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ABSTRACT
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expected return and the conditional variance of the monthly excess return on stocks when they used
the standard GARCH-M model. This is in contrast to the negative relation found when other
approaches were used to model conditional variance. We show that the difference in the estimated
relation arises because the standard GARCH-M mode! is misspecified. When the standard model
is modified allow for (i) the presence for seasonal patterns in volatility, (i) positive and negative
innovations to returns to having different impacts on conditional volatility, and (iii) nominal interest
rates to affect conditional variance, we once again find support for a negative relation. Using the
modified GARCH-M model, we also show that there is little evidence to support the traditional view
that conditional volatility is highly persistent. Also, positive unanticipated returns result in a
downward revision of the conditional volatility whereas negative unanticipated returns result in an
upward revision of conditional volatility of a similar magnitude. Hence the time series properties
of the monthly excess return on stocks appear to be substantially different from that of the daily
excess return on stocks.
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ON TEE RELATION BETWEEN THE
EXPECTED VALUE AND THE VOLATILITY OF
THE ROMINAL EXCESS RETURN ON STOCKS

The tradeoff between risk and return has long been an important topic in
asset valuation research. Most of this research has examined the tradeoff
between risk and return among different securities within a given time period.
The intertemporal relation between risk and return has recently been examined by
several authora. This paper extends that research.

There is general agreement that investors, within a given time period, will
require a larger expected return from a security that is more risky. However,
there is no such agreement as to whether investors will require a larger risk
premium on average for investing in a security during times when the security is
more risky. At first blush, it may appear that rational risk-averse investors
would require a relatively larger risk premium during times when the payoff from
the security is more risky. A larger risk premium may not be required, however,
because time periods which are relatively more risky could coincide with time
periods when investors are bhetter able to bear particular types of risk.
Further, a larger risk premium may not be required because investors may want to
save relatively more during perioda when the future is mere risky. If all the
productive assets available for transferring income to the future carry risk and
no risk-free investment opportunities are available, then the price of the risky
asset may be bid up considerably, thereby reducing the risk premium.! Hence a
positive as well as a negative sign for the covariance between the cenditional
mean and the conditional variance of the excess return on stocks would be
consistent with theory.

Since there are conflicting predictions about this aspect of the tradeoff
between risk and return, it is important to empirically characterize the nature
of the relation between the conditional mean and the conditional variance of the
excess return on stocks as a group.2

The empirical literature on this topic has attempted to characterize the

nature of the linear relation between the conditional mean and the conditional



variance of the excess return on stocks. However, the reported findings are also
somewhat conflicting.?

Most of the support for a zero or positive relation has come from studies
that use the standard GARCH-M model of stochastic volatility. (See Bollerslev,
Chou, and Kroner 1992 for an extensive survey of GARCH and GARCH-M models in
finance.) Other studies have documented a negative relation between expected
return and conditional variance. In order to resolve this conflict we examine
the possibility that the standard GARCH-M model may not be rich enough to capture
the time series properties of the monthly excess return on stocks. We consider
a more general specification of the GARCH-M model. In particular, {i) we
incorporate dummy wvariables in the GARCH-M model to capture seasonal effects
using the procedure first suggested by Glosten, Jagannathan and Runkle (1988),
{1i) we allow for asymmetries in the conditional variance equation, following the
suggestions of Glosten, Jagannathan and Runkle (1988), (iii) we include nominal
interest rate in the conditional variance equation, and (iv) we consider the
EGARCH-M specification suggested by Nelson (1991) with the modifications
mentioned in (i) and (i1ii) above. We find a weak but statistically significant
negative relation between conditional variance and expected return.

Our other findings are somewhat at odds with the existing literature.
First, our data providea 1little evidence to support the belief that the
conditional volatility of the monthly excess return on stocks is highly
persistent.? Second, both unexpected positive and negative excess return on
stocks change next period's conditional volatility of the excess return on stocks
by the same magnitude. However, unexpected positive returns result in a downward
revigion while unexpected negative returns result in an upward revision.

In contrast, Nelson (1991} and Engle and Ng (1991), using daily data on
stock-index returns, find that large peositive as well as negative unanticipated
returng lead to an upward revision in the conditional volatility, although
negative shocks of similar magnitude lead to larger revisions. Hence the time
series properties of monthly exceses returns are somewhat different from thoee of
daily returns reported in Nelson {1991} and Engle and Ng (1991).

There are no theoretical reasons for the properties of the monthly and

daily returns to be the same. For example, Nelson (1990) argues that as the



frequency at which data are sampled becomes very high, persistence should become
larger. Thus, our results for monthly data along with the results for daily data
reported by others provide a more complete characterization of the time series
properties of stock index returns.

The remainder of the paper proceeds as follows. Section I describes the
model that forms the basia for ocur empirical analysis. Section II digcusses the
econometric issues involved and our estimation metheds. Section III contains the

empirical results. Section IV coancludes.
I. The relation between the conditional mean and the conditional
variance of the excess return on stocks
Consider the relation between conditional variance and conditional mean
given by:

E[x,,) = ﬁotz (1)

Wwhen x,,, is the excess return on the aggregate wealth portfolio, and o’ captures

most of the economic uncertainty that agents care about, the mocdel in (1) is the

approximation to the true risk-return relation derived by Merton (1980}.
In our empirical work, we will assume that (1} holds even for nominal

returns. We will consider the following general model for estimation.
E(x,|F) = a + BVar(x,,|F) (2)

where F, denotes the information aset of agents, Campbell (1992) provided
sufficient conditions for the relation given in (2) to hold approximately in
equilibrium, where x, is the excess return on the market-index portfolio.

However, P will not in general be a measure of the risk-aversion coefficient of
the repreasentative agent and o will not in general equal zero. The relation in

{2) forms the basis for our empirical work.

