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This paper describes how the unobservable index model of

Sargent and Sims [161 can be used to estimate the effects of the

unobservable indices on observables. The paper also shows how the

unobservable index model can be used to constrain the parameters

of a vector autoregression for the purpose of forecasting. These

methods are illustrated in the context of a two-unobservable index

model that was motivated by Lucas's model of business cycles.

This particular index model is designed to represent the natural

rate hypothesis, with one index being potentially interpretable as

"unexpected aggregate demand," while the second index is supposed

to represent purely neutral price fluctuations.

. Given an (nxl) vector stochastic process xt, a k unob-

servable index model is given by

k
(i.1) x = X.(L)f + u. , i = I, ... , nit l ij it it

where EUitujs = 0 for all t and s when j i; Euitfjs = 0 for all

t, s, i, j; Efjtfis = 0 for i * j and all s, t; Efitfit-s

EfJtfjt-s = 0 for t * s. That is, fjt, j = i, ... , k and uit , i =

1, ... , n are a set of mutually orthogonal stochastic processes,

with the fJt's being serially uncorrelated. The uit's are per-

mitted to be serially correlated. The Aij(L) are square summable

polynomials in the lag operator L. The xit's are observable while

the fjt and uit's are unobservable.

For k sufficiently small relative to n, equation (1.1)

restricts the covariances of the process xt, namely, C(T) = Ext

x * Via the Yule-Walker equations, the covariogram C(t) deter-

mines the pth order vector autoregression



(1.2) x t = A ( P x +
h= j  X t-h t

where Est Xt-h = 0 for h = 1, ... , p. One purpose of this paper

is to describe and to illustrate methods for imposing the con-

straints on (1.2) that are implied by the model (1.1). Motiva-

tions for wanting some source of prior restrictions to impose on

the vector autoregression (1.2) are described by Sims [20] and

Litterman.

The effects of index j on observable variable i,

Xij(L)fjt , are unobservable. However, given sufficient restric-

tions, the second moments (i.e., the cross covariogram) of

Xij(L)fjt with the entire xt process can be identified and esti-

mated, as can the covariogram of the Xij(L)fjt process. These

second moments contain all of the information that is needed to

construct the linear least squares estimator of Xij(L)fjt in the

space spanned by xt- s

^ m2
(1.3) E [x1i(L)fjt {x _s ] = Bs t-s

s=-mnl s=-m

Another goal of this paper is to describe procedures by which the

projection (1.3) can be calculated. We illustrate (1.3) by pre-

senting time series of Xij(L)fjt for a two-index model of the

aggregate time series, where one index is interpretable as repre-

senting purely neutral nominal disturbances.

When k > I, identifying restrictions mxust be imposed on

the (nxk) matrix of IXij(L)]'s in order to compute (1.3), although

(1.2) can be computed in the absence of such restrictions. Below

we shall appeal to the Geweke and Singleton characterization of

restrictions that are sufficient for our purposes.

I
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2. Identification and Estimation

We use the unobservable index model

or

(2.1) xt = A(L)ft + ut

where xt is an (nxl) vector stochastic process, {A } is a square

summable sequence of (nxk) matrics, ft is a (kxl) vector of unob-

servable indexes, and ut is an (nxl) vector of disturbances. The

spectral density matrix of ut is assumed diagonal. The spectral

density matrix of ft is the identity matrix. It is assumed that

Eftut- s = 0 for all t and s, and that both ft and ut are second-

order stationary stochastic processes.

For representing aspects of business cycles, we are

interested in a two-index model of the restricted form

All ( L )  0 flt ult
(2.2) x I kL) 0 +

) xt (L) 22(L) f2t u2t

where All(L) is (rxl), A22 (L) is (n-r) x i, and A2 1(L) is (n-r) x

i in dimension. In (2.2),

xt = YtQt

where Yt is an r x 1 vector of real economic variables, and t is

an (n-r) x I vector of nominal variables. Note the (n-r) x 1

vector of zeroes in the upper-right corner of A(L), which gen-

erally give additional restrictions on the covariance structure of



the xt process beyond those contained in the two-index hypothesis.

The zero restrictions contained in (2.2) are designed to represent

a version of the natural rate hypothesis: the second index f2t

impinges on nominal magnitudes, but not on real magnitudes. In

Appendix C, we motivate and qualify the sense in which (2.1)

represents the natural rate hypothesis.

