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Introduction

Economic systems studied in Macroeconomics, General Equilibrium
Theory, and International Trade are large, complex systems composed of numer-
ous iInteracting subsystems. Macroeconomics attempts to determine government
policy impacts on the bhehavior of sggregates resulting from the interaction of
large numbers of consumers and firms. General Fquilibrium Theory studies the
more detailed behavior of consumers and firms via the concept of interacting
markets. International Trade studies a world economy composed of numerous
countries interacting through world markets.

In their attempt to understand the behavior of such complex systems,
economists have followed the reductionist lead of physical scientists. They
have done sc by attempting to compose their theories from detailed theories of
individual subsystem behavior. The "New Classical Macroeconomics" attempts to
exploit dynamic optimization-based microeconomic theories of firm and consumer
behavior in constructing theories explaining the behavior of macroeconomic
aggregatesrl/ The "New Industrial Organization™ hopes to explain oligopo-
listic industry behavior by formulating optimization-based subtheories which
predict a firm's production, entry, and exit decisionsraj Many positive and
normative models of econemic growth have concentrated on understanding the
case of a single, isolated economy's growth as a prelude to understanding the
growth of economies in interasction with the world econony.

Unfortunately, interactions among large numbers of heterogeneous
subsystems are often less well understood and harder to analyze than are the
isolated subsystems themselves. This situation has led medellers to adopt
many simplifying assumptions. For example, to derive testable hypotheses,
many macroeconomic theories resort to the assumption that all firms are iden-

tical, or alternatively, that aggregate output behaves as if it were produced



by a single firm.i/ To derive testable hypotheses via comparative statics,

general equilibrium theorists resort to assuming gross substitutes and other
strong assumptions about the nature of market intera.ction.-]_“‘.-/ Simon and Ando's
(1961) assumption of "near decomposability" is another simplifying assumption
made in the face of such complexity. In all of these cases, such assumptions
are not made solely to ensure computational tractability. They are also
necessitated because of the lack of detailed data about the interactions of
interest (e.g., cross elasticities).

The difficulty of deriving testable hypotheses in large, dynamic
systems whose interactions are poorly understood has also plagued physical
scientists. But physicists and mathematicians have developed general methods
of analyzing such systems. Perhaps the most successful method applies to so-
called "large, weakly interacting" systems, to be defined below. The method

is called Equilibrium Statistical Mechanics, or the Gibbs Formalism. It is

the thesis of this paper that this method, which has been successfully applied
to complex dynamic problems in such diverse fields as Physics (Reif, 1965),
Population Biology (Kerner, 1972), and Neurology (Cowan, 1968), can also be
fruitfully applied to generate testable hypotheses in analogous complex,
dynamic economic systems. To develop this thesis, a general measure theoretic
version of the Gibbs Formalism, derived by R. M. Lewis (1960) and exposited by
Truesdell (1960) is briefly presented. The reader is strongly urged to see
these two papers for a rigorous detailed exposition. An alternative,
information-theoretic justification for the Gibbs Formalism is also presented.

To illustrate the concepts and their application throughout the
paper, the Gibbs Formalism is applied to an extremely simplified dynamic
competitive model of the economy. FEven though the model is oversimplified, we

will see that it predicts many empirical findings.



First, though, it will later prove instructive to consider the
physical problem which first illustrated the need for and usefulness of the
Gibbs Formalism: the ideal gas problem. Formal analogies between the physics
of the gas and the economics of our competitive model will also be discussed

throughout the paper.

Dynamic Optimization in a Gas

Consider the problem of predicting the distribution of atoms' speeds
in a low density (more precisely,'iggggj monatomic gas heated to some tempera-
ture T within a container of volume V, like a balloon. The classical atomic
theory of matter posits that the speeds are affected by the weak gravitational
attraction the atoms have for each others, as well as by their banging into
the walls of the container. Classical physicists of the 19th century believed
that they had a good theory predicting the motion of an individual gas atom i
(ieee, the ith subsystem) of mass M in isolation, i.e., when uninfluenced by
other atoms and when moving in unenclosed space. Denote the ith atom's posi-
tion at time t by [qi(t),qé(t),q%(t)) a qi(t) and its time derivative (i.e.,

i3 b ot A
velocity vector) at t by (qi(t),qé(t),q;(t)] =

ai(t)' Then, according to the
Principle of Least Action, the ith gas atom in isolation moves as if it were
an Fuler path, although not a global minimizer, of the following dynamic

minimization problem:
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whose Euler paths are found by computing

i 3L1/3q3 = d/at Md} = Mq3 =0,4=1, 2, 3

(2) d/dt BLi/aij



The latter equality in (2) is a special case of Newton's Law F = MA, where F =

0. For any initial condition [ (0),4 (o)], the solution of (2) is
q;(t} = ﬁ;(O)t + q}(o)- In isolation, the ith atom travels in a straight line

with a constant velocity vector §°(0). An alternative characterization of
this is to transform problem (1) into a Hamiltonian formulation by introducing

additional, so-called conjugate coordinates,
(3) p, = OL'/dq, = Ma,,
J J
the Hamiltonian HI via the Legendre transformation,

(4) i (pt,ql) = E quj - tiqd Z p /2M

and defining the Hamiltonian differential equations

j=1, 2,3 3* = o 3Hi/3q;
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whose solution also yields the Euler paths of (1},21 The Hamiltonian (L) is

constant, or conserved, along trajectories (p (t),q"(t)) in the ith atoms'

six-dimensional state space, and is termed a conservation law. While either

(1) and (2) or (4) and (5) provides a complete characterization of the be-
havior of the ith gas atom in isolation, the Hamiltonian formulation will
prove most useful in what is to follow.

When a large number W of these gas atoms are placed in a container
of volume V, they cannot travel in straight lines for very long. They are no
longer isolated, for each of them must bounce off the walls of the vessel, and
they are weakly mutually attracting. As a result, (4) is no longer a conser-
vation law for an individual atom. This makes the prediction of the behavior
of the system of N atoms extremely complicated. How can this behavior be

predicted?



With accurate knowledge about the detailed nature of the atoms'
interactions with the container and each other, it would be theoretically
possible to prediet the position and wvelocity of all atoms for all future
times. This could be accomplished by formulating and solving a differential
equation system incorporating these interactions. Then, the distribution of
speeds and other distributions dependent on the motion of the atoms could be
tabulated from the solution, given the initial position and velocity of each
atom.

