases to remain identified, but gives
rise in turn to "coarser" models, which are identified with respect to
the rate at which observations are being recorded. Thus we have several
models, all interrelated, and possessing varying possibilities for
identification.

The role of the continuous model may be likened to the role of
preferences in the theory of consumer cheice: even though they may mot
be our principal concern for inference, we are well advised to postulate
them as our primitive notion. We will on occasion analyze the implica-
tions for the discrete models which flow from hypothesized restrictions
of the underlying continuous model; and, reflecting cur belief that
economic processes are ideally best modeled as continuous phenomena, we
should like to check the compatibility of any assumptions placed on a
discrete model with a continuous model.

II. HNotation, Framework, and the Continuous Model
1xi Nxl

Let y(t), x(t} be jointly covariance staticnary, continuous,
real, stochastic processes, where y will be interpreted as the dependent
and x as an independent, linearly regularg/ process. We assume that

Fx < (dx) i=1, ... N, and Fyy(dl) are absolutely continuous with respect
i™i




to Lebesgue measure, so in the (N+1)x(N+l) spectral distribution matrix

of the (i) process, all elements have densities. Thus

Nx1 le oo . oo
Nx1 . -\t it
Ry (B) = Ex(s)y(stt)' = Le dF, (V) = j‘_me S gy (WA
where
-] E F (d)t)
x(e) = [ ™z ), y(o) = [ ez (), T =5 0,
and
dF__(2),
TR T Xy A=w
Edzx(A)dzy(w) = 0 T

Similar definitions and results hold for Rxx(t) and Fxx(da), in notation
(e.g., Fishman [2]) which is close enough to staudardll to be understood.
All random variables are assumed to have mean 0, and we follow the usual
econometric practice of limiting ourselves to second-order moments for
identifying information.
We now consider the specification of model (A),
N N «

(1) y(t) = x"*b(t)+u(t) = ( ij*xj)(t)ﬂ(t) =)/ bj (S)Xj(t-S)dS"'UCt)

3=1 351 ==

in which, for j=1, ... N,
(2) Exj(t)u(t+s) =0,

all t, s, real. Substituting for u(t+s) in the last expression, we have

N

Ex(t)y(t+s)' = E{x(t)( ] b.*x,)'(t+s)},
j=1 : I

i = *_ LI b T
or, again, ny(s) Rxx b(s) where b (b1 — bN). But because x and y
are real, ny(s) — ny(s) and Rxx(s) = Rxx(s)’ so we may conjugate, to

obtain




(3) ny(s) = Rxx*b(s) .

We have arrived at (3), which is equivalent to (2), given (1),
that is, given that such a b(+) exists.&/ But this heretofore tacit
assumption must now be investigated, as well as the related question of
covergence of the stochastic integrals in x'*b. Perhaps (1) and (2) are

consistent--but with the implied b(.) a generalized functionél'g/

(see
Proposition 4). More to the point, no such b may exist. It is (y(t)|Hx),
the projectionzj of y(t) onto Hx (the space of values of the x process;

see footnote 2) which always exists, and (1) would have been more accu-

rately written
0’ y(t) ‘= (y(t)lﬂx)+u(t)-

However, to restore (1) and to return to more familiar terrain, we have

A -1
Proposition 1 1If [Sxx(w)| # 0 a.e., and Sxx(w)Sxy(w) is the (classical)
Fourier transform of b(:) with absolutely integrable components, then
(1)' becomes (1): specifically, (y(t)]Hx) has the (kernel) representation

fm b'(t-s)x(s)ds = x"*b(t).

Proof: The characterizing feature of orthogonal projection is that
<iy(t)—(y(t)|ﬁx), x(§> = 0, all t and s, where the notation <&, %} means
Ey;, or Eyz if the random vectors y and z are real. Uniqueness follows
essentially from the requirement that (y(t)|Hx) be in Hx’ the Hilbert
space formed by completing, under the norm induced by <-, /\v the set of
all finite linear combinations of x(t), t real. Now by the development
in Rozanov, p. 28-35, there corresponds to (y(t)[Hx) a Sx—unique spectral

characteristic




1xN 2
© (W) ] CDEL [SXX(W) dW} L]
the latter term meaning

I o(w) SX(W) o' (w)dw < o,

-0

such that

(y(t)le) =/ eitkq{x)zx(dx).

-0

For future reference, let's call the general correspondence ¢§. Thus

®+§x#9 where @gLZ[Sxx(w)dw] and xqJ = f eit%$(l)zx(dx)gﬂx.

The integrability condition on ¢ is precisely that needed to ensure
convergence of the stochastic integral. Rewriting the characterizing inner
product which must be zero, substituting for (y(t)|HX), and conjugating
yields

= ix(s-t) ,——< 1 ' =

f_me E[zy(dk)zx(dk) z (dN)z (V' (V] =0
after exchanging the order of integration and using the orthogonality

of the increments processes. We arrive at 5 =8 @', or S =85 ‘Q',
Xy XX Xy XX

=L
XX Xy

where -' = ordinary transpose. But by hypothesis 5' = 8

= ﬁ, for
"be&l," i.e., some b all of whose components are in Ll(-w’ ®) . We may
thus write

(y(o) ) = f ei”ﬁ'(;\)zx(dx) *J4 g o F‘(t—s)e_i“t's)dszx(dx)

=00 oo =00

= | B'(t-s)] %z (a)ds = [ ' (t-s)x(s) = b'ax(t) =

[=+]

x"*b(t)




The change of order of stochastic integration is possible by the matrix

generalization of Rozanov's Fubini-like Theorem 2.4; del is exactly
what is needed to allow this application. Q.E.D.

We shall not pursue the question of describing the class é of
gng[Sxx(w)dw] which are Fourier transforms oflEl(am, ») functions b

except to say the elements of B must be uniformly continuous and bounded;

—-ibw__-iaw _

and obviously é is nonempty, since it contains e = X[a b] (in
]

the scalar case), where %ta b](t) = 1, tela, b], and vanishes otherwise.
]

The continuous model may now be regarded as identified, at

least where S is nondegenerate, by ﬁ =35 ‘lS , where although we
XX XX Xy

have rigorously worked out only a classical case, we shall not hesitate
to interpret the symbols in the more generalized sense of footnote 6.
To be clear about this point and to illustrate the force of Proposition 1

as well as the use of several definitions, consider the continuous time

model
y(t) = x(t=1)+u(t), Eu(t)x(s) = 0 all s and t.

_ n _ —-iw i e
ny(s) = Rxx(s 1) and Sxy(w) e Sxx(w) follow directly. Thus b

Sxx-lsxy = e Y. While ﬂ is bounded and uniformly continuous, it is not

the Fourier transform of any Ll(—m, w) function. It is, however, the

' with unit mass at

Fourier transform of 51(.), the Dirac delta "function'
1l: 5l(t) = §(t-1), where § is the usual delta function. Thus e_lw =
=] P
f e_1Wt5 (t)dt. Taking the point of view that R_._ and R__ are the

1 XX Xy
—. _
data, we form b and check whether or not we are lucky enough to be in
the "smooth" case of Proposition 1, in which the effects of x(t-s) on

y(t) are continuously spread over time. In this case, they are not—-

they are concentrated at a lag of one unit. Nevertheless the systematic




effect, (y(t)]Hx), is the (well-defined!) ordinary random variable x(t-1)

which corresponds under § to the spectral characteristic e-iw = o(w).
It is only when we try to express x(t-1) as a symbolic convolution,
x*b(t), that we run into the need of the generalized function b(s) =
§(s-1). 1In short, generalized functions (and especially their direct
and inverse Fourier transforms) can be used as an aid in discovering
images of the bijection g, as we have done.

The sad fact, however, is that the continuous data, (Sxx’
Sxy) or (Rxx’ ny), with respect to which the continuous model is identi-
fied, are seldom at hand. Consequently, in general, many b(.) vectors
will be observationally equivalent with respect to (even the doubly
infinite idealizations of) the discrete observational patterns that we
are likely to possess. Yet, as we will see, vestiges of identification

may remain.

III. The Discrete Models, And Their Identifiability By Means of Projection
We consider three models which are all discrete samplings of

the variables in model (A), y(t) = x'"*b(t)+u(t). Without loss of gener-

ality we may regard Y(t) = y(t), t integer, as observed once per period,

less often than any of the independent processes in models (B), (C), and

(D) below;gf In model (B), all of the variables X cen XN are observed

1)

times per period, where n, > 1. We call (B) the "fine" model, and

a 1
write
N s== ” o
(4) Y(t) = -21 sz- Bj;f(t~gz)xj(gz)+Uf(t)

(5) EX,Ciﬁ)U (t) = 0 all s, t integers; j=1, ..., N.
imy f




The upper case variables will always denote point samplings of the lower

case variables, so that

X.CE—) = x (E—), t integer, j=1, ..., N.
i'my i'my

In model (C), we assume that the independent variables are numbered in

order of their observational frequency, so that Xy (or Xi)’ is observed

We also assume that [n./

ng times per period, n, > n, > ... > n i “i+l] =

1-="2 N°

ni/ni+l’ where [ ] is the greatest integer function. This assumption is
likely to be met approximately in practice: for example, if ny is 12

(monthly data) and n, is 4 (quarterly data) then [n1/n2] = n1/n2 = 3.