II. Estimating the model
A. Econometric issues:

The parameter § in the model given by {2} cannot be estimated without

specifying how variances change over time, since Var(xH4|FJ can not be directly



observed by the econometrician. To appreciate the difficulties involved, project
both sides of (2) on G,, the econometrician's information set, which is a strict

subset of the agents' information set F,. Doing so, we get
E(x|G1) = a + BE(v,4[Giy). (3)
Hence, we can write
x, = a + BE(v,,|G_,) + n, where

n=u. +e€ v, =pfv, - E(vt—llct-l)]r and

€ = X - E[xt|Ft—1]'
Since, by definition

E[EEIF:—:] = Viear

u_; = BE(e?|Fy) - E(e?|Gy)].
Note that E(n,|G_,) = E(u_|6_;) = E(u_,&|6_,) = 0.
Therefore,
E(mz'Gl—l) = E(ut—lzlGl—l) + E(ElzlGl—ii‘ (4)

The term on the left is the variance of the error in forecasting x, based on the
econometrician's information set. The first term on the right is the variance
of the measurement error, (v,_; - E[qulelllr and the second term is the expected
value of the conditional variance v, ; based on the econometrician's information
set G,_;. Unless the variance of the measurement error is a constant, we cannot

obtain a consistent estimate of B. This problem was first pointed out by Pagan
and Ullah (1988). Also notice that the intercept term a in equation (2) is not
identifiable based on the smaller information set available to the

econometrician, since E(Vh1hiql may involve a constant term.

To see this problem more clearly, consider now the special case where
E{V1-1|G1~1) = by + bz,

for some zeG where b, is a row vector and z,_, is a column vector. Then



E(n%|z, ;) = BWVar(v,_,|G. ;) + (bytbiz,,).

The left side is the variance of the excess return, conditional on
observing the instrument z alone. The first term on the right side is the
variance of the measurement error ﬂ[VF1"E(Vb4|GF=)], and the second term is the
variance of ¢ given z,_,.

There have been several approaches to the estimation of this general
econometric model. One apprcach was suggested by Campbell (1987), and assumes
that Var(vb4|GFI} is an arbitrary constant, while z_, is a vector of ocbservable
variables. If Var(qule4) is a constant, then we can test whether § is posi-

tive. We can estimate the regression eqguations
X =Cy * ¢z, +1n and (5)
7121 = dg + djz; + (. (6)

Since the estimated slope coefficient ¢, is a consistent estimate of Bb,, and d,
provides a consistent estimate of b, the ratio of any two corresponding
elements of c; and d, will provide a consistent estimate of f. If z,_, is not a
scalar, then we may impose the constraint that the slope coefficients in {5) and
the slope coefficients in (6) differ only by the scale factor P in estimating B.
Such a restriction also providea a natural test for the validity of the model
specification. We will denote this apprcach as Campbell's instrumental variable
model.

Another approcach, the GARCH-M model, asgsumes that Var(vl_llG,_l) is
identically zero, and that z,, consiste of innovations and variances that, while
uncbservable, can be estimated by the econometrician. A generalization of the
GARCH-M appreoach, maintains the assumption that Var(vb4|GF,) is zeroc but allows
z,; to consist both of observable instruments and lagged values of estimated
variances and innovations. We will denote this approcach as the Modified GARCH-M
model. Since the specication of the information set is crucial for the Modified
GARCH-M model, we will first describe the information set used in this study and

then proceed to describe the GARCH-M models we examine.



B. Specification of the econometrician‘'s information set:

Implementation requires taking a stand on the variables that make up the
instrument vector, z. In our investigations we focus attention on the
volatility information in the following variables: (a) nominal interest rate, (b}
October and January seascnal dummies, and (c¢) unanticipated part of the excess
return to stocks. In what follows we provide some justification as to why we
focus our attention on these variables.

The use of nominal interest rates in conditional variance models has scme
intuitive appeal. It has been well known since Fischer (1981) that the variance
of inflation increases with its level. To the extent that short-term nominal
interest rates embody expectations about inflation, they could be a good
predictor of future volatility in excess returns. Using the information
contained in nominal interest rates, Fama and Schwert (1977), Campbell (1987},
and Breen, Glosten, and Jagannathan (198%) have demonstrated that it ie pessible
to forecast time periods when the excess return on stocks is relatively large and
significantly less wvolatile. Singleton (1989) alsc examined the ability of
nominal interest rates to predict changes in the volatility of stock returns.

Including deterministic seasonal dummies is motivated by the seasonal
patterns in volatility of stock returns reported in Lakonishok and Smidt (1988)
and Keim (1985). Table I presents the summary statistics for the monthly excess
returns on the CRSP value-weighted stock-index portfolio during the post-Treasury
accord period for the months of October, Januwary, and other calendar months.®
An apparent increase in October and January volatility is suggested by results
presented in panels A and C.

During the period 1951:4 to 1989:12, monthly excess continuously compounded
returns on the CRSP value-weighted index of stocks, during months other than
October and January, had a mean of 0.48 percent and a standard deviation of 3.83
percent. The standard deviation of January excessa returns is 5,19 percent (i.e.,
1.35 times that in other months) and the standard deviation of October excess
returns is 6.17 percent (1.61 times that in other months). While October and
January are both months of relatively larger volatility, October, unlike January,

has relatively lower excess returns on average than other months.®



There are several potential contributing explanations for the excess
volatility of October and January excess returns on stocks. Information about
the fall harvest starts coming in during October. Even though agriculture is no
longer a subetantial part of the U.S, economy, the multiplier effect could be
there since agricultural ocutput forms an important input into several industries.
Further, important political electione occur in the first week of November,
Information about the likely outcome of these elections come in during October.

Relatively more news arrives in January since most firms (almost two
thirds) use the calendar year as their fiscal year. Such firms will close their
books on December 31. The annual reports are typically more informative since
they are done more carefully and are audited. Information from such reports
starts leaking in during the month of January. PFurther consumer sales exhibit
pronounced guarterly seasonal patterns. This pattern arises because the fourth
quarter is the important holiday season. Comprehensive and reliable information
about consumer spending during this period typically becomes available during
January.

There may be stories for other months as well. Further investigations
should examine other months. Laurie Cohen’, writing in a Wall Street Journal
article attributes to Mark Twain the observation, "October is cone of the
peculiarly dangerous montha to sgpeculate in stocks. The cthers are: July,
January, September, April, November, HMay, March, June, December, August and
February."