Unfeortunately, this wmethed 1is infeasible for two reasons. First,
accurate knowledge about the interactions is difficult to obtain. But even if
it weren't, the huge dimensionality of the system (N = 1023 for a mole of gas)
precludes one from measuring the initial conditions and from integrating the
resulting gigantic system of complicated differential equations forward.

Fortunately in 1902, with the brilliant work of Maxwell and Boltz-
mann to guide him, Josiah Willard Gibbs published a method for solving this
and other related problems. Because of the aforementioned analytical prob-
lems, Gibbs' method does not attempt to precisely predict the future values of
gystem variables. Rather, it attempts to predict the distributions of system
variables, and to link these distributions to system psarameters. More pre-
cisely, for the ideal gas, assume that the dynamic behavior of its state
vector ¥ = (pl,ql,pz,qe...pN,qw) is a trajectory from an ergodiec dynamical
system, and that interactions between atoms are "weak," in a sense to he
defined later. Then, Gibbs' method predicts that its invariant probability
measure has the so-called canconical density g(Y):
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where D 1is the region the gas' container occupies in space, T is the gas
temperature, K is Boltzmann's constant, and H: is given by (L). Frgodicity
implies that a typical realization of Y behaves as if it was generated by
sampling from the canonical density (C). Thus, for a particular gas, suppose
one wanted to compute the distribution that yY(t) displays over an infinite
time span. Gibbs' method predicts that its density is the canonical density
(C)s TIdentical replicate gases, differing only with respect to the initial
conditions of their atoms, behave as different trajectories from the system
with (C) density.

For example, suppose one wanted to compute the distribution of
speeds among all N identical atoms with mass M. The ith atom's speed si(t) is
the norm of its wvelocity wvector, which, when expressed in terms of conjugate
coordinates, is

3 .2
(6) sy (1) =N P7m.
J=1
The invariant density of (6) can be shown, via the standard change

of variables in (C), to equal

[}

2
(6a) g(si) hw(M/QwKT)B/Qsie_MSiIQKT; with mean

(8KT/wM)1/2 5

(6b) E(Si)

and is dubbed a Maxwellian density. The invariant density (6a) for sy yields
the speed distribution a particular atom of mass M traces out over an infinite
time span. It also yields the distribution of all identical mass M atomic
speeds in the gas held at temperature T, because each atoms' behavior is a
different trajectory from the system with density (6a). Because the expected
speed (6b) is inversely proportional to the square root of M, the average

speed over time of some atom would be twice as fast as that of another atom



four times ite mass. Other cormparative dynamics results like this one allow
the researcher toc test the theory on actual time series data.

There is a striking analogy between the gas problem and typical

problems of dynamic microeconomic-based system models. These problems also

involve large numbers of subsystems (i.e., agents, markets, individual econo-
mies, etc.) whose individual behavior is described either by dynamic optimiza-
tion problems analogous to (1), or by differential or difference equations
derived hy other methods like stochastic optimizat10n§-/ or by extending statie
theories into dynamic contexts.j-/ The task of aggregating the behavior of
those hetercgenecus subsystems is alsc plagued by lack of data and corputa-
tional intractability. The underlying parameters of the individual economic
subsystems and the exogencus parameters of external forces affecting the
system play the role that M, T, and V do in the gas problem. Given values of
such exogenous economic parameters, one can apply Gibbs' method to predict
both cross-section and time-series distributions of endogenocus economic vari-
ables, and to generate testable hypotheses through comparative dynamics rela-
tionships analogous (6b). Confirmation of such hypotheses corroborates the
maintained assumptions about the isolated dynamic subsystem models, and ahout
the "weak" nature of the system's interactions.

Furthermore, even 1if the wvalues of some exogenous parameters are
unknown, it is often possible to estimate parameters using data on observable
endogenocus series, and tests of the theory can be based on the estimated

model.

The Gibbs Formalism According to Lewis

The following is intended to be a simplified, application-oriented
exposition of the aforementioned paper by Lewisﬁ-/ and the interpretations

given it by Truesdellil. Lewis' notation is normally used throughout. To



simplify the exposition, some measure theoretic details as well as proofs are

ignored herein. The reader is urged to see Lewis' paper for these details.

The first key concept in the Gibbs Formalism is a system theoretic

description of the ith subsystem in isolation. Frgodic theory is used in the

10/

description.—

The ith subsystem in isolation, or complete space, is a four-

tuple (Pi,Ai,T;,mi,yl), where:

(a)

(c)

Pi is an Ai-measurable space, o0-finite with respect to the countably

additive measure m;. The state of the subsystem at time t, denoted
Yi(t)sri, is the minimum amount of information the analyst needs to
forecast the future behavior of the isolated subsystem.

The family of transformations, or state transition functions

i,
Te: Ty

an initial state at Yi(T)EFi at some time T, Ti (vi(1)) = vi(c+t),

> I‘i._. te[0,®), represent the ith subsystem's dynamics. Given

the state which will prevail at t units of time later. Lewis also
requires the semigroup composition property characteristic of
dynamical systems, i.e., Té ) Ti = Ti+s,t,se[0,W). Denoting the
Lesbesgue measurable subsets of [0,®) by L, it is also required that
the family Ti is a measurable transformation from ([0,*) x T;,L x A;)
into (Ty,A;).

The invariant measure m; is a countably additive measure on A; which

is preserved by the state transition functions Ti. The measure ms is
. -1
said to be preserved by Té if mi[Ti (4)) = mi(A) for all tel[0, =)

and AeA;, i.e., if the measure of the set of all initial states Ti(r)
which are transformed into states Yi(T+t)EA after t time units have

passed, is equal to the measure of A itself.



(d) A k-vector of real-valued, Porel measurable functions y* =

(yi,...,yi), where each y Pi + R, 1is termed a complete invariant

i,
Ik

vector, or is termed a complete vector of constants of the motion, or

is termed a complete vector of conservation laws, which has the

following properties:

(i) yng%(Y)) = yi(Yl) for every t in [0,») and almost every vi, for

each j = 1, se¢s, ke Fach y? is termed an invariant function, or

a constant of the motion, or a conservation law because the

value y§ is constant, or conserved, along a particular system
trajectory starting at Yi.
(ii) Any other conservation law z: T; * R can be written as 2(v1) =
31(y1(y1)) for almost every Yi, where ¢1 is Borel measurable on
the real Borel space R,  This means that yi is the largest

vector of '"functionally independent" conservation laws.