2
We call (C) the "systematically missing data'" model--(discrete) data are

"missing'" with respect to (B)--and we write

N s==
(6) Y(t) = B, (=X, G)+U(t)
jEI L ™
(7) EU(t)Xj(-f-lH) =0t, s, integer, j=1, ... N.
j

Finally, the "coarse" model (D) uses only the independent variables
corresponding to the times at which the least frequently observed time

series, XN is measured. It is defined by

N S=w
(8) Y(t) = B, . (t=)X, (C)+U (t)
jgl SZ-m Jic ny i oy ¢
(9) EUc(t)XjCEE) =0 t, s integer; j=1, ... N.

Before beginning a systematic analysis, several remarks are in order.
(i) Logically (C) may be regarded as the most general of the
discrete models, with (B) and (D) constituting the special cases n, =n;

and n, = Ny, i=1l, ..., N, respectively.




(ii) Models (B), (€}, and (D) all tacitly define the distributed
lag coefficients by the projection of sampled y onto the relevant spaces
of values generated by the sampled x = (xl e xN)' process. Consequently,
we should be prepared to put some effort inte finding conditions under
which the projections have the convolution representations indicated by
(4), (6), and (8), respectively.

(iii) We could have rewritten (6) to appear closer to (4) as

follows:
N s=x s s
(6) () = ) ) B, (t=)X.(F)+U(D),
. j n,’“i'n,
j=1l s=—= 1 h|
B.(t~%~) =0, %— # %—, s, r integer; j=1, ... N.
LR | 1

Here, (&) or (6)' appears as (4) subject to the constraint that when an
independent variable is not available its coefficient is zero. Similarly,
(8) could be written (8)'--(6) under the obvious constraints--or again

as (8)''——(4&) under even more constraints.

(iv) If our goal were to "predict” Y(t) given the entire X
process past, present, and future, sampled at the intervals indicated in
the model (B), (C), and (D), the coefficients {Bj;f}’ {Bj}, and {Bj;c}
would give the predictions which minimize mean-square error of predicted
Y(t), Gi(t)

jecting onto successively smaller subspaces and consequently being left

2 2 .
(B) < OY(t)(C) < UY(t)(D)' This follows because we are pro-—

with successively longer normed residuals.
(v) To interpret (D) as an equation from the reduced form of a
"ecurrent practice” econometric model would require that the X process be

exogenous with respect to the Y process, or that there be no feedback

from Y to X in the Granger-Sims sense;gl Remark (iv) would then suggest




s )

that "better practice" from the point of view of prediction, abstracting
from sampling fluctuations, would involve use of (C). Thus, assuming
that the data are heterogeneous, (C) uses all the data and optimizes;
(D) ignores the more frequent observations, to its detriment; and (B) is
not feasible.

The remainder of the paper will be devoted to analysis of the
identifiability of and interrelationships among these models. We begin
with more notation, adopting that employed in [3] and [10] wherever
possible, and remaining consistent with that introduced already. Thus
an upper case variable refers to a lower case variable, sampled. The
same property holds between the covariance functions, since RXY(%) =
EX(s-D)¥(s) = Ex(s-D)y(2) = R _(5). Analogously, Ry () = R (). Since

yn n X'n
the next few propositions concern the relation between models (A) and
(B), to minimize subscripts we have set n,=n and have dropped the "f"
on B.;f. The standard manipulation yields the discrete spectral density

matrix SX(W), defined on [-nm, nmw], in terms of

. o ive nr k=e i (W+21Tnk)“f;
Sx(w): Rk(;) = f Sx(w)e dw = f Z Sx(w+2nnk)e dw =
- -nrk=-w
ny iwII{ nn iwi
f Fn[Sx(-)](w)e dw = f Sx(w)e dw,
-1y oy

the middle equality defining Fn[ Is
By the assumption of finite variances of the X process,
-] nr
RX(O) = f Sx(w)dw = f Sx(w)dw,
- =17
so we have integrability of each term of this positive semidefinite

Hermitian matrix. We already assumed det Sx(w) to be nonzero a.e. on (-», «)

and it is natural to make the same assumption on Sx(w) on [-nmw, nw].




Equivalently we order the eigenvalues of SX(W) as Al(w)_z 12<W).3 cen AN(W)
and assume AN(W) > 0 for almost all such w. Perhaps obvious is the

following.

Lemma 1 Finite variance of the X process--Var Xi < o, i=1, ... N—--is
equivalent to integrability of Ai(w), i=1l, ... N.

Proof: Since

N N
tr SX(W) = 5_2 SX. w) = Z Ai(w),

L3
; N N nm

z Var X, = Z f S, (w)dw = E f A, (w)dw.

: i X,

i=1 i=]l -nm i i=1 -nm
nm

Finiteness of the left-hand side implies that each of f Xi(w)dw < o,

-’

The converse would also have content had we defined spectra for processes
with infinite variance. Q.E.D.
As indicated in remark (ii), a development analogous to that

employed in arriving at (3) would yield,

(10) Ry (D) = R H*B(D)

; vty t £ £
where B is real, B (n) (Bl(n)’ saa BN(n)), and now of course the
convolution is in discrete time. The same objections apply: the exis-
tence of the representation B'*X(t) for (Y(t)!HX) has been tacitly

assumed. But as before we can make this assumption good by establishing

Proposition 2 Assume A (w) >0 a.e. on [-nq, ng] and that S (W)S ( )

is the Fourier transform of B(;) where

E |B (— ) |< .

j=1 t“ -®




= 19 o

Then

N t=o
- Syx (&) = B
(Y(t) 0 ) = j=21 t=Z_mﬁj(t DX Q) = BK(D),

so that model (B) is identified by projection.

1xN
Proof: Letting ®@(w) be the SX—unique spectral characteristic

of (Y(t)|HX), we have the latter equal to
nf
[ et™Momz (aw).
i
Proceeding as in the proof of Proposition 1 to write out the meaning of
= = -1
i = ' L
orthogonality again yields SxY(W) SX(w)m (w), or ' = SX SXY a.e.,
using the invertibility of SX ensured by kN > 0 a.e. Now by hypothesis
= t=w t
o'w) = ) B(—)e i,
t=—w
where the absolute summability of B(+) guarantees absolute and uniform
convergence (as well as the uniform continuity of S (w)S ( ). Let

e >0 be given, and choose M so large that, for all we[-ny, ng] and all

j:l’ LU N,

t=M t — —
£
[m (w)- Z_MBJ(E)E | = [5j(w)[ < N||Al|fzﬂn

nmw
where |I31|| = ll(w)dw,
-nm

which is finite by the lemma. Now by the usual isometry between the

time and frequency domains,

N nmw
||(Y(t)|Hx)- y E B. (t_E)XJ(n)ll f 6'(W)SX(W)6(w)dw =
i=1 t=-M J -ng

TI_(—IT) S, @) (s s |17 aw < f A (W)_|]'x [[zma™ =



2 v 2
where |[s(w) || = |Gi(w)[
i=1

and the familiar inequality involving the Rayleigh quotient has been used.
Q.E.D.

We observe that the construction guarantees that 6' = ﬁ be in
LZ[SX(w)dw], which is precisely the (so-called 'matching") conditionlg/
that the conveolution sum be convergent in mean square. Indeed, assume
that we find RX_ and "solve" (10) for BC- = RX *RXY(— Putting
aside the obvious convergence question involving the right-hand side,

when we ask about X'*RX-I*RXY’ we are led back to the matching condition,

since the variance of this random variable will be, if finite,

L ! . -
[ RyyRy ~ Sy Ry Ryyd.
-nn
But now, the finiteness of this integral must be checked, or assumed.
We will pursue this approach, to derive different conditiens under which
the desired representation B'*X{t) holds.