Expressing (2.1) in terms of the restrictions that it

places on cross-spectral density matrices gives

(2.3) Sx (w) = A(w)Sf(w)A(w)' + Su(w), wE[-w, l

where Sx (w) is the nxn cross-spectral density matrix of x, A(w)

the Fourier transform of the sequence {Aj}, Sf(w) is the (kxk)

spectral density matrix of ft, and Su(w) is the diagonal cross-

spectral density matrix of utl/ Here the prime denotes transpo-

sition and complex conjugation. Equation (2.3) is an analogue in

the frequency domain of the ordinary factor analysis model.

A. Identification

There are n(n+l)/2 parameters in Sx(w), nk parameters in

A(w), and n parameters in Su(w). If n(n+l)/2 > nk + n, or equiva-

lently, if n/2 - 1/2 > k, there are fewer parameters in A(w) and

Su(w) than there are parameters in Sx (w) which we would like to

match. If n is large relative to k, the model places restrictions

on S (w).

There are two types of unobservable index models, which

differ with regard to whether they leave A(w) an unrestricted nxk

matrix, or impose linear restrictions on the elements of A(w) as

in the example of equation (2.2) In an exploratory unobservable
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index model, A(w) is left unrestricted. In a confirmatory unob-

servable index model, linear restrictions, typically zero-one

exclusion restrictions, are imposed on elements of A(w). By

imposing more restrictions, confirmatory models permit more as-

pects of A(w) to be identified and estimated.

Without a priori restrictions on A(w) and Sf(w), the

individual elements of A(w) and Sf(w) are not identifiable for k )

2, although A(w)Sf(w)A(w)' and Su(w) are identified even without

any such restrictions 2 For taking M(w) to be any (kxk) non-

singular, complex-valued matrix, define the new Ofactor loadings"
A*(w) = A(w)M(w)-' and define the new spectral density S*(w)=

M(w)Sf(w)M(w)'. Then notice that if (2.3) is satisfied origi-

nally, it remains satisfied when we replace A(w) by A*(w) and

Sf(w) by S(vw). Without some a priori information, any nonsingu-

lar matrix M(w) defines an admissible transformation or "rotation"

of a given initial solution of i.3). The elements of A(w) and

Sf(w) are said to be identified if enough a priori information is

imposed to make choosing M(w) equal to the (kxk) identity matrix

the only admissible transformation. Heuristically, since M(w) is

a (kxk) matrix, k2 a priori restrictions are necessary to identify

the model. If we impose that Sf(w) = S*(w) = I, this implies that

M(w)M(w)' = I, supplying k(k+1)/2 restrictions on admissible

transformation matrices M(w). Further, suppose that we require

that the jth column of A(w) (or any A*(w) obtained from A(w) by

postmultiplying by an admissible M(w) -1 ) have (k-j) zeroes for J =

1, 2, ... , k. This leads to a set of equations of the form

fAhi)w) wik = 0
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for the elements of A(w)hk set to zero a priori. These equations

supply an additional k(k-1)/2 restrictions on M(w). This means

that the restrictions on Sf(w) and A(w) comprise a total of k2 =

k(k+l)/2 + k(k-l)/2 restrictions on admissible M(w) matrices.

These restrictions are, in general, necessary (though not suffi-

cient) to imply that A*(w)A*(w) - 1 = A*(w)A*(w) - I , or equivalently,

that M(w)-lM(w) = I. However, for a complex matrix, M(w)-lM(w) =

I does not imply that M(w) = I. Therefore, to identify A(w) once

A(w)A(w)' has been identified, k additional normalization on M(w) ,
A

are required so that M(w)-lM(w) = I implies that M(w) = I. For

example, Geweke and Singleton 17] impose the condition that one

row of A(w) be real. With this or an equivalent normalization,

A(w) is identified. If more zero restrictions than described above

are available, the model becomes overidentified.

The preceeding "order conditions" for identification are

necessary, but not sufficient, for the model with orthogonal

factors to be identified. For a statement and proof of a set of

sufficient conditions, see Geweke and Singleton ['T.

In our model (2.2) with Sf(w) = I, the second column of

A(w) has r zeroes, where r is the dimension of yt, i.e., the

number of real variables in the system. So for r > I, the model

is identified according to the preceding counting rules. For the

model (2.2), Geweke and Singleton's sufficient condition requires

that the rank of the (rxl) matrix All(w) = A1 1 j ei equals

one. This condition is evidently satisfied so long as r > 1. If

r > 2, the model with orthogonal indexes is overidentified.