An example of a subsystem in isolation will now be introduced. It
is used throughout the rest of the paper to illustrate the concepts introduced

there.

Example: A Dynamic, Competitive Industry

Consider the following simplified, partial equilibrium dynamic model
of a competitive industry, denoted by i. Constant returns to scale in produc-
tion are assumed for its identical firms. Fxcept for the possibility of dif-
ferent endowments, households are also assumed to be identical. Without a
loss of generality, this permits us to analyze the situation in terms of a

single representative firm and household.



A representative household is assumed to own some nonnegative capi-
tal stock gi(t), and to rent it to a representative firm. Tt uses the rental
income from capital and firm profits to purchase firm output, consuming some
and investing the rest. Fach household acts as if it maximizes the same in-
stantaneous utility Ul(c(t)) subject to the budget constraint:

o - 3
(1) mx / Ut (ch)at
i ie«i 0

c !q !q

Sete cT +q =wi(t)gs + 75 q(0) given
where the dot denotes the time derivative, where 7l is economic profit from
the representative firm, and where wl(t) is the real rental of capital rela-
tive to the price of output.

The representative firm simultaneously chooses qt(t) to maximize
profit at each point in time:

(8) mx 7 (t) = B;ql(t) - wilt)gt ) .

i

i

59 the assumed constant, positive pro-

Equilibrium then requires wi(t) =B
ductivity of capital in this industry. Because of this, economic profits are
zero in equilibrium, and the ql(t) stream chosen by households via (7) tri-

vially solves (8) as well. Substituting (8) and the budget constraint into

(7) and miltiplying by -1 then yields the household's problem:

(9) min [ - ul(8la’-a").
i«i O
q »4

We restrict attention to utilities U' in which the Fuler equation
and transversality condition for (9) yield its solution. One such environ-
ment, which will be used throughout the paper, is

1)2

§ oA
(10) U = —Bl(c -85

L]
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where Bi and 8; are positive constants. That (10) is such a utility is shown

by Hadley and Kemp.ll/ Introduce the conjugate coordinate pi as in (3) or via

Pontryagin's naximum_principlelg!

(11) ot = A = St faet = -25%(::1—5;)

invert (11) to solve c® = 82

3

Legendre transformation as in (L),

- pi/231, then define a Hamiltonian HI via the

(12) H (p ,q") = prq- + U = pllhﬂi + (B;ql—sg)pl

then solve the Hamiltonian differential equations (5), and require that

(pi(O),qi(O)) satisfy the transversality condition
(13) H' (p',q") = O.

Bl can be thought of imputed "income," where Ul is the value of consumption,
and pi&i is the wvalue of investment wvalued at its marginal opportunity cost,
i.e., the marginal utility of consumption. Assuming 0 < qi(O) < 8%/8;, the
solution is:

gkt

(18)  q'(e) = el/8} - (8l/8-a'(0))e 2 .

(15) pi(t}

U}

b B1(83-8307(t))

For the utility (10), the ith subsystem in isolation is thus speci-

fied as: Fi = {(pl,ql)|p15[0928i8;],qle[O’B;/B;]}' A; is the class of PBorel
measurable sets for the topology on Ti inherited from the Fuclidean space
R2

. Ti is the C» flow derived from the Hamiltonian differential equations for

(12)s The invariant measure my is the Lesbesgue measure, 1i.e., area on

(Fi,Ai). This follows from Liouville's Theorem, which implies that the Les-

besgue measure is preserved by any flow induced by a C» a vector field (i.e.,
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autonomous differential equation} on a compact, closed, and orientable (w
manifold whose divergence vani shes.L3/ Finally, yi = gl defined by {12}, as
time differentiation wverifies that any time independent Hamiltonian is a
conservaticn law for the flow it induces.

The second key concept needed is the concept of weakly interacting

subsystems. Consider a subsystem i interacting with other subsystems. Then,
the state transition functicns Ti and conservation law(s)} it possessed in
isclaticn may no longer be valid. In the gas problem, the ith gas atom in a

gas will not travel in a straight line forever, as its iy

% requires, due to

collisions with the container and forces exerted on it by other atoms. As a
consequence, its energy (L) is no longer conserved. In the economy, inter-
mediate inputs, nonseparable utilities, and numerous other interactions with
other markets preclude (7), {(14) and (15) from holding for the ith industry.
If the Ti and its associated complete vector of conservation laws no longer
govern the behavior of the ith subsystem, then Jjust what laws do govern its
behavior? And how can one discover such laws without detailed informatien
about the nature of the interactions?

The assumption of weak interaction is the key idea needed to answer
these questions. Consider the system composed of N subsystems. It is de-

N
seribed by a system state space with states vy = (Yl,...,YN) e "= i T.,, the

i$
i=1
Cartesian product of the individual subsystems' state spaces. In the presence
of ill-specified interactions among its subsystems, the system's state transi-

tion functions T, are unknown. The assumption of weak interaction is that the

unknown Tt have the following two properties:

Property {i): a complete vector of conservation laws for Tt on I' is given

N R
by yJ(T) = E y;(Yl)’ j = 1, LI k, and
i=1
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N

Property (ii): Ty preserves the invariant measure m = I m, , on
N N i=1

[ i ) S 1 A.], i.e., the product measure on T. As an

i=1 i=1
additional regularity condition, Lewis assumes that

m(y~1(I)) is finite for every finite rectangle I in RX.

The intuitive meaning of property (i) is that although the inter-
action makes each y; vary over time, the interact%pn is weak enough so that
the total variations cancel in the aggregate yJ = 'Elyj.
property (i) is the assumption that while the ener]:;y Hi of the ith atom given

In the gas problem,

by (4) changes over time, the total energy of the gas Tg Hi is conserved.
That is, the atoms exchange energy with each other and tht.-;i container in such
a way as to conserve the total energy. In an economy of N interacting com-
petitive industries, property (i) is the assumption that while the inmputed
income Hi, given by (12), of each individual industry is no longer conserved
(i.e., no 1longer zero), inputed national income gHii_s conserved. The
industries exchange imputed income among themselve:_]:in such a way that the
total national imputed income 1is conserved. But other than the possibility
that the economy may behave as if this were true, is there any plausible eco-
nomic theoretical basis for this assumption?