The first step is to comstruct RX"I. Its defining property is

=00

E_ RX(___)RX 1 t S - G_E'INs
T

where Bt is the Kronecker delta. This convolution requirement translates

1
into SX(W)SX_l(w) = IN’ wel-nm, nn] if RX and RX_l can both be Fourier

transformed. Indeed, Wiener and Masani have provided the theory which
extends to the Hilbert spaceng {of ¥NxN matrices whose components are
LZ[—nW, n], complex-valued functionsg) the results we need, particularly
the Riesz-Fischer Theorem, Parseval's Identity, and the Convoelution

Rule, ([8], especially Theorem 3.9). Thus for RX(%) to be in &,, the

2)

corregponding (sequence) Hilbert space of square-summable matrices, we

must have by definition that




w1l =

11 S=5m IR &) |2 = S? tr R,(R' () = S=Ew ( I% I% .. & |
(L gy RX n” ''E ~ - % RX n’ X 'n “wdel §ei ij'n ) =i
In this case,
S5=w . S
(12) 5, () = E_max(i—)emﬁ is in‘l_—z, i.e.,
T 2
@ >5[ tr S (w)SLw) Jdw = ((S,(w), S, (w))) = [[Sy(w) ||
=17

Consequently, we will be able to Fourier transform RX to SX’ invert, and

-1 11/

inverse Fourier transform provided that (12) is met by SX and Sx

Now SK and SX_l are inLEZ if and only if, respectively,

N
) 1
. and it
1)\1 i=1 "i

[~ =

i

are integrable, that is, if and only if

n 2 L 1
I Al(w)dw < o and f ‘jf‘—‘dw < ooe
—Dq T RN(W)

We may summarize this discussion as

Lemma 2 Provided the largest and the reciprocal of the smallest eigenvalues
of Sx(w) are both in L2[—nw, nwl, RX_l exists, uniquely, in jQ.

As noted, the matching condition must be dealt with explicitly.
Here, it is evidently

n

f_mpu‘x'f' Ry Ry <

Now if Rx_l is essentially bounded above by which we mean there exists
c > 0 such that cIN—RX"l(w) is a.e. positive definite, then we would
have the matching condition satisfied whenever RXYC%) is a square summable

vector sequence, i.e.,




- 15 -

§=o ' S=c 4
sgﬂ R Rl (= Szz_ | Ry | 2 =

S=w N s. 2 nr . 5

L L Ry O = Ry@R G Wdv < =,
S==w 1i=]1 Y -ng

where as before|| ||, stands for Euclidean norm, and we have tacitly

E
filled in a gap by defining the concepts for Nxl vectors that had pre-

viously been defined for scalars and matrices. The assumption that

RXY(-) be square summable is a very natural cne;lg/ especially in con-

junction with RX(‘)SEZ. Finally, we observe that if RX is essentially

bounded above, tr sx_lsx'l < tr cz-IN = c2 N;ig/ which is integrable
1

)
satisfied. Likewise, if RX were bounded above, llﬁa) would be square

iy . . ~ =1 -1 2 - =1
integrable. But Rx< d-IN is equivalent to RX >d IN’ i.e., Rx

over [-nm, nm], so that the condition that be square integrable is

being essentially bounded below. Taken together, the discussion above

entails

is essentially bounded
- nm 2
above and below (so that S, = is as well) or, if (b) [ X (W) dw < and
=0T

SK is essentially bounded below (equivalently, that SX_

bounded above); then RX has a unique 32 inverse such that (RX—l*RXY)'*X(t) =

Proposition 3 If RXYCE)Q&Z and if also: (a) S

X
is essentially

(Y(t)|HX), i.e., the matching condition is satisfied. Hence, the pro-
jection has a convolution representation, and model (B) is again identified.
At this point, several remarks are in order.
-1 t
. ; : i t
(i) The question raised earlier about convergence of RX RXY(n)
can be answered affirmatively, under the hypotheses of Proposition 3,

since




=

N s=w

N
LRyt « TOF iy Gl

{
Sﬂ-mj— J=]_ S8==0

S

(#+]

2}1/2x

o~ 1l

-1—:-._.2.- 3)12}1/2 <

{S§W [RXY(n n’

=—c
by the Schwarz inequality.

(ii) The approach of Proposition 3 squares with our intuition
in requiring a full rank condition on a structural characteristic of the
X process to be able to uniquely assign coordinates to the coordinate-
free concept of vector.

(iii) The two preceding propositions apply to establishing the
identifiability of Model (D), by taking n=l.

(iv) While no direct reference to the spectral characteristic
of (Y(t)]HX) was made, it clearly is Sx—l-SXY. But now, as the sum of
products of Lz[—nn, ny] functions, this spectral characteristic is no
longer subject to the harsh continuity requirements implied by the
hypothesis of Proposition 2.

In summary, identification of models (A), (B), and (D) has
been achieved in two ways: rigorously, Propositions 1-3 indicate precise
conditions for the commonly written distributed lag relations to be
valid; in the case of the continuous model, the more general methods of
Fourier transformation of generalized functions were indicated to be
capable of providing the desired identification. It is not evident (to
the author!) how this latter technique would aid in identification of

14/

the discrete model.~™ Model (C) will be treated in Section V. We now

address the relation between the continuous b and discrete B.




& 17 =

IV. On the Identification of the Continuous Model from Uniform Discrete
Data

We begin by examining the relation of Model (A) to the model

(B) (or (D) if n=1). It is useful to observe that S_ is Sxy(w) n-

XY
15/

folded,~—~ just as S_ was Sx acted upon by Fn:

X
i OF i T
. w dw - ny iw
Ry @D = J‘_msxy(w)e dw = f_an[sxy(.)](w)e dw =
nmw iw}l' T
f SXY(w)e dw = RXY n
it
where, as before,
k=co
Fn[sxy(. Y1w) = kz_msxy(wznnk) i

The force of the equality string is the third equality, which proves

that

(11a) Fn[Sxy(-)](w) = SXY(W) a.e.

Taking y=x, or recalling the earlier result, yields
(11b) Fn[Sx(o)](w) = SX(W) a.e.

The left-hand side of both of these relations is 2gqn-periodic, so that
the right-hand side is also, despite the fact that when X and Y are
regarded as discrete processes in their own right, SX’ SXY’ and SYY are
usually considered as defined only on [-ny, ny]. Denoting (perhaps

overly suggestively!) the spectral characteristics of (y(t)]Hx) and

(Y(t)]HX) by E and ﬁ, no further assumptions were required to write
(123) SXY(W) = Sx(w)B(w), |w| < nr

and




B8 =

(12b) Sxy(w) = Sx(w)b(w).
Applying Fn to (12b) and equating with (12a) results in

(132)  Sgy () = F IS, ()b()]

(13b) S ()BW) = F_[S, (-)b()].
Assuming SX_1 exists a.e. yields
~ _l o -1 -
(14) B(w) = Sy (W)F_[S_(+)b(-)] = F_[S;7 (:)S _(:)b()]1(w) a.e.

since a 2np-periodic function can be passed through the Fn operator.
Equations (13) and (14) express the general underidentifiability
of the continuous model from discrete data. We may observe SX’ SXY and
SY (which is irrelevant here), and, from (12a), compute ﬁ(w). But since
neither Sx nor Sxy is available (only their folded versions (lla) and
(11b) are observable), we cannot compute Sx-l(w)Sxy(w) = g(w) from
(12b). We interpret the right-hand sides of (13) and (14) as describing,
without making any further assumptions about the (i) process, precisely
the set of g(-) which are consistent with the data-determined left-hand
sides. The nonidentifiability of g results from the joint (and observa-
tionally inseparable) operations upon it of multiplication by an unknown
Sx(w) matrix, followed by a folding of the product.
Consider first the conceptual unraveling of (11b), or, equivalently
the nature of the underidentification of Sx’ For any real process, Sx
must: (1) be integrable, (2) satisfy SX'(W) = Sx(W) = E;Z:;T, and (3) be
positive semidefinite. The latter requirement is sometimes strengthened

to (3') positive definite a.e. It is immediate from (11b) that the same

properties will hold for SK' Now define Nl'n = U {A42rnk}. Choose any
3 k=_m
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U

"allowable" Sx(-) and pick any R¢N0,n, i.e., 30 (mod m). Any "decomposition'
s b
2

of Sx(x), i.e., any sequence of positive definite Hermitian matrices
k=

{Sx;k(k)} such that Sx(A) = kz_mFX;k(A)’ can be spread over Nx;n to

help form an observationally equivalent spectral density matrix function.

To maintain the last equality in (2) we must form N—A'n and a related

3

sequence Sx_k(—x) = Sx_k(x). A perturbation matrix function (which is
] L]

zero a.e.) is defined by:

G c
0 welN, W :n)

A -
Sx,k( ) w x2mk, k#0

(15) P (w) =1 - % S . M W=
k#0

Sx k(—-l) w = =A-2mk, k#0

-Ys. (-} w=-2A
Kkfo XK

Mo

Consequently P(-w) = P(w) = P'(w)

Finally, Sx(w) = Sx(w)+P(w). Note that Fn[P](w) = 0. By
construction Sx(w) is still an allowable spectral density matrix func-
tion, and Fn[§x](w) - Fn[Sx](w) = SX(W), |w|‘j nm, so that both %x and

Sx give rise to the same observed S Admittedly, %x and SX don't

X
constitute a very interesting observationally equivalent pairlé/; but

this operation may be performed simultaneously for all A, or all A in a
17/

set, E, of positive measure.~ This now describes exactly the set of

18/

all Sx(-) which are observationally equivalent to Sx(').——- The easiest

kind of nondegenerate special case would perhaps be to take G'Sx(w)
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away from Sx(w) for w in, say, (m, 3m] and to add these values to Sx(w)
for w in (3m, 5m], 0 < a < 1, doing the symmetric operation for nega-
tive w.