We also allow positive and negative innovations to returns to have
different impact on conditional variance. Tc see why this is desirable, suppose
discount rates are constant and have no relationship to anticipated future
volatility. Any unanticipated decrease in expected future cashflows will
decrease the stock price. If the variance of the future cashflows remaing the
game or does not fall proportionately to the fall in stock prices, the variance
of future cashflows per dollar of stock price will rise and future returns will
be more wvolatile. Hence, if most of the fluctuations in stock prices are caused
by fluctuations in expected future cashflows and the riskiness of future

cashflowa does not change proportionally when investors revise their



expectations, then unanticipated changes in stock prices and returna will in

general be negatively related to unanticipated changes in future volatility.
This argument can be made as rigorous as follows. Consider a representa-

tive-agent endowment economy. Let y, denote the date t endowment of the single

consumption good where
Y, = 8 + ay., +e; E_le] = 0; E_ e} = .

Suppose that the representative agent is risk neutral and that the price of a
unit discount bond is a constant, §; that is, the risk-free interest rate is a
constant, (1-8)/&, pexr pericd. Without loss of generality we may assume that the
dividends are paid by a single firm entirely owned by the representative agent.
In this economy, the expected return on any financial asset is the same as the
riskless return, and there is no intertemporal relationship between risk and
return.

It can be verified that the price of the single firm is given by
D= ke + Kyyr kg = 6ag/[(1-8)(1-23,8)); Kk = a,8/(1-a,8).
The variance of the return, R, = (p+*v,)/p—; i8 given by

Var[R.] = Var[(Pu *vi1}/B] = a2(1+k)20%/ (kotkyy,) 2.

Here R, and Var,(R,,,] are negatively related.?®

Black (1976) and Christie (1982) have suggested a different reason for the
negative effect of current returns on future variance: a decrease in today's
stock price changes a firm's capital structure by increasing leverage. This
increased leverage causes higher expected variance in the future. Both Black and
Christie find support for their predictions in the relation between expected

return and variance for individual stocks.

C. Modified GARCH-M model for the variance
C.1l. Model specifications
The GARCH model assumes that the information set of invesators and the

econometrician coincide. The general Modified GARCH-M model can be written as:



Equaticon for the conditional mean

E[xtHIGt] = p(Gy

where p{-) is a function that describes the nature of the dependence of the

conditional mean on the elements of the information set G,. Hence, we can write
Xy = p(G) + €4, with E[GH.lth] = 0.

Equation for the conditional wvariance

var(x.,,|G) = var(e,;|6] = V(G)

where V(.) is a function that describes the nature of the dependence of the
conditional variance on the elements of the information set G,. It is convenient

to assume that the conditional wvariance function can be decomposed in the

following way:
V(G) = £,{(Gy) + £{G\G, ;)

where £ (G, ;) is that part of the conditional variance, V{G,), that depends only
on information known as of date t -~ 1, and f({G\G,_,) is that part of the
conditional variance that depends on the new information, G\G,_,, that beccmes
available at date t.

Now consider the standard GARCH-M process suggested by Bollerslev (1986)

for stock excess return, x, given by

MODEL 1
X = g + av, *tog (7
Vig = by + byvi, + g€l (8)
where E_,[€) = 0 and E_;(¢%) = wv_,. The GARCH-M model specifies that the
conditional mean funection u(G,_;}) = a; + a;v,.; and that the conditional variance
function V(G, ;) = by + byv,, + g,e%_,. That is, £,(G_,)} = by + byv,_, and £(G,_,) =
g1€%4_,. The univariate GARCH-M model assumes that the econometrician's

information set consists only of the past innovations teo the excess return x,.

Hence, the only new information that becomes available at date t - 1 is €_,. The
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model further assumes that the function f(e,_,) = ge%.,. As we have argued
earlier, there are a priori reasons to suspect that the assumption that the
function f(e,_,) = g,€%_, may not be reasonable.

If future variance is not a function only of the aquared innovation to
current return, then a simple GARCH-M model will be misspecified and any
empirical results based on it alone are not reliable. In Model 2 we assume that
the impact of ¢,,° on conditional variance v,; will be different when ¢, is
positive (i.e., when I, in {9) is 1) than when £, i8 negative (i.e., when I, in

{(9) is 0). Thie leads to

MODEL 2

Vi = bg + byvy, + g€ + g’ I {9)

In models 3 through 5 we will relax the assumption that the information set
G, consists only of past realizations of the excess return on the stock-index

portfolio. Including the risk-free interest rate® leads to

MODEL 3

v,y = byt bv, , + bry + g€, + g‘zezt—lll—l' (10)

For reasons we mentiocned earlier, we expect October and January to be
relatively more volatile than other months. We therefore introduce January and
October seascnal dummies in the variance of stock-index excess returns. For this
purpose we assume that the seasonal effects amplify the underlying fundamental
volatility (which does not by definition exhibit any seasonal patterns} in the
months of October and January by a constant month specific ascale factor. We also
assume that the fundamental volatility next period depends only on the
fundamental part of the excess return innovation.

In particular, we assume that we can write the excess return innovation in
ang calendar month as a scale multiple of some underlying fundamental innovation

that does not exhibit any seasonal patterns, as followa:
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€ = (1 + A0CT, + A,JAN)n,

where n, does not exhibit any deterministic seasonal behavior. Let h_, = E_,[n}]
denote the conditional variance of n,. We postulate that h evolves over time

according to

MODEL 4

hy = by + by, + g’y + @n%o,I, and {11)

MODEL 5

h_y = by + bh_, + byry + gmi, + g’ I . {12)

Notice that Model 1 is obtained from Model 5 by imposing the restriction that A,
=i, =b, =g, = 0. Similarly, Models 2, 3, and 4 can be considered as restricted
versions of Model 5.

Our approach to modelling seascnals is different from the one used by
Baillie and Bollerslev (1989). In our specification, we assume that we can
deseasonalize the excess return innovation, e, to get 1. The realized value of
the deseasonalized innovation, %, influences the conditional variance of the
distribution from which the deseasonalized innovation for the next period is
drawn from. 1In contrast, in Bailee and Bollerslev (1989), the seasonal part of
the innovation to this period return will affect the variance of the
deseasonalized innovation next period.