To examine the economic theoretical plausibility of Property (i) in

our example, suppose there were no "interactions" across the N industries, in

the following sense: In choosing among the N consumption goods ci; i=1,
«e., N, each household rents capital q(t) and invests in a representative
firm i in each of N industries, i = 1, ++s, N. Constant returns to scale
prevails in each industry, and no intermediate inputs are needed. Then,

households would act as if they solved.



© N . .
(16) max [ ] uMch)at.
i i1 0 i=1

¢ ,a7,9
i=1,-oo ,N

N s N : 5
sete ) (cT+q7) = ) (W (t)g +nt)
i=1 i=1

Due to constant returns to scale, Bl = w(t) and 7 = 0 for all i. Then, the

2
additive separability in (16) permits us to show that each industry will
follow its isolated path, i.e., for each i = 1, ..., N, HX given by (12) is
conserved, from which follows that I)% Hi is also conserved.

However, in the presencelzif structural interactions causing devia-
tions from (16), each H:.L may not be conserved. For example, suppose the

N

utility function is XUi(ci) + I(cl,...,cN), where I 1is a nonlinear term
representing the possjj:.;):;.lity that a good's consumption affects the marginal
utilities of other goods' consumptions. Or, suppose that labor or inter-
mediate goods are necessary for production of some goods, so that production
functions for some industries do not depend solely on the capital allocated to
them. Then, each #l from (12) will not be conserved. Proposition (i) is
perhaps plausible from the viewpoint of this economic theory if, when N is
large, the interactions mentioned above are "weak" in the sense that while
each Al is not conserved, I§ Hi will be. Real world evidence that cross elas-
ticities of demand are inls?.:;nificant for a large fraction of pairs of goods
might help support the as yet ill-specified claim that the effects of the
nonlinear I are weak.

Clearly, in no way do these speculations constitute an economic
theoretical basis for the "realism" of Property (i). Such a theoretical basis
must await research proving that the solution to a well-specified model com-

patible with existing economic theory and containing such interactions does

indeed satisfy Property (i).
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The intuitive meaning of Property (ii) can be grasped by thinking
of mi(Yi) as measuring the nonnormalized probability density of observing the
ith subsystem in state Y1, conditional on the information in Property (i)
about the unknown T,. Property (ii) is then interpreted as the assumption
that the probability density of observing the system in state v = (Yl,...,YN),
i.e., the probability density of the random vecter v, is the product of its
individual component's probabilities densities. That is, Property (ii) is the
assumption that, conditional on (i}, the component subsystems behave in a
probabilistically independent fashion. Once again, we do not attempt to
produce a detailed structural medel compatible with this assumption.

The assumption of weak interaction is impossible to verify direectly,
precisely because we don't specify observable interactions. For the same
reason, we do not "justify" it through detailed economic structural theories
of interaction. Rather, it should be viewed as a maintained "as-if" assump~
tion to help predict system behavior. As such, it is a "reasonable” assump-
tion only if it leads to useful predictions and insights. TIts "truth" or
"falsity" is irrelevant for this purpcse. This view will be strengthened by
the information thecoretic route to the Gibbs Formelism presented later. 1In
closging, it is interesting to note that progress in previding an analogous
structural physical theory basis for the Gibbs Formalism applied to the gas
problem has come only in the last decade, despite its widespread success and

14/

acclaim over the past T5 years.—

The third and final concept of the Gibbs Formalism is the assumption

that each subsystem is small compared to the rest of the system, or, eguiva-

lently, that the gystem is large relative to each of its subsystems. The

precise, measure theoretic definition of a large system is given in Lewis, and

is too complicated to state here. Roughly, the system is large relative to
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each subsystem i if its conservation laws yJ E yé, J =1, eee, k, would not
"vary much" with ceteris paribus variations in any single yJ, i=1, 4ee, N« In
the gas problem, the assumption of a large system is satisfied if there are so
many gas atoms that ceteris paribus fluctuations in the energy of any one atom
would hardly influence the gas' total energy. In the economy, this assumption
implies that there are enough goods so that the contribution of any industry's
imputed income is small compared to national imputed income. As before, no
detailed structural "justification" for this assumption is given.

It is important to note that this third assumption can he weakened,
if the analyst is willing to forego the possibility of predicting the long-run
behavior of individual large subsystems. That is, if some subsystem i's yj
do significantly contribute to the total Yjo it is not possible to calculate
the long-run behavior of Yi, although it is still possible to compute the
long-run behavior of the small subsystems' states and of variables depending
solely on a small subsystem's state. Thus, the existence of large subsystems
(i.e., atoms, industries, etc.) in this sense does not totally invalidate the
Gibbs Formalism. It merely restricts the type of predictions that can be
reliably made. Finally, the regularity condition in Property (ii) is
satisfied in our example, due to the finite measure of the product space T.

Long-Run Behavior of Subsystems in large,
Weakly Interacting Systems

Lewis, in his Thecorem 2, shows how the long-run time average f? of
any real valued, mj-integrable function fi(Yi(t)) of the ith subsystem's state
vector Yi can be computed in large, weakly interacting systems.—= 15/

i A i ;
Let Tt(Y (t)) 2 y*(1+t). Then, the long-run time average f¥ of some function
fi(Yi(t)) starting from initial condition y1(0), exists for almost every (my)

Yi(O), and is computed by



1

T i, 1

(17) gl und fe(yeas =1 g (¢h)e T gy A%

i i i Z T4 i i

T+ 0 i i
where
e b
(18) z.(a) = [ &V gy
r

i

The function zi(a) is called the partition function for the ith

subsystem, and is assumed to exist in some open neighborhood of k-vectors a.
The correct value of the vector a to use in computing Tiin (17) depends on the
value assumed by the subsystem's complete vector of conservation laws yi, as
described in ILewis' corollary to his Theorem 2. Fortunately, the value of a
is independent of the particular subsystem one is interested in. For most
applications envisioned here, one would not need to know the wvalue of a, so
one would not need to know the (average) value of yi. Rather, one could treat
a as a vector of free parameters, and use econometric methods to estimate o
from data.