For short, we will describe this procedure as 'selecting an

allowable Px" where Px satisfies the restrictions just described for

P(w). Similarly, %xy = sxy+Q’ where, because Sxy(k) = Sxy(-k), Q)

0.

E?:KT; and, of course, Q must satisfy the "adding up'" property Fn[Q]
There is no requirement on Q analogous to the positive definite Hermitian
restriction imposed on Px' The formal definition of Q(w) is identical to
"Select-

(15) except that the Nxl vector S replaces the matrix S

xysk x3k’

" means, as before, choosing a nontrivial decomposi-

ing an allowable Qxy
tion satisfying the conjugate symmetry property, and is equivalent to
selecting an observationally equivalent Sxy'

The observationally equivalent 6 may now be represented as
§+a5, with a formula for 6g to be derived. The equation g = Sx-lsxy has
two meanings: for the '"true" (Sx’ Sxy) it gives the "true" g; it also
gives the form of identification--for any potential (Sx’ Sxy) pair, the
corresponding g is given by it. Consequently, for £+ﬂ£ to be observa-

tionally equivalent to b, there must be at least one allowable Px and

at least one allowable Qxy such that
a7 b, % (sx+px)“1(s +Q ).

Xy Xy

Rearranging yields (Sx+Px)N§ = -PXI::+Qxy which, depending on whether it

is folded or not, yields,
- B iy e ¥
(18a) Ab(w) = (Sx+Px) ( be+Qxy)

or




-

(18b)  F_[S sb1(w) = -F [P DI (W)

(17) and (18a) are equivalent, and give the answer to the question:

which b are observationally equivalent to a given (ﬁ, SX, Sxy) when only

% SXY 19/ may be observed? (18b), which follows from (13b) as well,

suffers since it makes no mention of Qxy: if a Ab is found that satisfies

(S

it, the question of whether there exists an allowable Qxy which is
consistent with (18a) remains. Finally, while all the discussion has
been in terms of the spectral characteristics, adoption of the assump-
tions of the previous propositions allow the interpretation of B and b
as lag distributions.

Without making additional assumptions, it appears nothing more
can be said. However, by placing specific restrictions on characteristics
of the processes, it is possible to proceed: either as in Sims [10] and
Geweke [3], to force b(+) and B(+) to be "close'"; or, as here, to force
identification. In fact, extending an assumption analyzed in each of
these papers for different reasonszg! leads to our next result.

We need first to give two definitions, which might be understood
from their symbols without explanation. For a sequence of vectors or
matrices (RXY or RX) to be in L we require their components to be
absolutely summable; and for a vector or matrix of (real- or complex-

we require that each component

valued functions, S, or SX) to be inu:

XY 1

be absolutely integrable. As before, we have refrained from including
in the notation the domains which will be clear from the context and may

on occasion be noted explicitly.

Proposition 4 Assume: (i) ny(-) and Rx(-) are given between the

lattice points lh = {ﬁ: t integer } by linear interpolation, (ii) ny(')
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and RX(*) are inﬂ:l, and (iidi) SX is essentially bounded below. Then

B(ﬁ) and b(t) are both identified from the discrete data; moreover,

B(&) t integer

b(ﬁ) = , where the interpretation is that b(-) is a row

0 otherwise £
of delta functions with weights given by B(E) on the lattice points Ln

Proof: (i) says that

; 1
RED = Q-|sDRDHs|R( + 372D

and

thsy _ t .1l =
Restn ) = (=|8)Bey @+ o Ry G+ o]

for t integer, and |s| < 1. (TET is taken to be zero at s=0.) Defining

1-|w]| [wl <1
0 [w| > 1

delta functions with weights given by their values on Ln, we may rewrite

e ; : a2 t
ro(w) = and interpreting RX(n) and RXY(n) as rows of

assumption (i) as

and

Ry (o) = [ Ry -mp Ty = Ry LD

where, because of the finite support of ro(-) and the nature of RX( )

and RXY(-), the integrals are sums of at most two numbers. RX and RXY
will be in L9 if they are in &1; that they are in &1 follows from (i),
(ii), and their sampling relation to Rx and Rky——indeed, any corresponding

components have equal 2 and Ll norms. Thus, RXsz(EZ(—nn, nt) displaying

the domain) so that

T 2
f M (w)dw < w3
-7
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with (iii), we have Proposition 3 in force, so that

-~ __1~

- |
B =Ry Ryy = Sy Sy

is also in“;2 and the classical-inverse Fourier transform may be applied

to ﬁ to yield the BZLI of model (B). Rx(-) and RXY(-) as generalized
functions have Fourier transforms which are periodic. The Fourier
transform of rO-IN is 25 (1-cos w)-IN, obviously positive definite a.e.
w
: * % B L
The convolution Rx thus has R.x = Rx-wz(l cos w) which is clearly inL__2
from consideration of the right-hand side. The spectral characteristic,

1, .21/
]

b, satisfies b =5 8 ifwehadR =S and R_ =S , then
X X x Xy Xy

b = (ix-zz(l—cos w))-l(iifl-cos w)RXY) = ix-liXY =B

w
and the conclusion follows. We have Rx(t) = jw Sx(w)ethdt, with Sx(-)gii.
But the relation Rx H)ix is the unitary Fouria:wisomorphism alluded to
in footnote 3, extended tolgz(-m, ») matrices in the Wiener-Masani
manner. (That the components of Rx (and so of ﬁx) are in Lz(ﬁm, «) can
be seen directly since they are in Ll(—m, «) and bounded.) With Sx(-)
and Rx(-) both having absolutely integrable components, the classical
inversion theorem of footnote 3 applies. But now Sx(') is also seen to
be bounded, hence inle(- w, o), and it follows that SXE»RX, since H+
agrees with the ordinary Fourier integral when domain and range element
are both in Ll(—m, m)f1L2(~m, w). (See [5], especially p. 510-513 for

E+.) But then Sx = ﬁx by the one to one property of H+. Q.E.D.

A computation in the proof showed that wzsx(w) = ﬁx(l-cos W) .
The nonintegrability of the diagonal elements of the right-hand side

shows
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o

f wzsx.'(w)dw =w, i=1l, ... N, i.e.,

- ii
that no component of the x vector can be mean-square differentiable, an
observation also noted in [3], p. 7.

In the special case of n=1, the continuous model (A) is
identified from only the coarse observational structure (D). It need
hardly be said that the hypotheses are less likely to be fullfilled in
this case: linear interpolability is required over longer segments.
Indeed, by usng Xi’ i such that n, > n, in(ﬁi) may be computed and
part of the interpolability assumption thus checked when data of the
model (C) pattern are available.

A second situation with identification possibilities requires
the abandonment of the assumption that x be linearly regular,ggj since
the latter implies that Sx(-) has the same rank a.e. If Sx(w) vanishes
for wx[-nr, nr], then Sxy(w) vanishes outside this interval as well;
consequently, ng = Sxy is consistent with any values for ﬂ(w) outside
this interval. Otherwise put, model (A) is not identifiable with respect
to continuous data, let alone discrete data. Processes of this type,
whose spectral density matrix has for support a proper, compact set of
the allowable support (here, (-», ») for real processes) are called
band-limited. Their values x(t), for all t, can be captured knowing
only their values at x(ﬁ), provided the spectrum is bounded.gg/ This
result, bringing to mind interpolation and the previous result, suggests
a closer examination.