-7-

B. Estimating the Confirmatory Model

To estimate a confirmatory model, an unobservable k-

index model is first estimated with no prior constraints placed on

A or Sf. This is the "exploratory dynamic factor analysis" model

in Geweke's terminology. In the course of estimating the uncon-

strained k-index model, the following normalizations are arbi-

trarily imposed in order to determine versions of A and Sf: (i)

the spectral density of ft, Sf(w), is set equal to the identity

matrix, supplying k(k+l)/2 constraints; (ii) the matrix

A' (w)Sj(w)A(w) is required to be diagonal, supplying an addi-

tional k(k-l)/2 constraints required to determine A(w)A(w)'.

These are the usual arbitrary restrictions used in estimating the

unconstrained model (see Lawley and Maxwell [9, pages 7-8 and

Chapter 41 for the details).

These estimates from the unconstrained or exploratory

model are used to construct starting values for estimating the

constrained or "confirmatory" model. Given the estimate A(w) from

the exploratory model, one constructs a k x k unitary matrix U(w)

which defines a new set of loadings A*(w) = A(w)U(w) which have

zero elements where the theory indicates they should be. Geweke

and Singleton [71 construct U(w) by using the factor rotation

scheme of Lawley and Maxwell [9, pages 79-841, appropriately

modified to account for the fact that A(w) and U(w) are matrices

of complex variables in the present case. As mentioned above, the

zero identifying restrictions described above are sufficient to

restrict the set of matrices M(w) defining admissible transforma-

tions to satisfy M(w)M(w)- 1 = I; but since M(w) is complex, this

I
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does not imply that M(w) = I. An additional k normalizations are

required to restrict the admissible transformation matrix M(w) to

equal I. Geweke and Singleton impose the condition that one row

of A(w) be real. For example, where the last row of A*(w) is to

be normalized, this is accomplished by taking A*(w) = A(w)U(w) and

postmultiplying by the diagonal (kxk) matrix

/ni

n"A: .0. 0 \
S n2

nkIA*0I

The initial estimates of the factor loadings from which to start

the constrained optimization are then A**(w) = A(w)U(w)A(w). From

here on, estimation of the confirmatory model proceeds by using a

hill-climbing procedure to maximize (2.8) given below.

C. Estimating Exploratory and Confirmatory Models

The model is estimated using the following procedures,

which are described in more detail in Geweke [61, Geweke and

Singleton [71, and Sargent and Sims [161. First, the original

data are regressed on a constant, seasonal dummies, and a linear

trend. The residuals from these regressions are then treated as

the basic observations, which are to be modeled as linearly inde-

terministic time series. These observations constitute the compo-

nents of the vector xt, in terms of which the model to be esti-

mated is
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(2.4) xt = A(L)ft + ut ,

or in terms of spectral density matrices

(2.5) Sx(w) = A(w)A(v)' + Su(w).

The first step in estimation is to quasi-difference the data to

form a set of filtered series xt defined by

(2.6) xa = D(L)xt t

where D(L) = D - DL - D2L2 , and where DO = I and D1 and D2 are

diagonal matrices whose components are determined from univariate

second-order autoregressions for each component of xt. So xt con-

sists of residuals of xt from second-order univariate autoregres-

sions. The purpose of filtering xt in this way is approximately

to flatten the spectral density matrix of xt , which is necessary

for reliable estimation. Operating on (2.4) with D(L) gives

xa = D(L)A(L)f t + D(L)u t.

The theoretical spectral density matrix of x t under the k-index

hypothesis is

S (w) = D(v)A(w)A(w)'D(w)' + D(w)Su(w)D(w)'
x

2
where D(w) = r D e - i  is the Fourier transform of the D se-

J=0

quence, and where the prime again denotes transposition and corm-

plex conjugation. The model is parameterlzed as

(2.7) S (v) = A (w)A ()' + S (W)
a a a a

x u
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where it is understood that Aa(w) is the Fourier transform of

D(L)A(L) and Sua() is the spectral density of D(L)ut. In saying

that the model is parameterized as (2.7), we intend to indicate

that it is the parameters of Aa(w) and Sua(W) themselves that are

free at each frequency. Once the parameters of Aa(w) and Sua(w)

have been estimated, A(w) and Su(v) are estimated from the inverse

relationships

A(w) = D(w)- 1 a( w)

Su ( w ) = D(w)- 1 S a(W)D(w)-1

where estimated quantities are substituted in the right-hand sides

of these equations.