Because inference in GARCH-M models depends on correct specification of the
information set and the wvalidity of the functions used to represent the
conditional mean and the conditional wvariance, we estimate three additional
models to check our specification. First, we check for nonlinearity in the mean
equation by adding v, ,'? to Model 2 and Model 4. These models are then called
Model 6 and Model 7. If the coefficient on v,_;'? is significantly different from
zero, that difference is evidence of misspecificatioen.

In the above models, there are a priori reasons to suspect that the
coefficient g, as well as g, + g, will be negative, since empirical evidence
suggests that a positive innovation to stock return is associated with a decrease

in return volatility. However, if g, + g, is negative, conditional variance can
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potentially become negative for some realization of e. Hence we will also follow
the suggestion of Engle (1582} and Nelson (19%1) and consider the exponential

form for the law of motion for conditional variance, as given below.

MODEL 2-L

log(h,_;) = by + b, log(h ) + g n/Yh.; + g 0 I ,/Vh_,. {13)

Following Nelson (1991), we use %, ,/Yh_, instead of functions of n_,> in equation
{13) to minimize the impact of extremely large realizations in absoclute value so
that the stochastic process for h, will be well behaved.” Model 1-L is the same
as model 2-L but with g, restricted to be zero.

Since we also want to test whether the risk-free rate helps predict

conditional variance using the log specification, we also estimate

MODEL 3-L

log(h_;) = by + b, log(h, ) + by rp + g n_fVhey + g NI y/V Dy 5. (14)

Model 4-L and 5-L add deterministic seasonals to the variance equation of
Model 2-L and 3-1L in the manner adopted for the level specification. Two
additional models were estimated to test the specification of the EGARCH-M model.
Model 6-L adds v,_,"? to the mean equation for Model 4-L. Model 7-L is identical
to Model 2-L, except for the starting wvalues of the parameters used in
estimation, i.e., Model 7-L corresponds to a local maximum whereas Model 2-L

corresponds to a global maximum.

C.2. Estimation and inference and diagnostic tests

We estimate all models discussed in this section by maximizing the log-
likelihood function for the model, assuming that ¢, is conditionally normally
distributed. Even if this assumption is incorrect, as long as the conditional
means and wvariancea are correctly specified, the quasi-maximum likelihood
estimates will be consistent and asymptotically normal, as pointed out by
Glosten, Jagannathan and Runkle {1988) and Bollerslev and Wooldridge (1989). All
our inference is based on robust standard errors from guasi-maximum likelihood

estimation.!!
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We alsc use a variety of diagnostic tests to determine whether various
aspects of our different models are correctly specified. First, we examine
whether the residuals of the estimated models display excess skewness and
kurtosis. Properly specified GARCH-M and EGARCH-M models should be able to
significantly reduce the excess skewness and kurtosis evident in nominal excess
returns. We test for excess skewness and kurtosis, under the null hypothesis that
the errors are drawn from a conditicnal normal distribution. These tests were
previcusly applied to GARCH-M models by Campbell and Hentschel (1991).

Second, we examine whether the squared standardized residuals from the
estimated models, (g/Yh,_,)? are independent and identically distributed. We use
the three tests proposed by Engle and Ng (1591): the Sign-Bias Test, the
Negative-Size~Bias Test, and the Positive-Size-Bias Test.

In the Sign-Bias Test, the squared standardized residuals are regressed cn
a constant and a dummy variable, dencted as 8§ that takes a value of one if ¢,
i8 negative and zero otherwise. The Sign-Bias Test Statistic is t-statistic for
the coefficient on §,. This test shows whether positive and negative innovations
affect future volatility differently from the prediction of the model.

In the Negative Size-Bias test, the sguared standardized residuals are
regressed on a constant and Se,,. The Negative-Size Bias Test Statistic is the
t-statistic for the coefficient on $.¢,,. This test shows whether larger negative
innovations are correlated with larger biases in predicted volatility.

In the Positive Size-Bias test, the sguared standardized resjiduals are
regressed on a constant and $%g,,, where 8*=1-5,. The Negative-8ize Bias Test
Statistic is the t-statistic for the coefficient on 8*g,,. This test shows
whether larger negative innovations are correlated with larger biases in
predicted volatility.

There is one additional compariscon that we make among the models, although
it is not formally a diagnostic test. Because the parameterization of the models
differ so much, it is hard to compare the amount of persistence in variance that
these models predict. One way to compare persistence in variance across models
it to regress h, on a constant and h,;. We report the coefficients and t-

statisticas on h,, in the regressicns for each model.
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III Ewmpirical results

As mentioned earlier, our cbjective is to examine the role cf model
specification in determining the estimated relaticon between risk and return. The
discussion above suggests that we can estimate this relation using either
Campbell's Instrumental Variable model or a variety of Modified GARCH-M and
EGARCH-M models. While our focus is on the latter, we first present results
using the first approach and find that Campbell's general conclusions are
replicated in our data. We then present the results for the various GARCH-M
models.

A, Campbell's Instrumental Variable Model:

Takle II provides the empirical results obtained when the CRSP wvalue-
weighted index of stocks on the New York Stock Exchange is used as the stock-
index portfolio. We limit attention to 1951:4 to 1989:12, which is the post-
Treasury Accord period. The estimated value of the slope coefficient for the
risk-free rate in equation (5} for expected excess return is -2.31 (t = -3.42).
The estimated value of the slope coefficient for the risk-free rate in the
variance equation given by (6) is 0.18 (t = 2.74).

The t-statistics were computed using the procedures suggested by Newey and
West (1987). Since there is substantial persistence in the residuals of equation
(6), we report the t-statistics corresponding to a lag length of 20. 1In this
sample, the t-statistics decrease as the number of lags increases, and hence
these t-statistics are relatively conservative when compared to the t—-statistica
cbtained when this serial correlation is ignored. Note that the residuals in
equations (5} and (6) can be serially correlated, since the econometrician's
information set can be strictly smaller than that of economic agents.