Equations (17) and (18) have a nice probabilistic interpretation.
Equation (17) shows how the long-run time average of any my-integrable func-
tion of the ith subsystem's state Ti can be computed by a so-called phase

= . N —asy(yl)

average fi over its state space Tj. The multivariate function e can
be thought of as determining a '"probability density" for the ith subsystem's
state Yi, with zi(a) thought of as its normalization constant. To see this,
let f; be the indicator function for any measurable set Eje  The long-run time

average of this indicator function yields the long-run fraction of time the

state y2(t) spends in E;, and is dubbed the mean sojourn time of the subsystem

in E;e The mean sojourn time is a frequentist way to define the probability
p;(F;) that the subsystem state is in some subset E. Computing (17) for this

indicator fj, one obtains:
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1 —asy(yl)
1 & .
(19) pi(Ei) z—l'm £ e dmi
p-
When the subsystem has only k = 1 independent conservation law, the proba-

bility distribution in (19) is the famous canonical distribution of Gibbs.

For the general case of k > 1, Truesdell has dubbed it the polycanonical

distribution.

The polycanonical distribution is also of use in calculating stati-
stics of some time series fi other than its long-run average. For example, to

compute the long-run variance of some square integrable f]-_

A 1 1 i e
(20) var £, € lm 5 [ (£;,(v7(£)) - £%)%at
Tre = 0

one simply expands (20) and applies (17) to obtain
(21) var £, = f; - £,

which is the familiar mean (i.e., phase average) squared minus the square of
the mean. Other long-run moments are similarly computed.

The polycanonical density can be similarly used to cocmpute long-run
covariances between two time series fi(Yi(t)) and gi(Yi(t)). Defining the

long-run covariance of square integrable f; and g; as

T . .
(22) cov (f;,g,) = %i%c{ [fi(Yl(t))-—f;‘_‘) (gi(Yl(t)-g*{]dt

one expands (22) and again applies (17) to obtain the familiar representation

(23) cov(fi,gi) = f,8; - £;8;

To make matters concrete, consider our ith industry (10), with conservation

law (12)e The invariant measure ms

5 is the Lesbesgue measure u. Using the

canonical distribution (19), the mean sojourn time of Yy = (p',q') in some

measurable subset Ei of Ti is given by
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.2
a e ..
(24) p}(E,) = z,(a) é exp(-a(p” /481+(Bya -B3)p"))du
i
where
i i i i
BL/B. 2B B - .
(25) z,(a) = 3 2 1f 3 exp (-u(plfhﬁi+(8;q1-8;)pl))dpldql-
0 0

Unfortunately, the integrals in (24) and (25) cannot be evaluated in terms of
elementary functions. In the empirical application below, they will be numer-

ically integrated by computer.

An Application of the Subsytem's Canonical Density

The marginal density gi(qi) of (24), defined by

. opigl
(26) gi(ql) = zi(a)_l i Lk
0

2 . s s s s .
exp(-a(p" /hBi+(B;q1-8;)pl))dpl
yields the density of a representative firm's capital stock in the ith indu-
i

3

the ith industry, rather than on their values for other industries. Because

stry. DTNote that it only depends on the parameters (Bi,ﬁ;,ﬁ ) characterizing
of this, it is possible to fit this density to industry data without losing
too many degrees of freedom. There is a paucity of time series data on actual
individual firms' input utilization, though. However, because our model
assumes that all firms in an industry are identical except for their initial
capital stocks, each firm's capital stock time series can be viewed as a
trajectory generated by the dynamical system whose invariant density is
(26)e Then, (26) should also yield the stationary density of capital stock
across firms in the ith industry.

Differentiating (26) under the integral sign twice, we find that

2

dgi/dqi < 0 and dgi/dqi > 0, a result which holds up for any utility vl yield-

ing an dinterior solution to (9)rl§j Under the interpretation above, this
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means that the density of firm capital q' in the ith industry is a decreasing,
convex function of firm capital qi. Because of the assumed constant returns
to scale, the density of firm output B;qi is proportional to that of qi.
Thus, choosing either firm output or capital as a measure of firm size, the
density of firm size should be convex downward. Furthermore, by additionally
assuming that the capital/labor ratio is a constant across firms in the ith
industry, easily obtainable histograms of the industry's employment/firm
should also decline throughout the range of firm employment.

Industry data seems to support this theoretical prediction. For
example, Lawrence Kleinﬂl states

"There are so many firms with only a few employees that

there appear to be continuocusly falling frequency distri-

butions. They do not, as in the case of income, rise to

a modal peak then decline. They begin with a modal peak

and then decline throughout."
Corroboration of this finding comes from the U.S. Census Bureau's Census of
Manufacturers. Every five years, their census reports the distribution of
establishment employment size in the 20, two-digit SIC industries. A typical
distribution from the latest (1977) census is that for SIC 29, Petroleum and
Coal Products, shown in Table 1l. Ry experimenting with different values for a
i
3

distribution similar to this in a hypothetical industry with no firms larger

and the parameter values Bi, 5;, B, in (26), we have been able to produce a
than 250 employees, by assuming that the capital/labor ratio is one. Its
density is graphed in Figure 1. It is difficult to accurately compute the
requisite numerical integrals when the domain of integration is much larger
than this. Hopefully, proper scaling of data will help avoid this problem in
the future. To summarize, we have shown that a weakly interacting economy
with dynamic competitive industries, whose firms produce under constant re-
turns to scale, qualitatively yields the observed distribution of establish-

ment size.
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SIC 29

Petroleum and Coal Products Canonical Density (26)l§/

Fmployees # of Establishments % of Total % of Total
1-k 710 32.2 33.k
5-9 Lo2 19.1 22.0
10-19 300 13.6 2kh.3
20-k49 348 15.8 18.0
50-99 148 067 2.1
100-249 150 06.8 0.1
250-1499 63 02.9 _—
500-999 Ls 02.0 e
1000-2499 18 00.8 -
72500 __Z 01 _—

TOTAL 2206

TABLE 1: An actual industry vs. a canonical density (26)

I}
no

a=12.5 BT = .25 B, = .008 ]



Figure 1 Marginal Canonical Density for o = 12.5, B

X1 !
| .02

gi(qi)

%} 15Y% |R%]%] 1508 28 250
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In the future, we hope to find minimum chi-square estimates for

i
3
that o is constant across industries. Such a procedure would also permit us

a, Bi, B;, and B, for numerous industries, under the theoretical restriction

to test the hypothesis that a is constant across industries.