Estimation proceeds by first calculating the Fourier

transform of xt for t = 1, ... , T,

T- a iv (t-l)
xa (wj) T xte

t=0

where [s] means the greatest integer less than or equal to s. For

the purposes of calculating test statistics and coherences (though

not for purposes of projection and prediction), the cross-spectral

density matrix of xa in a given frequency band is estimated as a

simple average across m frequencies of the cross-periodogram

ordinates

S. (vk) = k x(w )x ()
x j
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where the prime denotes conjugation and transposition, and where

Jk indexes the frequencies included in the band centered at wk.

At the band in question, the free parameters in Aa(wk) and Sua(Wk)

are chosen by minimizing the criterion

(2.8) C(vk) = InlAa(wk)Aa(Wk)'+Sua(wk)I

+ tr[S (wk) (Aa(Wk)Aa(Wk)'+S (wk))-1,ak akak a k
x u

which is equivalent with maximizing the likelihood function, as

Lawley and Maxwell [91 and Geweke [61 note. In computing test

statistics and coherences, the model is estimated across a number

of nonoverlapping bands of frequencies.

For forming projections of A(L)ft on observables and

also for estimating vector autoregressions, a tent-like moving

average is used to estimate the spectral density matrix Sxa(w) at

overlapping bands that may be larger in number than the nonover-

lapping bands used for hypothesis testing and computing coher-

ences. This procedure sacrifices the asymptotic independence of

estimated spectral statistics at different bands in exchange for a

finer resolution of the spectral densities that is useful in

prediction. The precise nature of the tent moving average is

described in Section 7 below.

3. Measures of Fit

Under the specification of orthogonal factors with Sy(w)

= I, (3.2) becomes

Sx(w) = A(v)A(w)' + S (w).
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The (i,h)th element of A(w)A(w)' is given by

k
[A(w)A(w)'], I Ai(w)J(w)

ih 1ij hj

where the bar denotes complex conjugation. The term Aijhj is the

part of [S,(w)lih, the cross spectrum between variables i and h,

that is accounted for by their common dependence on the jth index.

It is useful to calculate the coherence

x ii

which is the proportion of variance in the ith variable that is

explained by the jth index at frequency w. The proportion of the

variance at frequency w in the ith variable that is explained by

all k indexes is simply

k
(A(w)A(w)'i i .. 1 Aij 2

x ii x ii

We obtain a measure of the percentage of the variance in x i over

all frequencies accounted for by the jth index by taking

,x ii

Similarly, we obtain a measure of the percentage of the variance

in xi over all frequencies accounted for by all k indexes by

w =1
wSx ii
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4. Projecting Unobservables on Observables

Although the indexes fbt, b = 1, ... , k are unobserv-

able, we are able to estimate the cross-second-moment matrices

between Ab(L)fbt and xt, where Ab(L) is the bth column of A(L) so

that Ab(L)fbt is the vector of "cumulative effects of the bth

index on xt at time t." These moment matrices can be used to form

estimates of the projections of components of Ab(L)fbt on past,

present, and maybe future values of the observable variables xt

For example, consider the projection equation

m b b
h(L)fbt = B'xtj +

where the Bb are (nxn) matrices and (b is an (nxl) vector of least

squares residuals that satisfy the orthogonality conditions
m b

E b x t'  = 0 for s = 0, I,..., m. The random vector Bb~ is
t t-s t + Jt

the estimator of Ab(L)fbt which, among estimators in the linear

space spanned by {xt,xt-1,...,xtm} , is closest to Ab(L)fbt in the
m b

mean square norm. We can construct an estimate IB x of
J=O J t- OJ

Ab(L)fbt by using the estimates of Sx(w) and A(w)A(v)'. The idea

is simply that Su(w) and A(w)A(w)' contain all of the information

about the covariances required to construct the projection

m b
SBx x . This will permit us to calculate actual time series

j =0
that estimate, for example, "the cumulative effect of the index

unexpected aggregate demand on variable xit at time t." The

details of the projection calculation are relegated to Appendix

A. Section . below describes time series of estimates Ab(L)fbt.
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5. Using the Unobservable Index Model to Forecast