We also estimated the model by imposing the constraint that the slope
coefficients in equation (5) are a scalar multiple of the slope coefficients in
equation (6). The estimated value of the scalar, B, is -12.75 (t = 2.43}. With
this restriction are two over-identifying restrictions. The null hypothesis that
the over-identifying restrictions are not binding leads to a chi-square (D.F. =
2) value of 3.22 with an associated p-value of 0.20. Hence, based on these

results, we can not reject the hypothesis that there is a negative relation
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between the conditional mean and conditional variance of the excess return on
stocks.

The natural gquestion that arises at this stage is why the findings reported
by French et. al. (1987) for the standard GARCH-M model are different than the

conclusions in this section. We address this issue in the next section.

B. Modified GARCH-M models:

Table III, Panels A and B presents the estimates for Models 1 through 7.
These results, and the accompanying specification tests, show that significant
asymmetry exists in the conditional variance egquation when predicted variance is
also conditioned on the t-bill rate.

A comparison of Model 1 and Model 2 illustrates the restrictive nature of
the standard GARCH-M specification for the conditional variance equation. Model
1 presents the results for a standard GARCH-M model. Both positive and negative
innovation to excesg returns results in an upward revision of the conditional
variance (g, is positive). Also, time periods with relatively large variances
are associated with relatively larger returns on average (a; is positive).
However, the association is weak and not statistically significant at
conventional levels.

These relations change as scon as positive and negative unanticipated
returns are allowed to have different effects on conditional variance. Model 2
allowe for such a difference by estimating the parameter g,. A simple
specification test comparing Model 1 and Model 2 shows that the standard GARCH-M
model is too restrictive. If the parameters that the two models share are
compared, using a generalized specification test, computed using robust standard
errors, the value of the test statistic is 12.829." Under the null hypothesis
that Model 1 is cerrectly specified, this test statistic should be asymptotically
distributed as a x} random variable. Thus, we can reject the null hypothesis at
the five-percent level.

Chart 1 shows the relation between the conditional variance, h, and the
unanticipated excess return, 1, when all other variables that appear in the
conditional variance equation are set equal to their sample average. This is the

news—impact curve developed by Engle and Ng {1991). Note that in Model 2 an
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unexpected negative return sharply increases conditicnal variance of the next
pericd excess return, while an unexpected positive return decreases conditional
variance. Model 1 does not allow for such a poesibility.

There is another important difference in the estimated variance equations
between Model 1 and Model 2. Table III, Panel B also shows that for Model 2, the
estimated persistence of variance from one period to the next, as measured by the
first-order autoregressive coefficient for h, is smaller than it is for Model 1.

Even though Model 2 seems less restrictive than Model 1, there are two
reasons that we should not be satisfied with it. First, the robust standard error
suggeste that the coefficient g, is imprecisely estimated. In fact, it is not
significantly different from zero. Second, Model 2 does little better than Model
1 in any of the diagnostic tests.

Mcdels 3, 4 and 5 attempt to solve the deficiencies in Model 2 by including
the effect of the risk-free interest rate and deterministic seasonals on
conditional variance. Each of these models results in statistically significant
agsymmetry in the conditional variance equation {i.e., g, is not equal to zero).

In Model 3, the risk-free rate is included as an explanatory variable in
the conditional variance equation in Model 2. Note that a; and g, both become
statistically significant, once the risk-free rate enters into the conditional
variance equation. However, the coefficient on the risk-free rate itself, b, is
not significant. And Table III, Panel B shows that excess skewness and kurtosis
remain quite severe after the risk-free rate is included.

In Mcdel 4, deterministic seasonals are added to Model 2. The test
statistic for the hypothesis that A;=1,=0 is 6.38. Under the null, this statistic
should be asymptotically distributed as a %3 random variable. Thus, we can reject
the hypothesis that A,=3,=0 at the five-percent level. There are three other
important characteristics of this model worth noting. First, with the inclusion
of deterministic seasonals, both g, and g, are statistically significant. Second,
this method of modeling seascnals in variance greatly reduces the excess kurtosais
in the residuals. Finally, note that the amount of persistence in the conditional
variance, as measured by the first-order autecregressive coefficient for h, is

much smaller than in any of the previocus models.
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Model 5 adds both the risk~free rate and deterministic seasonals to Model
2. A8 in Model 4, both g, and g, are significantly different from zero. Unlike
in Model 3, b,, the coefficient on the risk-free rate is significantly different
from zero. Note that the sgerial correlation in the estimated conditional
variances is much smaller than for the standard GARCH-M model, Model 1.

Table III, Panel B shows that the level of excess skewness and kurtotis
have been significantly reduced—although the null hypothesis of no excess
skewness or kurtotis can be rejected at the five-percent level. Model 5 is also
the first model that does not fail the Sign-Bias Test at the five-percent level.
In addition, it is the first model not to fail the joint teat of sign bias,
negative-size bias, and positive-size bias at the five-percent level. These
diagnostics suggest that Model 5 is the most satisfactory model consider thus
far.

Despite the success of Model S, it is still quite fragile. We attempted to
check the robustness of the specification by adding v,._,"* to the mean equation.
Even with great effort, we were not able to get the parameter estimates from that
model to converge. Models 6 and 7 show the effects of adding v, ,'? to Models 2

and 4, respectively. In neither case was the coefficient on v, ;'

statiastically
significant. Note alsc that the estimated coefficients in the conditional
variance equation are relatively close in all of these models.
We therefore come to the fellowing three conclusions from our examination
of the eight different GARCH-M specificationa.
(a) The relation between conditional mean and conditional wvariance is
negative, and statistically significant.
{b) The risk free rate contains information about future wvolatility, within

the Modified GARCH-M framework.

{c) The October and January seascnale in wveolatility are statistically
significant.
(d) Conditional volatility of the monthly excess return is not highly

persistent as reported in other studies.
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Becauge even the best of these models displays excess skewness and
kurtosis, we also estimated different EGARCH-M models. The estimates for Models
1-L to 7-L are shown in Table IV, Panels A and B. Models 1-L and 2-L are based
on the EGARCH-M model proposed by Nelson (1991). However, the results in these
models, using monthly data, are guite different from those found by Nelson. Note
that g,, the coefficient detecting asymmetry in the conditional wvariance equa-
tion, has a very small t-statistic. Table VI shows that both Madel 1-L and Model
2~-L display excess skewness and kurtosis, and that both fail the Sign-Bias Test.
Note also that the first-order serial correlation of the h's in both models is
quite low.