The vanishing of Sx in an area says there is ''mo action" in x
attributable to that part of the spectrum (here, the high-frequency
components). A reasonable identifying assumption for g(w) might there-

fore be to for it to have "no action" at these frequencies. We adopt
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this for the purposes of the next proposition; now, with respect to the

continuous data,

3 -1
b'<
0

(W)Sxy(w) |w| <nn

b(w) = |W[ > nr’

Recalling (13b), SXB = Fn[Sx(')b(-)], and noting that F11 effectively
causes no loss of information in this situation because SX(W+2ﬂﬂk) and

6(w+2ﬁnk) both vanish for an integer k different from zero, we have

. 5 pobley ¥l Zmm
(19) S (WB(W) = L lw| > nm and w = w*(Mod2mm) .
S WbV Vi | = ar

Since
S, =5 (), lw| < nm

it follows that g(w) is identified from the discrete data as
~ B (w) [wl < am
b(w) =
0 lw| > ar

Again we have equality of b and B in a sense. To translate

this result into the time domain, we observe that

. N . l.._’—“
@) bw =B - swBm () 2
)

where the indicator or characteristic function X[a,b] has been previously
defined. Obviously g(-)e&é(—W, ©) if and only if g(w)dL2[~nw, nr], in
which case we may take an inverse Fourier transform. By adopting the
hypotheses of Proposition 3 this is ensured, and

. © L i)
(21) Bw) = ] B(De

t=—co

holds for some B(ﬁ)g&_ . The inverse Fourier transform of B(w) is thus

2

a row of delta functions with weights on the lattice l'.,n given by B(ﬁ).
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Abusing the notation slightly by referring to this generalized function

as B(+), we use the convolution rule on (20) to conclude

sin st n

(22a) b = [ B -9) =" ds = n-B() if el .

If ERLH, i.e., if r is not an integer, the first equality holds and we
may again derive b(ﬁ) from observable B(+), but the relation is not so

; E ot 1 .y I _y =gt
simple. We have s e + 68, 0 <6 < > t integer. Then B(n s) B(n +8-s)

has its support located at s values in the displaced lattice LG 0 =
{s+ﬁ: t integer}. Consequently
= . sin(5+40ﬁn
226) A = J BEH——
n L nn 4L
j=-w (g+)m
n
It remains to check that our candidate for (y(t)|HX),
b'*x(t) = [ b(t-s)x(s)ds,
makes sense. We are given pause by the fact that Proposition 1 is not
likely to be applicable: for b(:) to be inU:l(-m, ©), b(w) must be
continuous, and a glance at (20) shows this to be unlikely. However,
the matching condition can be verified directly, since
=] - T nen- 4 £
f b'(w)Sx(w)b(w)dw = { B'(W)SX(W)BCw)dw < o
—co =
by Proposition 3 and using the first equality in (20). This concludes

the proof of

Proposition 5 If (a) the spectral characteristic ﬁ(w) is chosen to
24/

vanish with Sx; (b) the continuous process X is limited to the band
B = [-nm, nnw]; (c) SX(W) (=Sx(w) on B) is essentially bounded below and

is essentially bounded above; and (d)

either Al(W)eLz[-Bw, ny] or S

X
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RXYQ&Q; then the continuous and discrete models (A) and (B) are both
identified from the discrete data by projection. Moreover, equations
(22) provide b(+) in terms of B(-).

In [3], Geweke's Proposition 3 shows, for the case n=l, an

"inverse'" result for band-limited processes:

sin w(t~g)

(23) B(t) = f 2 (t=5) -b{s)ds, t integer.

His interest in (23) 1s that each component of B involves only the
corresponding component of b--there is no contamination. Our result
shows that, when b(-) is identified by (a), the integral equation (23),
which holds only at integer t, inverts!

Even if our interest 1s not in the continuous model, the last
two propositions provide some clues about when a "coarse" observational
pattern will serve to identify a "less coarse” model. Before taking
this up, we will respond tc the challenge of remark (ii) as it pertains
to model (C). It is still only tacitly defined by equations (6) and
(7); Propositions 2 and 3 do not directly apply to it. We explore this
question, and its relation to the other discrete models in the next
section.

V. The Identification of Model (C) and the Relations Among the Discrete
Models

One way to interpret (10), RXYCE) = RX*B(ﬁﬁ, is as a necessary
and sufficient condition on B for B'#X(t) to be the projection (Y(t)|HX),
provided that B'*X(t) is well-defined. Put differently, given a B by

whatever means, if B'#X(t) can be shown to be in H,, then checking (10)

X’
is equivalent to checking whether B'#X{(t} is the projection. While (10)

referred to model (B), an analogous system of convolution equations
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holds for model (C). Our plan is to develop them, solve them, and then

apply the above considerations to justify our solution.
Let us recall the model (C) in the form using (6)':

N s=o

(6)' Y(t) = § 7 B, (t=)X,()+U(t)
jul gmew 4 B 1Dy
B.(t-g—ﬂ = 0, 5—-# 5—1 s, r integer; j=1, ...N
ity ny nj
(7) EU(t)Xjfﬁ—D =0, t, s integer, j=1, ...N.
j

The following notation will be found useful. As before,
denote by Lj the lattice {ﬁ—z t integer} j=1, ...N. Recalling our

J
assumption on the data structure, define the integers

n, n,
m =[] =—; N> j> i>1; i, j integer.
1,3 n n ik
A J
By H(S) will be meant the smallest Hilbert space containing, or spanned

by, the set S. (This is the same concept mentioned in the proof of

Proposition 1 and footnote 1.) In this terminology, we have: (i) the

domain of Xj(-) is Lj; (ii) the lattices are nested, Ll E?Lz Digae 2 L3

(iii) Bj(') is defined on Ll but may be nonzero only on Lj’ Lj+ s Tk

Ly- (1v)
N N
Hy = H(-EJ (Kj(S), sely)) < H( l=1 (Xj(S), SELJ.)) =H,
J=1 j=1
N N
H( 9 (Xj(s), seLl)) = Hy = Hy E;H(.y (xj(s), s real)) = H
j=1 j=1
The models (A) to (D) are thus identified by projecting Y(t) onto H, to

A

HD' respectively, all of which may be regarded as closed subspaces of

H(x x = H(HAu(y(t), t real)). This observation may clarify remarks
»

(ii) and (iv) of Section III.

N!
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Multiplying both sides of (6)' by Xi(t—ﬁ—), taking expectations,
i
and making use of (7) yields

r
(24) RX.Y(n.) Z B RX X ), i=1, ...N,
i” i
.th ; 5 ;
where the j— term in this sum is
(25) B *Ry 13 (—) Z B, (t———) RX Y (-ﬁ ~(t——
S==c l
and the constraints may be written
(26) Bj(S) = 0, SEL{\Lj, N>j>1i2>1.

We will make use of the

Covariance Identification Lemma If u(-) and v(+) are two stationary

processes observed on the lattices Lm and Ln’ respectively, we may
estimate consistently, and hence regard as identifiable, Ruv(s)’ seLr, r

the least common multiple of m and n. (Lm = {iﬁ t integer})

Proof:

o Iy gy (e (D),

by covariance stationarity, so that for any integers k and h,

ﬁ (kn—hm

uv  mn

HIH

z u(t—ﬁ)vct—g)

teT

)

may be formed, where |T| is the number of points in T, a finite set for
which data on both terms in the product are available. This estimator
is certainly consistent. Choosing h=0 (respectively k=0) shows Ruv(s)’
sng (respectively Ruv(s), SeLn) are identified. Clearly the set of

points so identified in arbitrarily large samples T is a lattice. The



precise description of the lattice gives its step, which is evidently

iay with d the minimum positive integer equal to kn-hm, where k and h
vary over all integers. Since m and n have least common multiple r,

g = gm = r with ¢ and § relatively prime integers, and kn~hm = iﬁ(uk—
gh), we want the least positive value of ok-Bh over all integers k and h.
But gk-gh can always be made to equal 1, in which case d = r - g = g,

op
so that

glmla
W

d
mn

This last observation must be evident to all number theorists, and its
tedious induction proof is omitted. Q.E.D.

Applying this lemma to the convolution equation system (24)--
{26) shows that all of the terms RXiY and inxj which effectively enter

may be taken as known. For while the right-hand side of (25) contains

all the terms RX X (s), Sng, only when t—E—ELj will such a term have a

1]
nonzero coefficient, and it is in precisely that case that RX X is
i]
r
available, because the sum of the two lattice points t-%—eLj and E—aLi
1 i

is a lattice point.

Solving this system—-even "cperationally'--appears to be much
more formidable than solving (10), where we were able to justify multiply-
ing by R;l. If {(24) were written in matrix notation as RXY = RXX*B, we
evidently have two choices for the domain of the elements of RXX: it
may be uniform, %I units apart, in which case many components are unobserv—
able; or, it may be nonuniform, defined only at the frequencies which
effectively enter (25), in which case it is hard to imagine even the
formal construction of Rx-l. In any event, the constraints must also be

dealt with. Finally, the frequency with which the equality in (24)

holds varies with the component 1i.
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These difficulties can again be dealt with in the frequency
domain, with the aid of an entirely finite version of the folding prin-
ciple used in the previous section. Stated in the form in which it will
be used, with reference to the underlying continuous processes suppressed,

we have the

Finite Folding Lemma If the discrete processes X and Y have autocorrelation

function RXY(-) which is in principle observable ny times per period but

is actually observed nj times per period, nl/nj =my 3 then the observed
>

cross—spectral density is
ml,j_l
Fn.;nl[SXY(.)](W) = Z SXY(W+21Tnjk)’ a'e‘! WEIOS zwnj])
k=0

where the densities are assumed to exist;gi

Proof: TFor any integer r,

Irm

rm m 21n, 1y
: R ] 2.8 . 1,3y _ 11 -
n. . B = Ry (=8 [ e my Syy(W)ds
j 1 4 1 0

T g

§op detem) TS (wk2mn, k) dwi.

k=0 0 L j

The finite sum may be taken inside the integral and the exponential may

PO o
be replaced by e nj. Q.E.D.