The k-index model restricts the dimensionality of the

parameter space used to model an n-variable covariance stationary

vector stochastic process. As such, the model can be viewed as a

device for estimating vector autoregressions via parameterizations

that are parsimonious, but that still permit substantial dynamic

interactions among variables /  In Section , we report the

results of using a two-index "exploratory" model to form vector

autoregressions which are used to forecast outside the sample

period over which they were estimated. The procedure we use was

initially suggested by Sargent and Sims [16, page 631. Here we

fill in a few details not explicitly described by Sargent and Sims

[161.

It is possible to construct vector autoregressions from

unobservable index models in two ways which are asymptotically

equivalent under the appropriate limiting procedures, but which

give different results in small samples. The procedures differ in

how one "recolors," that is, moves from representations for the

filtered variables xa to those for the unfiltered data xt. The

first procedure, which might be termed "recoloring in the fre-

quency domain," works as follows. First, by maximum likelihood,

we estimate the cross-spectral density matrix of xt under the k-

index hypothesis as

x u

L
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where "hats" denote maximum likelihood estimates, and Sk (w) is
x

the maximum likelihood estimate of Sxa(Wk) under the k-unobserv-

able-index hypothesis l /  The estimates ka(wj) are obtained by
x

using maximum likelihood to estimate Aa ( w j ) and Sua(wj) from

Sxa(W) formed from averages averaging over the periodogram ordi-

nates at a number of overlapping bands centered at frequencies wJ,

using a tent-like moving average, as described in Section 2 and in

more detail in Section below. Next, we obtain an estimate of

the spectral density matrix of the unfiltered data under the k-

unobservable-index hypothesis from

S (w ) = D(wv)-Is )D(w )-'
x

where D(w) is the Fourier transform of the estimated diagonal

matrix of filters D(L), and the prime denotes transposition and

complex conjugation. Letting Cx , x 
( ) = Ex t x '  , we then estimate

the matrix cross covariogram of the x process from the inversion

formula

k  (T) - Sk e()e+ Tdw
x,x 2. x

^k .WTor Ckx(t) = D(w) -1[A(W) A(w)'+S (w) ]D(w) le dw

These estimates of Ex tx' = Cx,x(T) are then used to compute the

coefficients in the th-order vector autoregression for xt

(5.1) xt = kAx + .
J=1
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The A 's are computed by substituting C ,x ( ) for the population

Cx ,x() in the population orthogonality conditions (or Yule-Walker

equat ions ) 3

mk

(5.2) C (s) = A.C (s-J) s = , 2, ... , m.
xx J xx

j=j1

The estimates of the Ak's are then used to generate forecasts of

xt+ I, xt+2, ... , given (xt,xt-,...}, by using the chain rule of

forecasting if/ Once the forecasts of future x 's are generated,

the deterministic parts, i.e., constant, trend, and seasonal dummy

terms are added in to form forecasts of the original data.

The alternative method of forming the vector autore-

gression, which could be termed "recoloring in the time domain,"

proceeds as follows. From the spectral density of xt estimated

under the k-index hypothesis, ka(), we use the inversion formula
a a'

to obtain an estimate of the cross covariogram Extxt =

Cxa'xa(T),

X X -w X

or

(5.3) a at( T ) =  f [A(W)A(w)'+s a()e+iV dw.

xx -u

Next, we use these estimates of Cxaxa(r) to calculate the pth_
a a

order vector autoregression for xt ,

(5.4) xa Akxa + t

where the ea's satisfy the orthogonality conditions Ex4J a, = a,

J = 1, ... , p. The F 's are calculated from the normal equations-4
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Ca (s) = FC (s-), = 1, ... , p,
xx j=1 xx

where the Cxaa(r)'s are estimated subject to the k-index model
x ax

from (5.3). To obtain the implied vector autoregression for xt ,

we write (5.4) as

(k-L-xa ea

where (L) = I - - .. -FkL . Then substituting x t
P

D(L)xt into the above equation gives

Fk(L)D(L)x = s

or

(5.5) A(L)x = st

where

A P Ak

(5.6) A = F.D , s = , ... , p + 2,
s j=O0j s-j

and where t's and D 's not previously defined (for example,
J J

corresponding to negative subscripts) are defined as zero. It is

an implication of (5.6) that A 0 = I. Once the A 's have been
S

formed, the rest of the forecasting procedure is as described

above for the "frequency domain recoloring procedure."