Comparative Subsystem Dynamics in Large,
Weakly Interacting Systems

The statistics of real valued functions of the ith subsystem's
state, fi(Yi(t)), depend on the vector of parameters Bl through the poly-
canonical distribution (19). Assuming that yi(Yi;Bi) is differentiable in Bi
and that Eii is a known or estimated parameter vector, one can differentiate
relations like (17) or (21) with respect to B to determine changes in the
long-run statistics with respect to changes in Bi. This exercise is dubbed

comparative subsystem dynamics. Assume that these parameter changes occur

"slowly enough" so that long-run time averages are good approximations to the
T

actual partial time means %f fi(‘{i(t))dt that occur ©between parameter
0

changes. Then, comparative subsystem dynamics give a good indication of the

actual subsystem behavior over time. Such "slowly varying" parameter changes

are called quasi-static in physics. The assumption of quasi-static change is,

roughly, the usual assumption used by economic analysts in Justifying the
relevance of comparative statics exercises.

For the density tabulated in Table 1 and graphed in Figure 1, we
compute the change in mean firm capital stock and in mean household consump-
tion resulting from a ceteris paribus increase of 1 percent in each param-

eter. The results are summarized in Table 2.



1% increase in:

Original i 5 5
Parameters a Bl 32 63
mean firm capital ai 12.652 13.939 12.502 12.527 12.478
mean houshold consump-
tion &1 = Bg " 131/2:3]1'L .362 172 .360 .363 .362

TABLE 2: Comparative Subsystem Dynamics of Density (26)

1 i

e . i_
1= +25, B, = .008, By = 2.0

a

n
=
n
.

\
™

From Table 2, we see that the mean capital stock per firm falls and
mean household consumption rises when the productivity (rental) of
capital B;, increases, in accord with intuition. The guantitative increase in
mean consumption is small, though. Also, note that changes in the systemwide
parameter o have a far more dramatic effect on these variables than do the

other parameters, which only affect this particular industry.

Long-Run Behavior of a System in Weak Interaction
with Its Environment

Many variables of interest depend on the states of numerous sub-
systems. For example, a macroeconomist interested in total national output,
consumption, or investment in our economy needs to compute statistics of
functions f(Yl(t),...,Yn(t)). To do so, we assume that the system itself is

in weak interaction with some ill-understood environment. Redenoting the
N N N ., N

system [ I Pis I Ais E yls I mi’Tt
i=1 i=1 i=1 i=1

specified as another subsystem, with state space I'", measurable sets A", state

) by (P',A',y',m‘,T{), the environment is

transition functions T!", invariant measure m" and a complete vector of con-
mp

t’

servation laws y". The assumption of weak interaction between the system and
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its environment is that y = y' + y" is a complete vector of conservation laws
for the coupled system/environment I' = I'' x I'", the product measure m = m' x
m" is an invariant measure for the (unknown) system/environment state transi-
tion functions Ty on T, and that m(y(I)) < =, for every finite rectangle I in
R, It is also essential to assume, as before, that the combined
system/environment is large relative to the systems That is, it is assumed
that y "does not vary too much" with ceteris paribus fluctuations of y', the
precise definition being given in Lewis, p. 360. In the economic example used
here, the environment would include exogenous elements which impinge on the
nationwide economy and that are not explicit in the model.

Given these additional assumptions, one can again apply Theorem 2 of
Lewisﬁf to compute time averages of system, dubbed macro, variables
£(y1(t),.+.,¥N(t)), via the use of a polycanonical density. Remembering

that y' = (Yl,...,YNJ

T o
(27) #(y'(0)) = lim 2 [ £(y' (t))at = =7 [ £(y')e* ¥ an' £ ¥
T+ = o % L7
where the system's partition function z'(a) is:
-asy' —aryt —aey®  —aey"
(28) z'(a) = [ e dm' = [ [ ..f e e .o dmydm, o+ edm;
T T T -1
12 N N
or, rewriting (27) for the indicator function f on a set E = 1 E;, E; € Ay,
i=1
and using (19), find:
N
(29) p'(E) = N p! (E) .
i=1 .

Furthermore, the long-run variance of a square integrable (Werote
(29)) macro variable f can be computed by (20) with £ = f£(y'(t)) and will

yield a formula similar to (21);

(30) var f=f - 1" .
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Finally, the long-run covariance between two square integrable macro

variables f£(y'(t)) and g(y'(t)) can be computed by (22) yielding:

(31) cov (f,g) = fg - F 2.

An Application of Macrodynamics

Suppose we are interested in computing moments of aggregate output,
or the equivalent aggregate income. Letting n denote the number of house-

holds, aggregate income y is:

¥ i N i1
(32) y=n Jwq =n ] B
i=1 §=1

The joint distribution (29) factors into the product of its mar-
ginals, so the component random variables in the sum (32) are independent.
The absolute values of the components are also uniformly bounded by the con-

stant M = max nBB, because gq E[O B ;]. Therefore, if we additionally assume
l 1,...N

5 83 and @ are such that the series (var (ym))1/2 diverges, where

that Bi, B:
Yoy, = 00 E Beq , 1t follows from the Lindeberg Central Limit Theoremgg/ that
the standardlzed ¥y converge in distribution to the standard normal. One
econony obviously satisfying this assumption is that where all industries are
identical.

Given the above assumption, one might expect to find that detrended
national output will be normally distributed about its trend over an infinite
time span. To test this prediction, we first detrended the postwar, quarterly
time series of U.S. real gross domestic product, starting in 1947. To do so,
we regressed this series on a fourth order polynomial time trend. The 146

estimated residuals formed the detrended output series. As predicted, it does

indeed appear that this series is normally distributed, for its mean is zero
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to six decimal places and its median is only .63, which is quite close to its
mean when measured relative to its standard deviation of $25.8 billion. Thus,
the distribution appears symmetric. More importantly, the distribution passed
the Kolmogorov-Smirnov test for normality, as described in Kendall and
Stuartgl/, at the .05 level of significance.

When Parameters Are Constant But Unknown: Gibbsian
Fconometric Modelling of Time Series Data

To test the theory within regimes of constant B = (Bl,...,BN), or to
determine any unknown parameters in the o and B vectors, one could simul-
taneously estimate +the vectors a and B of the ©polycanonical density
z'(a,B)_le-a.y'(Y';B) from time series data on observable system time series
data f(y'(t)). To do so, note that (27) yields an exact relationship between
the long-run mean f*¥ of an observable f and its phase average f with respect
to the polycanonical density. Using E for the expectation operator, the
effects of measurement, specification and/or other modelling errors might be

summarized by the more general hypothesis:

pe—oY' (y';B)
z'(a3B)

(32) E(r*- dm') 4 E(F(y';a,8)) = O.