Unlike in the level models, the coefficient on g, remains insignificant,
regardless of which additional wvariables were included in the conditional
variance equation. As a result, we do not report these regressions. Instead, we
try to address the deficiencies in Model 1-L in Models 3-L, 4-L and 5-L by
including the effect of the risk-free interest rate and deterministic seasonals
on conditional wvariance. Note that each of these models, Models 3-L to 5-L,
impose the restriction that g,=0.

Model 3-L adds the risk-free rate to the conditional variance equation in
Model 1-L. Unlike in the Model 3, ccoefficient on the risk-free rate has a large
t-statistic, even without deterministic seasconals. However, excess skewness and
kurtosis are still a problem in this model. Note that there is no significant
sign bias in this model. In fact, none of the Engle-Ng tests show any evidence
of misspecification in this model.

Model 4-L adds deterministic seasonals to Model 1-L, using the same method
adopted for the level models. The test statistic for the hypothesis that A=A,=0
isg 7.66. Under the null, this statistic should be asymptotically distributed as
a %% random variable. Thus, we can reject the hypothesis that A,=%,=0 at the five-
percent level. Although the amount of excess kurtosis is much lower for Model 4-L
than for any of the previocus models, we can still reject the hypothesis of no
excess kurtosis at the five-percent level. Note also, that Mocdel 4-L appears to

have sign bias.
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Model 5-L adds both the risk-free interest rate and deterministic seasonales
to Model 1-L. The coefficients on all of those terms are statistically
significant. The test statistic for the hypothesis that A =1,=0 is 7.31, while
the test statistic for the hypothesis that A=i,=b,=0 is 15.53. Thue, we can
reject both hypotheses at the five-percent level. Tabkle VI shows that we cannot
reject the hypothesis that there is no excess kurtosis in the estimated residuals
from Model §-L. Model 5-L also shows no signs of sign bias, negative-size bias,
or peositive-size bias.

Since Model 5-L passed more of the diagnostic tests than any other model,
it is our preferred specification. However, we also estimated Model 6-L, by

2

adding v,_,'* to the conditional mean equation. The coefficient on v_,'> is not

statistically significant, and the results for the conditional variance equation
are qualitatively the same as for Model 5-1L. However, the diagnostic tests show
that model 6-L performs worse than Model 5-L in some important ways. Model 6-L
has a statistically significant amount of excess kurtosis, and it fails the Sign-
Bias Teat. This suggests there is little evidence of misspecification in Model
5-L, and that that model should be the preferred specification. Note also that
the first-order serial correlation of h, in Medel S-L is still relatively low:
0.338.%

Since the finding of low persistence of conditional wvariance is so
different from results reported in the 1literature (except for Campbell and
Hentschel 1951), it needs some explanation. One explanation can be seen by
comparing Model 7-L to Model 2-L. The two models use exactly the same data and
have exactly the same variables, but the parameter estimates from the two models
are very different. The difference in the estimates arises from the use of
different starting values for the parameters in the estimation procedure. That
is thia model has two local maxima, one of which is also the global maxima. Note
that the log-likelihood of Model 2-L, which corresponds to the global maximum,
is higher than that of Model 7-L.

Although it would seem logical to completely dismiss Model 7-L because it
is only a local maximum, the differences between Model 7-L and Model 2-L should

be noted, because it is much easier to get the EGARCH-M model to converge to the
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parameter estimatese shown for Model 7-L than to the ones shown for Model 2-L.
This suggests that without careful attention, researchers could report incorrect

results for EGARCH-M models in monthly data.

IV. Conclusion

There is a positive but insignificant relation between the conditional mean
and conditicnal wvolatility of the excess return on stocks when the standard
GARCH-M framework is used to model the stochastic velatility of stock returns.
In this paper we empirically show that the standard GARCH-M model is
misspecified. This misspecification arises from the fact that both positive and
negative unanticipated returns of the same magnitude are forced to have the same
impact on conditional variance in the standard GARCH-M model. When the model is
modified to allow positive and negative unanticipated returns to have different
impacts on the conditional wvariance, we find a negative relation between the
conditional mean and the conditional variance of the excess return on stocks.
This relation becomes stronger and statistically significant when conditional
variance is allowed have deterministic monthly seasonals and depend on the
nominally risk-free interest rate. Hence our results are consistent with the
negative relation between volatility and expected return reported in Fama and
Schwert (1977), Campbell (1987), Breen, Glcoaten and Jagannathan (1989), and
Harvey {1991). We show that our conclusions do not change when we use Nelson’'s
EGARCH-M model, which alsc allows feor such a possibility.

We also find that the time series properties of monthly excess returns are
substantially different from the reported properties of daily excess returns.

First, persistence of cenditional variance in excess returns is quite low in

monthly data. Second, positive and negative unexpected returns have vastly
different effects on future conditional variance. These results differ
substantially from previous results in the literature. We also show that

misspecifying the conditiconal variance equation can cause errors in analyzing the

relation between conditional variance and future expected return.
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Footnotes

To our knowledge, Backus and Gregory (1992) were the first to show, using
an equilibrium model, that the risk premium on the market portfolio of all assets
could be relatively lower during relatively riskier times.

’see Schwert {1989) for a careful and extensive documentation of the nature
of the comovement between conditional volatility of monthly stock returns and the

level and volatility of several interesting economic variables.

SFor example, Campbell and Hentschel (1991) and French, Schwert, and
Stambaugh (1987) concluded that the data are consistent with a positive relation
between conditional expected excess return and conditional variance, whereas Fama
and Schwert (1877); Campbell (1987); Pagan and Hong {1988); Breen, Glosten, and
Jagannathan (1989); Turner, Startz, and Nelson (1989); and Nelson (1991) found
a negative relation. Chan, Karoclyi and Stulz (1992) find no relation. Harvey
{1989) provides empirical evidence suggesting that there may be BsBome time
variation in the relation between risk and return. Since the Modified GARCH
mcedels we use allow us to parameterize the conditicnal variance more flexibly
than Harvey's model, our model may capture the relation between night return
without time variation.