For systems estimated over a small number of frequency

bands, our preference is for the procedure that recolors in the

time domain. The reason is that with a small number of bands, the

frequency domain procedure gives a crude approximation to the

spectral density matrix of an autoregressive process. We have

found that when only a small number of bands are used with the
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frequency domain recoloring procedure, forecasts are generated

that exhibit high first-order serial correlation of residuals,

even within the estimation period, indicating that the model is

not even accounting for the low-order, own-serial correlation of

each series. This problem can be avoided either by using the time

domain recoloring procedure, or by retaining frequency domain

recoloring but increasing the number of bands over which the model

is estimated, or perhaps by interpolating to generate more points

in S (v) before inverse Fourier transforming to obtain Cxx(s).

Having obtained estimates of the Aj's in (6.5), we can

obtain a vector moving average for xt of the form

t ZCj=O

where Cj is an (nxn) matrix and {( t l is the (nxl) vector of inno-

vations in the xt process. The C 's are related to the Aj's by

-iv -irm)-1 -ivj(5.T) (I-Ale -...- Ae i) = Ce - C(w).
J=m

The Cj's can be obtained either by inverse Fourier transforming

C(w), or else by recursively solving the difference equations

(5.5) in response to inputs st that are identically zero except

for s t being a unit vector at time 0. Such vector moving average

representations from unconstrained vector autoregressions are used

by Sims 1201 as a vehicle for making some economic interpreta-

tions. Below we present the vector moving average representation

for one of our index models.

i



- 19 -

Appendix A

Projecting Unobservables on Observables

In this appendix we describe how we calculate the pro-

jection of Ab(L)fbt on {xtxt-1,...,Xtm}. That is, we describe

how we calculate the B j's in the projection equations

j=O

where

Ext gt = 0 for j = 0, ... , m.t-j

By estimating model (3.1), and identifying Ab(w) for b =

1, ... , k, we recover an estimate of the cross spectrum between xt

and Ab(L)fbt. In particular,

x,Abb() = Ab(w)Ab(w)'

- C (T)e

where Cx,Abfb(T) = Ext * (A(L)fbtT)'. By computing the inverse

Fourier transform of the nxn matrix Ab(w)Ab(w)', we can recover

the (nxn) matrix cross covariogram Cx,Abfb ( '):

-l-J A~j)b(v)Yeidw.

Cx,Abfb(T) = ()b()'e w.

The spectral matrix of the (nxl) vector process Ab(L)fbt is given

by

SAbf,Af(w) = Ab(W)Ab(W) '.
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It follows that the spectral matrix of the (nxl) vector process

Ab(L)fbt equals the cross-spectral matrix between xt and Ab(L)fbt.

It also follows that the matrix covariogram of the process

Ab(L)fbt equals the matrix cross covariogram between xt and

Ab(L) fbt*

For example, let

/ X
/ i=-()2

Ab(L) = / 2Li
i-o

%k%

\\
5\4

Then the matrix Cx Abfb () = CAbfbAbfb(T) is
b b(T b bfb(T

given by

li 2 t+i 2 2ilt+i i nni2T+ii=- = ==-

e

"0 t

X linT+i 2i n .h nini /

Notice that this matrix is not symmetric, unless T = 0.

The cross-spectral matrix of xt with A(L)ft equals the

spectral matrix of A(L)ft with itself and is given by

SxAf = SAf Af = A(w)A(w)'

k
= Ajw)b(w)'

b=l

"
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The cross covariogram between xt and A(L)ft can be obtained by

inverse Fourier transforming A(w)A(w)', or by simply summing over

b the cross covariogram of xt with Ab(L)fbt:

Cx,Af ( ) = i A(w)A(w)'e+idv

k

b=l XAb fb

where

Cx,Af(r) = Ext * (A(L)ft-)'.