T
In the jargon of time series econometrics, (32) is a "population orthogonality
condition" implied by this theory. The theory delivers as many such ortho-
gonality conditions as there are observable series f. Given a finite series
of past observations f(Y'(0)),ees,f(Y'(T)) on at least k + r (i.e., the dimen-
sionality of (a,B)) observable f's, one should be able to apply the Genera-
lized Method of Moments (GMM) estimator of Hansen (1982) to obtain consistent
and asymptotically normal estimators ; and é. The number of observable

series f(y'(t)) is, in principle, infinite. Thus, there will be far more than

k + r orthogonality restrictions at our disposal. Hansen has also concocted a



- 28 -

test of the "over-identifying restrictions", i.e., the number of restrictions
we have in excess of k + r, which utilizes the chi-squared distribution. Such
a test provides a formal means of testing the theory within regimes of con-
stant B.

If the state y' itself is observable, one could also utilize minimum
chi-square estimation to fit the system's polycanonical density, as envisioned
earlier. Furthermore, even if y' is not observable, the density of some
observable f(Y') can be derived from the polycanonical density and the func-
tional form of f. Tt can then be fit to data.

If these econometric tests are successful, the resulting estimated

-1 oey! (y';B)

~ A

polycanonical density z'(a,B) provides what I dub a Gibbsian

Fconometric Model (GEM) of the system. The GEM could be of use for uncondi-

tional forecasting of time averages and other moments of observables
f(y(t)). It may also be of use for conditional forecasting of policy inter-
ventions, which can be modelled by predictable, quasi-static changes of a and
Be.

An Alternative Derivation of The Polycanonical Distribution:
The Maximum Entropy Formalism

Another argument supporting the plausibility of the polycanonical
distribution is grounded in information theory. This argument was initially
advanced and promoted by E. T. Jaynes in a series of papersgg/ and has been
dubbed the Maximum Entropy Formalism (MEF). The MEF has also been widely used
in regional and urban economics for modelling transportation problems and

interregional commodity flows.23 The following presentation of this formalism

follows results from the book by Guiasurgkj
As earlier, suppose (P',A') is a measurable space, with a proba-

bility measure m'. The measure m' is to be thought of as a prior probability
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measure, summarizing the researcher's subjective probability of events in
A'. Now, suppose on the basis of some other information gleaned about the
subsystem, the researcher revises these probabilities, replacing m' with a
measure p', absolutely continuous with respect to m's Both of these measures
contain information about the subjective likelihood of various events in A'.

But how can we quantify the amount of information, or equivalently, the lack

of uncertainty, expressed by a particular measure? And how can we quantify

the variation of information that occurs when passing m' to a p' which is

absolutely continuous with respect to m'? By the Radon-Nikodym Theorem, there
exists a nonnegative real valued function on TI'' such that p'(E) = [ ¢dm'.
r

Then, with motivation to be provided shortly, define the variation of informa-

tion I(p',m') in passing from m' to p' to be:

(33) I(p'lm') - [ ¢(¥")Ine(y"')dm'
I‘l'

Definition (33) has many intuitively appealing properties capturing
the flavor of the change in information in moving from m' to p'. For example,
suppose that p' = m's Then there has obviously been no change in information,
and definition (33) accordingly yields I(p'lm') = 0. A simple argument in
Guiasugi/ shows that I is nonnegative, finite in value when ¢ is m'-square
integrable, and zero only when p' = m'. Thus, an actual change of distribu-
tion always conveys some information.

For the moment, assume that T' is a discrete set [Yi""’Yﬁ}’ with
p'([Yi}] = pi « Then, if m' is the uniform probability,

n n
(3L) I(p'|uniform) = ) np!ln(np!) * E - 1n(n) + ) p!ln p! .
LI e L b B By

n
4 U Y = o 4 '
Defining the entropy of the measure p' by E(p') 1£1P11n 2

n
(35) E(p') = 1n(n) - I(p‘lunifbrm) = ) p;ln pi .
i=1
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Because I is nonnegative, we see that E(p') attains its maximum of 1n n when

' is the uniform distribution. TInterpreting the entropy E as the "amount of

b
uncertainty" in the measure p', we would then conclude that the uniform mea-
sure has the most uncertainty. This is also in accord with intuition.

One could possibly construct alternatives to the entropy (35) as
ways to quantify the amount of uncertainty in a measure in a discrete space
. Khinchingéj postulated four eminently reasonable axioms as desiderata for
a reasonable quantification of the amount of uncertainty in p'. Khinchin then
showed that the only possible functions satisfying these axioms are propor-
tional to the entropy T%lpi log pi, where the logarithm can have any base.
Thus, for discrete stat:_SPaces I'', we can appeal to these reasonable axioms
to support the claim that our entropy E(p') = TE piln pi reasonably captures
the concept of the amount of uncertainty. -

Suppose that the only information about the discrete distribution

that one has can be expressed in terms of the set of expected value con-

straints:

(36) }3 =

n
1ot (At = .
lzlpiyj(wri), for J = 1, eee, k3 k < ne

where each yﬁ is a real valued, Borel-measurable function.

Suppose that, knowing (36), one wanted to revise the prior distribu-
tion m' that one held prior to knowing any information (36). It seems reason-
able to choose p' to be the revised distribution containing the most uncer-
tainty E(p') subject to the information constraints (36). That is, one would
choose nonnegative probabilities pi, cee,y pﬁ summing to one and maximizing the
strictly concave function (35) subject to the linear equality constraints

(36)s The approach of choosing p' to maximize entropy subject to whatever

informational constraints the researcher possesses is termed the Maximm
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Entropy Formalism (MEF). WNote from (35) that MEF is equivalent to minimizing
the variation of information I(p'luniform) obtained when passing from a com-
plete lack of information, i.e., from the uniform prior distribution m', to
the information embodied in (36).

A trivial modification of Theorem 16.1 in Guiasu shows that the

solution maximizing (35) subject to (36) and the normalization constraint is:

(37) P;-. = zi(a)-le—aﬂy'("f]{)

(38) gria) = ] oty
i=1

where the dot denotes the inner product of the k-vector y' and the vector a of
Lagrange multipliers for (36). The measure p' is a discrete version of the
polycanonical distribution. Such a distribution is "maximally noncommittal,"
in that it conveys no more information than that contained in the explicitly
recognized constraints (36). Any other distribution implicitly contains more
information than that explicitly recognized, and is thus ad hoc.