‘For example, see Braun, Nelson and Sunier, using a bivariate E-GARCH model
find that the conditional mean of the industry portfolio returns to he highly
persistent. The differences between our results and those reported in the
literature could also be due to fact that the sample period studied are
different.

*A careful examination of the data in Lakonishok and Smidt {1988) suggests
that the monthly seascnal patterns in volatility is unlikely to be captured
adequately by treating months other than October and January as being similar.
However, our objective in this paper is limited to showing how to model seascnals
in a way different than what has been done in the literature. Characterizing the
nature of the monthly patterns in volatility is left as an exercise for the

future.
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‘For example, the following papers document deterministic temporal patterns
in conditional moments of stock returns. The relatively high average January
return was documented in Keim (1985). The relatively low variance during
nontrading hours was documented in French and Roll (1986)}. The relatively large
volatility of stock returns in October was documented in Lakonishok and Smidt
{1988). Seasonal patterns are present in returns to portfolios constructed using
futures contracts as well. For example, McCurdy and Morgan {1989} documented day
of the week effect in foreign currency futures.

™That frightening month is here again,” by Laurie Cohen, The Wall Street
Journal, October 6, 1992, page Cl, column 4.

It is not true however that increased future volatility is the cause of
lower returns today. Note also that this model assumes no contemporanecus

relation between R(r,} and Var, (R}.

%other researchers have also considered the use of nominal interest rates
in the law of motion for wvariance. For example, see Giovannini and Jorion
(1989}.

Ypotential negative values for the constructed ceonditional variances are
not the only possible reascn for using the log specification. It may also be true
that the log model simply models the true conditional variance better than the

level model. For more on this issue, see Engle and Ng (1991).

Since we use dummy variables which take the value of one or zero, it may
appear as though we may be viclating the differentiability assumptions underlying
the derivation of the robust standard errors. Note, however, that since the
durmy variables are multiplied by the corresponding squared innovations, the
differentiabkility conditions will be satisfied for the modified GARCH-M models
we consider. Although, the differentiability conditions will be violated for the
modified versions of Nelson's E-GARCH model we consider, this is unlikely to be
an issue gince points at which the differentiability assumptions are not
satisfied will occur with zero probability, and the numerical derivatives we

compute are always bounded.

?For more on generalized specification tests, see Newey (1985).
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"We also tested the robustness of our conclusions in two other ways.

First, we estimated Model 5-L with a sample ending in December 1986 to see

whether the October 1987 stock-market crash had an undue influence on our

estimates. Second, we estimated Model 5-L using equally-weighted returns. Both

sets of results were qualitatively similar to those for Model 5-L.
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TABLE I

SUMMARY STATISTICS FOR DATA RECORDED TN THE STANDARD PERIOD:

1851:4-1989:12

OTHER
QCT. JAN. MONTHS
NHumber of Obaervations 39 38 388

A: Continuously Compounded Monthly Return on the CRSP Value-Weighted Index of
Status on the NYSE

mean (x100) 0.25 1.77 0.91
std. dev. (x100) 6.16 5.18 3.80
skewness ~1.35% 0.21 -0.44
kurtosis 6.59 -0.41 0.64

B: Continuously Compounded Monthly Return on Treasury Bills from Ibbotson &
Associates

mean {x100) 0.46 0.43 0.43
std. dev. (x100) 0.286 0.22 0.26
skewness 0.83 0.66 0.96
kurtosis 0.54 -0.03 Q.90

C: x,; Excess of the Continuously Compounded Monthly Return on the CRSP Value~
Weighted Index of Status on the NYSE over that on Treasury Bills

mean {x100) -0.21 1.34 0.48
std. dev. (x100) 6.17 5.19 3.83
skewness -1.40 0.18 -0.48
kurtosis 6.70 -0.43 0.65

mean/variance 0.56 0.50 3.28




TABLE II

Temporal Relation Between Risk And Return On The CRSP Value-Weighted Index of Status

on The NYSE:
Model A

Campbell's Instrumental Variable Approach. Periocd: 1951:4-1989:12

Mean Equation x = ¢, + ¢, OCT, + ¢, JAN, + C, ry + €

Variance Eguation €2 = @&, + d, OCT, + d, JAN, + d; ry + {,

Coefficient

t-statistic

Model B

4, d, d, @ Cq ! Sy Sy
x10° x10° x10* x100 x100 x100

7.25 21.68 13.11 0.18 1.48 -0.63 0.86 -2.31

2.70 1.35 2.25 2.74 5.21 -0.56 1.01 -3.42

Restricted Mean x, = c, + fd, OCT, + pd, JAN, + fid; r, + €, Equation

Coefficient

t-statistic

Notes: 1.

x104 x10? x104 x100
8.25 9,23 4.19 0.15 1.44 -12.75 3.22 0.20

3.49 0.87 1.42 2.90 5.02 -2.43

X, is the differential between the continuously compounded monthly
return on the CRSP value weighted index of status on the NYSE and the
continuocusly compounded monthly return on treasury bills from Ibbotson
& Associates.

t-statistics were computed, allowing for conditional heteroskedasticity
and using the procedures in Hansen (1582). Although the t-statistics
decline at first with the number of lags used in computing the
covariance matrix, they stabilize after about 10 lags. The reported
t~statistics are for 20 lags.