Further, the spectral density matrix of xt, as constrained by the

model, is given by A(w)A(w)' + Su(w). By inverse Fourier trans-

forming this, we estimate Cx,(T) = Extx'xx t t-T

The estimates of the cross covariograms Cx,x(t) and

Cx,Abfb(r) can be used to estimate the projection of Ab(L)fbt on

xt .  For example, we can project the (nxl) process Ab(L)fbt on

current and m lagged x' s,

(A.1) A(L)fbt = x + b
bt J=O J t

b b
where the Bb are (nxn) matrices and E is an (nxl) vector of least

squares residuals that satisfy the orthogonality conditions

Ebx't-s = 0 for s = 0, ... , m. Postmultiplying (A.1) by x' and

taking expectations gives the least squares normal equations

E(A ( L ) fb t ) x '  = B Ex x'bt t-s = j t-J t-s

or

C (s) = BC (s-j), s = 0, ... , m.
Abfb~x 0j X,X
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Noting that CAbfbx()' = C, Ab b(-s) and transposing both sides,

we obtain

m

C (-s) = C (s-J)'Bb', s o, ... , m.xAfb j=O xx j

Notice that Cx  (r' = Ext x' = C (-.T), so we can writex,x t-t t xx

C (-s) = C (j-s)Bb'
x,'bfb j=O xx

Stacking the above equations for s = 0,

s = 0, ... , m.

... , m gives

C (0) C () C (1) ... C (m) b
x,Abfb xx Xxx

C (-1) C (-1) C (0) ... C (m-) B
x,= xx xx xx1

(A.2) *
* *

* *1

C (-m) C (-m)C (-m+l) ... C (0) Bb

x Lfbxx xxxx m

Assuming that the n(m+l) x n(m+l) matrix on the right is of full

rank, the normal equations (A.2) uniquely determine the Bb's, J =

0, ... , m.

Consider the ith element of equation (A.1),

m
A (L)f = 1 B  x +b

,b bti = ij t-j +itj=0

where Ai,b(L) is the i t h row of Ab(L) and B is the ith row

of Bb. Squaring this equation and taking expected values gives

M b m b' b2
E(A. (L)f ) = B Ex x B + E

ib bt B j  E -j t-s Bis it
j=o s=o

or

(A.3) E(A (L)f t )
2 = B m xx (s-)B +

i t S- 0  s-it.

J=0 s=OBi
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Substituting from (A.2), we can

terms as

ib b b .1 ,0B 1,l' 1,m

write the double sum in matrix

cx (0)  Cxx(1)... C xx(0) C(1) ...xx xx xx xx

I /c ( X1) C (0).. c (1) C(0)

1S1 L ___I

cC (0)

f

S (-nm)A X,%f ' ith columnt_

or

B ,1.b .Bb ,f

W e e s t i m a t e E ( l i b ( L ) f t ) 2  f r o m t

diagonal element of Ab(w)Ab(w)',

Cx

x,A bf b (O )

Cx,A b (-1)

ICI

, Abb(-m ith column.

the Fourier transform of the ith

E(A (L)ft )2 bEl~ = b [A(w)Ab()' Jiidw.
-wC

The variance decomposition (A.3) allows us to compute the percent-

age of the variance in the effect of the bth index on the ith

variable xit, that is explained by {x t , ... ,xt m}.

By. summing equation (A.1) over b, we obtain the projec-

tion of A(L)ft on xt-j, J = 0, ... , m:

-I



k
A(L)ft= (L)fbt

b=1t

m k k
= j ( B xtj +

j=O b=1 bb=1

m

where = and B = , and (t by construction satisfiest b=1 b=1,

the least squares orthogonality conditions Etx = 0, = 0,

.. , m.
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Appendix B

Here we describe the methods used to generate the fore-

casts, the Theil U statistics for which are reported in Section

8. Let xit be the original data for the series listed in Table

1. The following steps were employed:

1. Deterministic components are removed from each xit

by regressing on a constant trend and the seasonal dummies over

the period 19481-197111. The residuals from those regressions are

taken as the series xit. Next, each xit is regressed on two

lagged values to create estimates of the diagonal matrix of fil-

ters D(L). The filtered data x" = Di(L)xit are formed.

2. The finite Fourier transform of the xat, call it

ra(x ) , is calculated for wj = 2 J/T, j = 0, 1, ... , T/2. To use

the fast Fourier transform, the xat's are filled out with zeroes
it

to create a series of length 128, so that T = 128. The x i (w ) ' s

are used to generate the cross periodogram.

3. The cross periodogram is smoothed to produce an

estimate of the cross-spectral density matrix at frequencies

centered at each of m bands. A "tent" filter is used, which is 29

frequencies (wJ's) wide. The center of the tent is 1 1/2 times

the height at the ends. The first band is always centered at zero

angular frequency, the last at w.