When the state space T'' contains a continuum of elements, the axio-
matic result of Khinchin alluded to earlier fails to go through. Therefore,
the axiomatic basis for choosing the polycanonical distribution as the contin-
uous distribution containing the most uncertainty subjJect to information
constraints is not present.

However, the desirable properties of the variation of information
(33) mentioned above do not require a discrete sample space. So, it still
seems reasonable to choose the distribution p' causing the least variation of
information in moving from a prior m' to p', subject to any information con-
straints. Assume that the only information present is represented by the

expected value constraints:
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(39) [ oly)yt(y*)am' =y7 J =1, soe, k

I"f J lj
where, on each T', y3 is a real valued, Borel-measurable function. Then,
minimizing (33) subject to (39), ¢ > 0, and f ¢dm' = 1, is equivalent to

I‘l
maximizing -I(p"m'), dubbed generalized entropy, subject to these con-

straints. Replacing the discrete entropy E by =I, and trivially modifying

Theorem 16.1 in Guiasu:

(40) $(y') = z'{a) "L~
(41) 2'(a) = [ ¢ &Y qu’
I‘t
(42) p'(E) = z'(a)™tf &Y am'
El

Thus, independent of theory, MEF has delivered the polycanonical distribu-
tion. Among distributions absolutely continuous with respect to nﬂglf and
compatible with the constraints (39), the polycanonical distribution is the
one which causes the minimum variation of information from m'. Any other
distribution implicitly implies a bigger change in information than that

warranted solely by the explicitly recognized constraints (39), and is thus ad

hoc.

Towards a Statistical Macrodynamics: Epilog

It has been argued herein that the Gibbs Formalism provides a use-
ful, tractable means of formulating testable hypotheses, at both the micro and
macro level, in complex, dynamic economic systems. These testable hypotheses
are formulated from a model of the economic system that forces the researcher
to specify only:

(1) A reasonable dynamic model of each subsystem's isolated be-

havior. Such a model is conveniently generated by either deter-
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ministic or stochastic dynamic optimization based behavioral
hypotheses, but need not be.

(2) A measure-theoretic hypothesis that the system is large relative
to its subsystems, which are in weak interaction with one an-
other. This hypothesis is only necessary when one wishes to
formulate testable hypotheses about an individual subsystem's
behavior, i.e., about endogenous micro variables.

(3) A measure-theoretic hypothesis that the system's exogenous
environment is large relative to the system, and is in weak
interaction with the system. This hypothesis is only necessary
when one wants to formulate testable hypotheses about systemic
behavior, i.e., about endogenous macro variables.

or, from the Maximum Fntropy Formalism for statistical inference,
(4) one must specify only that the mean values of the conservation

laws are known.

A rejection of testable hypotheses based on the Gibbs Formalism
might be remedied by changing the specification of (1), i.e., by proposing
alternative micro models of subsystem behavior. Acceptance of these testable

hypotheses corroborates the correctness of the specification of (1).
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Footnotes

1/gee Sargent, Chapter 16.

gySee Baumol.

ngee Sargent, Chapter 16.

Y see Quirk and Saposnik, Chapter 6.

ijee Samelson (1972) for a summary of the relations between
dynamic optimization problems and their Hamiltonian formulations.

éjSee Lucas and Prescott for an example.

lehis is sometimes done by time differentiation of static equili-
brium conditions. See, for example, Sargent, Chapter 1.

EjSee Lewis.

QJSee Truesdell.

LQ/See the excellent lecture notes of Petersen for an introduction
to Ergodic Theory.

11/gee Hadley and Kemp, pp. 66-6T.

12/gee Hadley and Kemp, Chapter L.

13/see Cornfeld, Fomin and Sinai, pp. 47-48.

14/5ee Lanford (1974) for details of their progress.

lé/See Lewis, p. 362. In accord with Lewis' ideas we have in mind
the interpretation (II) on p. 368, i.e., that the ith subsystem is in weak
interaction with the N-1 others. The concordance with Lewis' notation is as

follows:

Denote (ri,Ai’T;"m ) = (F'!A' !T.tl;Bm' S-.v')'

iy

Define (I",A",T0,m",y") = (N T, TA, T, Tm, Jy)).
gi 9 g1 g1 Pger J g
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Assume that m" is preserved by T; and that y" is a complete set of conserva-
tion laws for M I'.. Then, I'' and I'" are said to be in weak interaction if
+
the product meglgie m' x m" on I'' x I'" is preserved by Ty, and if y' +y" is a
complete set of conservation laws for Ty on T =T' x I'". The definition of I'"
being larger than I'' is given on p. 360.
lﬁjFirst, we must find the Hamiltonian for the general case. Be-

cause Ui is assumed strictly concave, one can invert pl = qu*/de! to obtain ci

= ci(pi). Then, él = Béql - ci(pi) and B = Ul + pq- = Ui(ci(pi)) +

i,i i

p'8sat - plei(p?)

« Differentiating gi(qi) twice for this general Hi shows
that it is downward sloping and strictly convex.

EI/See Klein, p. 150.

18/phese were computed by integrating (26) over the rounded ranges
lo,5], [5,10], [10,20], etc., by a Gaussian integration routine.

19/5ee Lewis, p. 368.

20/gee Ash, pp. 336-337.

21/gee Kendall and Stuart, vol. 2, pp. L77-488.

gngee the referenced papers of Jaynes.

géfSee Wilson.

glt-/Sr:—:e Guiasu, Chapters 1, 2 and 16.

Eé/See Guiasu, Chapter 2, Theorem 2.2.

gé/See Khinchin, Uniqueness Theorem, p. 9. Also, see Guiasu, Chap-
ter 2.

EE/The invariant measure m' of our theory was not normalized. If
m'(I'') < =, as in our example, then interpretation of m' as a prior probabil-
ity is correct if we reinterpret m' to be m'/m'(l''). If m'(T') = =, though,

then we can only interpret I(p'lm') to be the variation of information ob-

tained when passing from the invariant measure m' to the probability measure
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p'e As long as ¢ is m'-square integrable, as assumed, the theorems cited in

the paper are still valid.
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