Observe that the notation Fn s [ 1C( ) indicates both domain
i’l
and range of the operator. When the domain is clear from the context,

as, say, in (30) where any fold is with respect to [0, anl], the nota-
tion may be abbreviated to Fn [ J(-). Valuable use will be made of the

]
relation,
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S7e 8 i(t-ﬁ—)w > it s s i(ﬁb)w
(27 séﬂ»Bj(t_EE)e n, = Bj(w) = Bj(w+2nnj) = SZ_mBj(E;Je nj s

i=1, ...N,

which holds because of the constraint (26).
Finally, we Fourier transform (24) and consider the iEﬁ equation.
The left-hand side is, by the Folding Lemma,

1,1
(28) B, Sx yI ) = 7 Sy y(wi2mn k).
i1 i k=0 i

The folding here is relative to the cross—-spectrum we would observe if

the data on X, were on the lattice Ll. There is "true" folding relative

to the observational pattern of model (B): as long as we only observe
Xi on Li’ we canncot unfold. We will see that the right-hand side,
however, contains a 'pseudo-folding" for the terms j, 1 < j < i-1. The

.th ;
i— equation reads
i-1 My,47L
iw =7 7 Bj(W+2ﬂnik)SXiX'(W+2nnik) +

(29) F . [8
i*71 i =1 k=0

N .
I B IF sy 4 1)
= 1 1

Consider, for example, j=1. We have seen that Rx X (s) is known for
il

saLl; consequently, SX x (w) is known for all w, 0 < w 5_2nnl. The j=1

il .
term in (29) thus involves a (Bj—weighted) folding of what we know, as

opposed to the left-hand side which folds part of a cross—-spectrum we
can't observe. This is the sense in which "pseudo-folding' is to be
taken, since now we show how this latter can be undone.

Since (29) is to hold for all w (or, because of periodicity,

for all w in [0, Zﬁni]) we may substitute w2t h, h=0, 1,2, ... ni—l
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successively for w. These n, equations with w now regarded as belonging
to [0, 2n] are clearly equivalent to the original equation with w belong-
ing to the entire [0, Znni] interval. By expanding in this way, we can
express the desired E vector as the solution of the matrix equation
system (30), displayed as p. 33 which will be on occasion abbeviated by
Syg (W) = sx;c(w)ﬁ(w) ;

We describe SX;C further, as its properties are of crucial

importance for the identification of model (C). It is square, of
N

dimension ( z ni), and Hermitian. As indicated it is most easily visu-
i=1

alized in terms of its N2 blocks. The (j, k) block is: diagonal, of

dimension nj, if j=k; if j < k, it is njx n, consisting of mj'k diagonal
3
matrices stacked vertically. The elements on the diagonal are the

cross-spectral density Fn [SX X ](w), as "truly" folded by the observa-

n
i1 "j’k
tional pattern. Although formally indicated to show the general pattern,

no folding occurs in the first block-row or in the first block-column.
Since all folding is with respect to [0, Zﬁnl], an n, has been omitted

from Fn - [ 1(+) in (30). 1In winding diagonally down a stack only one
i
period is traversed--there is never any repetition. The width of the

blocks diminishes with rightward movement. By inspecting the n1+l-EE

(w) and S
XZXl szl

S F
which are individually observable, occur together in the nl+l"—'equatlon.

row, the "pseudo-folding" is seen, in that $ (wt2mn, ),

Finally, all elements of SXY(-) and S are identified, or data-deter-

X3C

mined, so that we might hope that
oy =~
(31) B(w) = SX.;C (W)SXY(W), wel[0, 27]

holds and our indicated programme may be carried out. Before continuing

we make a slight digression in the next paragraph.
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Since models (B) and (D) were seen as mathematically special

cases of model (C), the equations
(32) SXY(W) = SX;B(W)Bf, wel[0, 2m]; and
(33) SXY(w) = SX;D(w)Bc, we[0, 271,

are particularly instructive special cases of (30), in which the (j, k)

26/

block is always diagonal.— The technique of forming the super-matrix

SX-C is necessitated by the fact that no orthogonal-increments represen-

tation of the subspace H, we are projecting into exists, and creating

C
one would be more difficult than our direct solution. That SX;B and
SX;D actually yield the previous solutions derived on the basis of
spectral representations is a gratifying check on the validity of the
present technique.

The spirit of our inquiry involves making assumptions, insofar
as possible, on the continuous process (y, x) and analyzing their impli-
cations for the discrete models. A natural assumption, suggested by the
logical requirement that |Sx1xj(.)|'5 SXi(.)lfzsxj(.)lf2
(continuous) spectral density matrix have a dominant diagonal--the

, is that the

positive diagonal element exceeding the sum of the modulii of the off-
diagonal elements of that row. But from the folding formulae (lla) and
(11b) this property carries over to the discrete model (B)-spectra
defined on [-nm, n7] (or equivalently [0, 2mn]: in the sequel we may
use these interchangeably); also, directly or by Finite Folding, to

model (D). We have only to consider model (C) to establish

Proposition 6 SX;B’ SX;C’ SX;D are all positive definite, and hence

invertible, under the assumption that the continuous spectral density

matrix is pointwise dominant diagonal.




Proof: The matrices are all Hermitian. Having written out SX'C in
3

(30), inspection shows that, upon unfolding the typical diagonal element

Fn.;nllsX.](w) into SX.(w)+SX.(w+2“ni)+"'+SX.(W+2“ni(ml,i_l))’ each

teim boun;s the sum oflthe of;-diagonal termslin the same frequency
range. Consequently, all the matrices are dominant diagonal, hence by
the well-known theorem, positive definite. Q.E.D.

Two remarks are in order: (i) the immediacy of this result is
illusory; rather, the power of (29) and the felicitous substitution
which led to (30) are reflected; (ii) as satisfying as it is to derive a
previous assumption, this result by itself, we emphasize, is inadequate:

B, Bf, Bc may exist, but the nature of the implied inverse Fourier

transform needs to be checked. This we do in the very important

Proposition 7 Any hypotheses on the continuous model which validate

model (B) under Proposition 3 also validate model (C). Specifically,
NxN
when Sx is essentially bounded below, and also

nm 2
(1) [ AjGndw

-n.n-

is essentially bounded above, then these same properties hold
for S Consequently with CE—J '3 it follows that E EZ in (30)21/
X;C* RXY n, €2y €
so that: B has an inverse Fourier transform in &2, B(ﬁ—), which satisfies
1
the matching condition; hence, B'*X(t) is well defined.

or (ii) SX

NxN

Proof: Assume c & SX(W) < CZIN, we[0, 27n], where of course n=n, .

1N

We now seek to find similar bounds for Sx-c’ wel0, 27]. To this end,
]

the notation for a typical test vector X, for the Rayleigh quotient is

needed. Consider the layout:




21!
E .
1 i \ X m
vectoy . i \ 1122/ 152
{ . '} stacked
vectors

il

With the (n +n2...+nN)xl vector x_

sX;C
n

1
x', S, (wt(k-1)2y)
kzl koK T %%,

Consequently, using the assumption

n
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m\

}
B

-—_-_—_",':-"-—"":".

—
——

i —
|

stacked| =
vectorsi|

e

——

= /x form the Rayleigh quotient

f .2

X i
- N.‘f

(w)xc, which, upon close inspection, is revealed to be

on SX( ), we have

5 1 oy
erl = llg < e ) X Fi, 5-xc'5x;c(“)xc-i Ca ) B B, S €2™1,N
k=1 k=1
since
n
2
kg X K, 2™y E’
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|| ||E the Euclidean norm, and

n

1
2
[lxellg < § 5%,

Consequently,
' < 1 < '
(edx " 2 % Sppl®®, = (et o ks

so that SX_C(w) is also essentially bounded from above and below. In

case SX(W) meets condition (i) instead, we note that the same expansion

for the quadratic form (or Rayleigh quotient) yields the inequality

n
1
SUP ( X 5x; C(W)X) 1;(;(“) <1 Aq (wt2m (k-1)) ,
= k=0
x|
where ll_c(w) is the largest eigenvalue of SX'C and 11(.) hag the Sams

meaning as before. Both sides of this last inequality are positive a.e.,

since SX‘C is bounded from below by hypothesis. By squaring both sides
& 2m

and integrating over [0, 2m], the fact that f Ai'C
O ]

from hypothesis (i) (with the trivial change of variable) and the HBlder

(w)dw < @ follows

inequality applied to the cross-product terms in the sum. (The equality

involving A (w) was also used in the proof of Proposition 2.) Consequently,

1:C
SX'C is inﬂ:z, and since it is bounded from below, its inverse exists,
2

is bounded from above, and consequently is inlgz as well. Finally, we

indicate more explicitly than on p. 14-15 the finiteness of the matching

condition:
2T 1 27
'R T ' . .
IO RXY(W) RX(W)RXY(w)dw f'fo Rey (w) c°1 RXY(w)dw ;
N
where I is of dimension X n, and ¢ is the constant in the upper bound
” i=1

for S RX We used the fact that RXY( )Ei implies RXY( )eﬁ Q.E.D.
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Our solution to (30) is now justified, and we have unified the
models (A) through (D) by producing reasonable conditions under which
they are all identified by projection. Consequently we may proceed to
study their relationship by analyzing (31) (equivalently, (30)), (32),
and (33).