TABLE ITI
PANEL A

Temporal Relation Between Risk And Return On The CRSP Value-Weighted Index of Status
on The NYSE, x,: Modified GARCH-M models. Period: 1951:4-1989:12

X, = a, + av,, + av,"” + e; € = (1 + 4,0CT + AJAN)y,
v,y = Var,(e) b, = Var, (%)
Iy=111if 5, > 0 and O otherwise
By = by + by, + bory 4 @it 4+ Gl Ty + Bl + Qe T
MODEL 1 MODEL 2 MODEL 3 MODEL 4  MODEL 5 MODEL 6 MODEL 7
a0 -0.453 1.064 1.850 1.071 1.854 5.730 7.782
(x100) [—0.575] [1.947] [4.232] [2.398] [4.419] [2.064] [2.289]
al 5.926 —2.843 —7.625 —3.165 -~8.019 16.893 30.349
[1.307] [—0.878] [—2.621] [—1.131] [—2.828] [1.163] [1.652]
b0 0.016 0.074 0.035 0.026 0.030 0.059 0.018
(x100) [2.058] {1.653] [1.595] [2.467] [2.477] [1.902) [3.295]
bl 0.842 0.483 0.334 0.769 0.506 0.623 0.848
[16.758] {1.572] [0.824] [8.801] [2.927] {2.830] [17.299]
b2 0.159 0.078
f1.433] [2.221]
gl 0.070 0.257 0.188 0.153 0.177 0.161 0.121
[2.541] [1.709] [2.109] [2.590] [2.268] [1.502] [2.734]
g2 —0.340 —0.248 -0.227 —0.252 —-0.267 —0.207
[—2.270] [—2.602] [—3.570] [—3.272] [—2.683] [—3.749]
Al 0.677 0.454 0.606
[3.638] [3.120] [3.600]
A2 0.269 1.254 0.306
[1.816] {1.795] [1.936]
a2 —1.983 -3.123
[—1.576] [—1.947]
Log Like  1248.202 1252.917 1266.288 1268.422 1276.518 1254.276 1271.824

Note: Robust t-statistics are in brackets.



TABLE III

PANEL B
Diagnostic Tests
Modell Model2 Model3 Model4 Model5 Model 6 Model 7

Skewness —.781 —.701 —.463 —.455 —.289 —.709 —.478
t-stat —6.855 —6.157 —4.065 —3.992 —2.532 —6.225 —-4.19%
Kurtosis 3.177 3.359 1.918 927 557 3.527 1.154
t-stat 13.880 14.675 8.380 4.052 2.431 15.408 5.040
Signif. Bias 745 .988 .776 .710 .429 .841 .673
t-stat 2.280 2.992 2.756 2.932 1.895 2.515 2.613
Neg. Size Bias .013 8.117 5.758 5.539 3.861 4.243 5.477
t-stat .0028 1.612 1.329 1.483 1.052 837 1.389
Pos. Size Bias —3.866 2.138 1.342 .015 —1.220 1.988 —.826
t-stat —.596 .345 .256 .0035 -.314 316 —.166
Joint Test 16.797 11.854 10.851 13.050 6.459 9.415 11.997
sign. level .0008 .0079 .013 .0045 .091 .024 .0074
AR(1) Coef. of de- .897 .494 .609 .265 374 677 .355

seasonalized
conditional variance

Note: See Section I1.C.2 for a description of the diagnostic tests.



PANEL A

TABLE IV

Temporal Relation Between Risk And Return On The CRSP Value-Weighted Index of Status on The NYSE, x;: Modified

EGARCH-M models.

_ 12
=g tay  +Tay," te

By = Var,_,(q)

Perod:

1651:4-198%:12

H,_, = log(hy_)

¢ = (1 + AOCT + AJAN)y,

I_y = 1ift 5, > 0 and 0 otherwise

V,_y = Var,_,(e)

H_ =by+bH_, + by, + 81(’1;—1’!"/}‘:—2) + 82(’?:—1""/":—2)1—1 + 83(71:-2""/}':-3)

+ g(n—of Vi3I,

a0
(x100)

al

(x100)
bl

b2

gl

g2

11

12

Log Like

1.195
[2.932)

—3.947
[—1.532]

—5.583
[—6.476)

0.133
[0.999)

—0.456
[—6.448]

1262.937

1.199
[2.290]

—4.022
[—1.537]

—5.567
[—6.472]

0.133
[0.992)

—0.427
[—3.595]

—0.052
[—0.274]

1262.274

Note: Robust t-statistics are in brackets.

1.604
[4.176]

- 6.387
{—2.483]

-5.728
[-5.719]

0.183
[1.271]

99.600
[3.624]

~0.383
[—5.193]

1272.081

1.097
[2.657]

—-3.486
[—1.305]

~5.035
[—4.513]

0.235
[1.386]

~(0.378
[—35.249]

0.426
[2.573]

0.318
[2.027]

1270.970

MODEL 1-L. MODEL 2-L. MODEL 3-L. MODEL 4-L MODEL 35-L

1.536
[4.158]

-6.119
[-2.426]

-5.102
[—4.390]

0.281
f1.701]

81.002
[3.127]

--0.338
[—4.811]

0.349
[2.392]

0.299
[2.035]

1279.081

MODEL 6-L

3.890
[1.231]

12.157
[0.707)

—1.366
[—0.9508]

—4.479
[—2.654]

0.321
[1.248]

--0.335
[—3.738]

0.451
[2.579]

0.346
[2.017]

1271.538

MODEL 7-L.

0.381
[0.471]

0.791
{0.1651]

—1.004
[1.671]

0.861
[9.010]

-0.269
[-3.077]

0.286
[2.352]

1255.802



PANEL B

Diagnostic Tests

TABLE IV

Model 1-L.  Model 2-L.  Model 3-L.  Model 4-L.  Model 5-L.  Model 6-1.  Model 7-L
Skewness ~—.484 —.491 ~.400 —-.416 —.337 —.436 —.874
t-stat —4.249 —4.306 --3.506 —3.654 —2.954 —3.825 —7.668
Kurtosis 1.372 1.409 1.095 .620 441 122 4.186
t-stat 5.995 6.157 4.786 2.710 1.925 3.153 18.287
Signif. Bias 555 ST 364 507 409 549 .682
t-stat 2.109 2.180 1.446 2.183 1.833 2311 1.913
Neg. Size Bias 4.111 3.794 3244 3.676 3.575 4.342 4 804
t-stat 1.004 919 816 1.018 1.011 1.192 905
Pos. Size Bias 7.469 8.257 3.054 5.982 3.449 4.910 —4.637
t-stat 1.535 1.693 660 1.409 .861 1.103 —.678
Joint Test 4.632 5.074 2.139 4.813 2.407 5.408 9.515
sign. level 201 .166 S44 186 333 144 023
AR{1) Coef. of de- 078 .089 .430 .062 335 102 .828

seasonalized

conditivnal variance

Note: See Section I1.C.2 for a description of the diagnostic tests.
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