On page 40, we display (32) in more detail. Of course, the
folding operators all have the same subscript. To see the relationship

N

of B, to B we introduce the @) ni)x Nn, matrix I, . given by

1

i=1 \

I \
1 B e T O |
% B2 |

O BRI R - /
N “N/”

The block in the jth diagonal position consists of m identity matrices

1,3
In . This matrix is distinguished by its ability to premultiply the
J
SXY(W) in (32) and yield the SXY(W) in (30). 1In turn, the transforma-
tion of the resultant matrix into the SXY in (33) is accomplished by
N

premultiplication by the Nx( z ni) matrix ID'C given by
/ i=1 ?

{/ % s ue 111“' ; | O |
\ O T o111 /
h

in which the jE— diagonal block consists of nj ones. We display

the coarse model more fully on the top of page 41.
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Model (D)

Note: As above, we take n=n, and, to avoid repetition, "factor" out

Fn which is common to all terms.

(33) /S, o(w) 5. (w) S. o (w) ... s. . )\ /B, (w)
By / By XX, XXy
[

F S (w) =F S (w) S, (w) S (w)
n XZY n X2Xl X2 XZXN

- - .

(o v
~
z

S

ot

S - (w) S . (w) S (w) avave S .(w)// L (w)
Ayt ! ) XN Wse

or, Sy (w) = sx;D(w)EC(w)

With this notation, and adding a subscript to S to identify

the model to which it pertains, we have

-~

LoisSxy;e = To;85%;8%f = Sxy;c = Sx;c®

and

IpscSxyse = TpseSx;e® = Sxysp = Sx;nte

Just as Proposition 7 proved properties about SX-C from
L]

assumptions about S

B’ so could we prove that the same properties
]

follow for SX'D under the same assumptions. In particular, one con-
?
sequence of '"essential boundedness above and below" was invertibility.

The above equations may thus be rewritten, for we[0, 27w], and suppress-

ing w which occurs as the argument in all of these matrix functions, as

(34) B = S¢.c To;85x;8%¢ = Tx;cnBs

and




g =1 5 = o
(35) Bc = SX;D ID;CSX;CB = rX;DC'B'

Combining these equations suggests the definition for

~ -~

In:s = Tnycle;s 2 Tx;p8 = Tx;pe Tx;CB.
These entail
£36) B. = Tx;pc B = Tx;pc Tx;cBPf - Tx;pB °f,

where of course,

-1
SX;D ID;B SX;B'

TX;DB Sx;glln;clc;BSx;B -

The equations (34)-(36) express the relations among the
discrete models (B)-(D). They are, as perhaps might have been expected,
similar to the result obtained in [3] and [10], ﬁc = FnN[;x.B], which
relates, in our terminology, models (A) and (D), where ;x(w) =
SX;;I(W)SK(W). Because multiplication in the frequency domain corres-
ponds to convolution in the time domain, these equations are readily
interpreted.

The general lack of identification of model (B) (respectively,
model (C)) from the observational pattern of model (C) (respectively,
model (D)) appears in the rectangular dimensionality of

N N
(iz ni)anl Nx(.z ni)

1 i=1

T and r
X;CB X;DC

Consequently, neither (34) nor (35) may be inverted if any independent

variable is observed more often than another. A discussion of the




. -

precise nature of the underidentifiability would follow the lines of
p. 18-21. Results analogous to those identifying b from B given above
could now be given. For the reader who has followed the argument to
this stage, however, to mention such results is almost to prove them.

We do call attention, nevertheless, to a special case when the
data are in the observation pattern of model (C) and when the coefficients
in model (B) are to be estimated. In general, owing to nonzero nondiagonal

elements in Iy.cB (the discrete analogue of
3

"contamination'') (34) shows

that this cannot be done. However, for Xi, the desired coefficients
éi,f(w+2n(k—l)ni) are identified, and comsequently estimable, in the
special case in which n,=ng and RXiX.Cﬁ—) = 0 holds for all integer t,
and for all j different from the fixgd i. This can be seen directly
from (30) in its expanded form. Of course, it is the strength of these
assumptions which allows the achievement of more identification than we
are otherwise entitled to. As with the other such special cases, we
caution that a good deal of robustness is required for their practical
application.

Finally, reflecting on the very plausible assumption of the
nested data sets of model (C), we remark on the effect of its relaxa-
tion. If observations were available on Xi at the rate of n, times per

n,
period, (nl

i+l
r, say, would have been formed. The appropriate "fine" model would then

now not necessarily an integer) the least common multiple,

have had all variables defined on the lattice Lr = {%, t integer}. We
would then have proceeded in the same manner, with the only difference
being that the pattern in (30) would not be quite so simple, although it

would remain '"quasi-block-diagonal." The full generality of the Covar-

iance Identification Lemma would then have been required.
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VI. Conclusion

Within the framework of continuous time, jointly covariance
stationary stochastic processes, conditions on a continuous process were
given under which the usual distributed lag regressions were proved to be
identified by projection for very general classes of observation patterns.
For different observation patterns, different but related distributed lags
were identified in this manner.

The frequency domain was seen to be the natural habitat for the
study of the relationships among these projections, despite the lack at
times of a Cramér-type representation of the sampled process. Propositions,
meant to be interpreted as limiting cases, were advanced in which conditions
that have been studied elsewhere allowed fine distributed lags to be
identified from relatively coarse data structures. Emphasis was placed
on the development of an apparatus which is in principle capable of

analyzing the effects of temporal aggregation on a case by case basis.



Footnotes

1/

—'In [10], Sims uses the same method of identification. As he
notes, it is not the only route that can be taken: projection on the
past and present is also possible, but not so tractable analytically.
More accurately, the projection is onto the space of values, Hx’ of

the independent process. The latter concept is rigorously defined in
Rozanov [9], p. 3. Briefly, it is the completion under the quadratic
mean norm of the linear space of random variables spanned by x(s), s
real. As a general rule, the meaning that is understood by any undef-
ined symbols such as

® itw

[ e dzx(w)’

-0

the integral of a complex valued function with respect to a random
measure, may be found in this source (with #(d\) replacing dzx(w)) or

Koopmans [6]. Since all future reference to Rozanov will be to his
book, [9], we will omit this reference number in the sequel.

ngor a rigorous definition of linear regularity, consult
Rozanov, p. 53 for the discrete case, p. 110 for the continuous case. In
both cases the intuitive meaning is the same: the best forecast of the
"infinitely removed" future is the mean; or, there are no deterministic
components remaining in the processes being studied. Linear regularity
of x implies S_ has constant rank a.e. We assume |Sx[ # 0 a.e., unless

noted in the sequel, which is consistent with linear regularity.
(Theorem 2.4, p. 115, Rozanov).
2/Unfortunately, there are several '"standards," as casual
perusal of the sources cited in this paper shows. Differences can often
be resolved by checking whether ny(s) means Ex(t)y(t+s)' or Ex(t+s)y(t)',

where y as well as x may be a vector. (The symbol ' will always denote
(complex) conjugate transpose; ~ will denote Fourier transform.) In the
former case, the usual equality
R t) = e
xy( ) f_m

t

is maintained (when working with x and y real) by defining

dF._(A\) A2 =w
xg A F oW

which contrasts with the latter (more common) definition of ny(s), in

E zx(l)dzy(W) =

which the right-hand side of the last expression is not conjugated.
Whichever definition we choose, we also have

h -int, _
zﬂ f_mey(t)e dt = Sxy(A)

when we assume that




z/See any text on functional analysis for the technical definition.
One the author has found eminently readable is Bachman and Narici [1],
in which Theorem 10.8 assures that projections always exist.

8/

—'From an identification viewpoint the observational frequency
of y(t) is unimportant. Say Y(ﬁ) = y(ﬁ), t integer, so that Y(+) is

y(+) sampled n times per period, instead of once. Two cases now arise:
" t t 5 . : .

i) [EJ = » some t, in which case the previous analysis applies, because
we are relating Y at an integer to given set of independent variables,
and, because of stationarity, the relation is the same regardless of the

integer; and, ii) ﬁ-= [%]+i3 1< j<n-1: now define Yj(t) = y(t+i) and

apply the previous analysis to Yj and the X process.

EjSee Sims [11] for a proof of the scalar version of this
assertion.

10/ . ; .

—'As employed in [6], p. 162-164. The term is from filter
theory.

11/

—'To be explicit about the identification tacitly made here,
we have two relations involving RX:

iw(D) iw(E)

. nm = . ngr -
RX(H) = f SX(w)e dw and RX(E) = f Rx(w)e dw,
-nm —nm

The first is the usual spectral decomposition, with elements of SX in
Ll[nw, nt]. The second is the classical Fourier transformI_lzz-&2 pair
relation, with elements of RX in Lz[—nﬁ, nr]. Since these elements will

also be in Ll[—nw, nr], we have two Ll[—nn, nr] functions with the same
Fourier coefficients. Hence, Rx(w) = Sx(w) a.e., by the classical

uniqueness theorem for Ll[-nm, ny] functions.

l-"E-I(This is especially so if an abstract point of view is taken

toward (10), in which RX is viewed as an gg-operator which is to take &2
vectors to 2 vectors. Thus stated, we might seek conditions on RX that

it and its inverse have this property. My conjecture is that essential
boundedness is the desired condition.

lé/‘aw-'e have had in mind the usual diagonalization. Choose T,
unitary, such that [fSXIJ= A. Then U'SX_lU = ﬁ-l, and U'SX_lSX-l'U =
A-lﬁ_l'. But A is real because SX is Hermitian, so that taking traces,

N

permuting u', and using uu' = I yields tr SX_ISX T ) Alz. Also,
i=1

using the positive definite property of SX(SX> 0 for short) and of SX“I,




1
Ry (*ell (=, =)
as well as that Sxy(l) exists. This follows from

-i(k+e) t_e-ilt

lim 1
f R it

T—>cn 2

F +e)-F_ (A) t‘ dt 5], p. 41
xy(;\)xy( ) . ([51,p )
Dividing by € and passing to the limit, we get the desired result by

pulling the limit on € inside the integral sign, which is permissible by

the Dominated Convergence Theorem and uses the integrability of ny(').

Of course, all integrals involving matrix-valued integrands are to be
interpreted component-wise. Finally, we note that that a bounded function

(|R ( )| is bounded by |R (0)|) in L (-ﬂn ©) is also in L (-, «) and
that when ny( )eL (=, ®), by the preceding inversion formula, |S ( )|
is bounded. Hence both R ( ) and S ( ) are in L (=w, =), and may

thus be regarded as Fourier transform pairs under the classical unitary

mapping of this Hilbert space onto itself ([5], p. 513.) Finally, we will

use the symbols Rx(') and Rxx(-) as well as Sx(°) and Sxx(-) interchangeably.
éjThis tact was taken because of precedent ([3], [10)] and

because it is a natural way to proceed.

é-f‘wh:i.la Lighthill [7] is a standard reference which gives a
good "physical" motivation for this subject, he never mentions the
convolution of distributions. This topic is crucial for our purposes,
however, as we wish to be able to Fourier transform (3), say, to Sxy =

Sxx-b for a wide variety of ordinary and generalized Rxx(-) and b(*)

functions. We refer the interested reader to [13] or [14] for justifi-
cation of any underqualified use of such procedures. Briefly, ordinary
functions can be embedded in a suitable space of generalized functions.
The latter are defined so as always to permit Fourier and inverse Fourier
transformation. In this way, we can operate with ordinary functions
which don't meet the "classical" conditions for Fourier representations.
For example,

t:m
7 eVt = sew,

=e—0

the Dirac delta function, where convergence of the infinite series is
interpreted in the distribution sense. Indeed, the series doesn't

-

converge in the '"classical' modes (pointwise, L2(-w, ®) , Cesaro, etc.).

é/A related way that generalized functions or distributions
might enter is if we extended our considerations to generalized random
processes. Continuous time white noise is an example; its correlation
function is the Dirac delta (generalized) function of the previous
footnote.




. RS R S T B
if SX < ¢ IN’ then (i) SX = SX > ¢ IN’ and (ii) Sx SX

S 'l.c"l-IN > e %1 (ii) follows from (i)} and the result that "A > B>0,

X N°
C > 0; C commutes with A and B implies AC > BC." Facts (i) and (ii) may
be found in Balmes [4], p. 167-8.

lﬁ/Recall that the artifice of the generalized function b(t) =
Ga(t) allowed us to "sift" x(t-o) from f b(t-s)x{s)ds. Had b(t) been
the derivative of a delta function, x'{t-a) could have been realized, if
the x process were mean square differentiable. These b(+) "functions"
may be thought of as the inclusion of "ideal elements": limits of
sequences {bn} of ordinary functions bn(-) which become more concentrated

>

around g as n increases [7]. In the discrete medel there again may be
elements of HX which are "ideal" in the sense that they are not repre-

sentable as convolutions, but only as limits of convelutions. It is
unclear how the concept of generalized function would be useful in
describing these limiting elements.

li/Most texts on time series treat this topic under the heading
"aliasing." To describe the use of the term "folding operator," imagine
the graph of a (symmetric) spectral-density function, drawn on both
sides of a piece of an (infinitely long) piece of paper. TFold the paper,
so as to make an accordion, with pleats at nrk, k integer. Compress the
positive half of accordion; and superimpose {add vertically) to make the
spectrum on [0, ng].

16/

= S8trictly speaking, since Sx and Sx differ on a countable

set, they are equal almost everywhere, and by the usual identification
of such matrix functions, were considered to be the same matrix function
all along.

iijechnically, the elements of the perturbation matrix, here,
P(w)}, must be measurable.

ig;Again by footnote 16, there is no loss of generality by
forcing our perturbation matrices to be zero on any set of measure zero,
which is the effect of not allowing % to be in NO'n

19/ 'z

2
~'0f course SY may be observed, but since 5, = SX|B|2+S and

Y U

nothing is known about SU’ SY provides no additional information.
20/ R

In [10] and [3], rx(t) = RX

are defined. Under the "linear interpolation' assumption on R_, in [10]

x
l—[u| lul‘i 1 and it is emphasized
0 |u| > 1

that this filter has the desirable properties of having its integral
equal unity and vanishing off an interval ([-1, 1]) around the origin.
In [3], the further desirable property of 'nmo contamination,"” or, mno
confounding of different components of the b vector in the B vector of

(14), is proved under this assumptiocn.

*R_(t) and £ (0) = sgl s (w)

it is shown that rx(t) = rO(t) = {




21/

—'Despite the notation we emphasize that B and b are the primitive
concepts here.

22/

—'We refer the reader to Rozanov, Theorem 2.4, p. 115 and
Theorem 6.4, p. 27 for precise statements and proofs of these results.

23/ 51ntnn omitwy
f &f = x[—n%?)nw] is not straight-forward

without a handbook of definite integrals, since the computation

o 0 |w| >nnw
f sin tmncos tw dt is needed. Actually, the integral equals 1/2 |w = nm
0 1 w|< ng
. ; ; o sintm
which is X[-n%,)nﬂ] except at the endpoints. Of course, at t=0, e
is defined (by continuity) as n.
gé/Spectral characteristics being S,-unique means that two

i % X
such elements, bl(w) and b (w), are identified whenever

o

[ (byby) " Sx(bl bz)dw = 0.

-0

Where SX vanishes, the equivalence class of such identified elements is

large. Hypothesis (a) tells us which element to select.

5/We depart slightly from tradition here by regarding cross-
spectra as defined on [O, 2wnl] and [0, anl] rather than on [- Ty, T ]

and [—wni, nni] because the limits in the finite summations are more

tractable. Of course since our functions are of the required periodicity,
they may be extended back to the interval which is symmetric about the
origin, if desired.

26/

The left hand side vector S (W) is, respectively, of

dimension nNx1, ( E n )xl and Nx1 in equations (32), (30), and (33),
i=1 i

respectively. The meaning of the terms SX;B’ SX;D' Bf, and Bc should

be clear, but in any event is indicated explicitly in the matrix displays.

27/

—'The pedantic reader will note that the same symbol, B, is
N

used in (30), where its domain is [0, 27] and it is ( Z ni)xl, and in

i=1
(27), where its domain is [O, 2nnl} and it is Nxl1l. Not making this
distinction, which causes no real difficulty, reflects itself in the minor
ambiguity regarding the domain ofﬂ=2
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