4. A two-index exploratory model is estimated by maxi-

mum likelihood at each of the frequencies for the x . That is,

we estimate

Ska j a j a j)' + S a(j)xu



- 26 -

a is calculated from the
5. The matrix covariogram of xa

inversion formula

^k A +iWT
a r(T) I [Aa(w)Aa()'+S a(w)]e dw.

aa a a

xx -w u

These estimates of the covariogram are used in the least squares

normal equations

C (s)- F FC (s-j), s = , ... p
a a J--i a aS

xx =1 xx

to estimate the coefficient of a pth-order autoregression

for xt .

6. An autoregressive representation for xt is formed,

as described in the text, from

A(L) = Fk(L)D(L)

S P+ 2  
k

where A(L) = AkL j , and Ak is the matrix of coefficients on the
j=0

jth lag of x t in the matrix autoregressive representation of xt .

7. The chain rule of forecasting is used to form the

forecast E[xs+j xs,xs-1,...,Xs-p-21 for s = 1971II, 1971III,

1971IV, and 19721, and for j = I, ... , 8.

8. Given the predicted xit's, the deterministic compo-

nents are added back in to form forecasts of the original xit.

These forecasts are used together with actual outcomes to produce

sets of forecast errors for forecasts made in 1971II, 1971III,

1971IV, and 1972I. Notice that the model is not reestimated every

quarter (to save money).

9. The model is reestimated every year. Data from an

additional year is added, and all of steps 1 through 8 are re-



- 27 -

peated. After the forecasts and forecast errors are computed,

another year of data is added and steps 1 through 8 are repeated

again. This continues through data for 1975II, when the last

reestimation occurs. The last forecast was made in 1976I. Notice

that since data through only 1976IV were used in this study,

forecast errors were not calculated for the longer horizons for

the last few dates on which forecasts were made. This accounts

for why the Theil U statistics are based on fewer observations for

the longer horizons.

The univariate autoregressions used as benchmarks were

fourth order, each included a constant term. These autoregres-

sions were reestimated at the same dates that the index models

were reestimated.

The Theil U statistics reported in Section 8 were ob-

tained from a system with a number of frequency bands between 0

and Tr,, equal to 8, and with the order of the autoregression p

equal to 9.
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Appendix C

Index Models with Neutral Price Variations

We focus on a class of models in which the behavior of

private economic agents makes the force "nominal aggregate demand"

impinge on real quantities and nominal prices in ways sufficiently

different that it requires two distinct indexes to account for the

effects of nominal aggregate demand. In particular, we want to

admit the possibility that agents respond differently to expected

and to unexpected movements in nominal aggregate demand.

A statistical model that admits this possibility can be

written

A A

yt = a(L)(nt-nt) + b(L)nt + Ut

(c.1)

Pt = c(L)(nt-nt) + d(L)nt + Upt"

Here Yt is an (rxl) vector of real aggregate economic variables,

and pt is an (hxl) vector of nominal economic variables, such as

nominal prices; a, b, c, and d are vectors of polynomials in the

lag operator L, each being square summable and one-sided in non-

negative powers of L. The (rxl) vector uyt and the (hxl) vector

Upt consist of random variables whose variances are small relative

to the variances of the left-hand-side variables to which they

correspond. Thus, (C.1) is asserted to "fit well." Below, the

ut's will be required to satisfy some additional conditions which

we must impose to proceed with estimation. In (C.1), nt is "nomi-

nal aggregate demand" and nt is the level of nominal aggregate

demand that the public had expected to prevail as of some date
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possibly, but not necessarily, earlier than t. Equation (C.1)

permits unexpected movements in demand to affect prices and quan-

tities differently than expected movements in demand.

A special case of the model occurs when the distinction

between expected and unexpected aggregate demand makes no differ-

ence, so that a(L) = b(L) and c(L) = d(L). Here the idea is that

agents respond to unexpected components in aggregate demand in the

same way that they respond to expected components. In this case,

(C0.1) collapses to the one-index model

yt = a(L)nt + Lyt

pt = c(L)nt + Upt.

This model permits nominal aggregate demand to influence yt and pt

differently to the extent that this difference can be captured by

the different polynomials a(L) and c(L).

A second case in which (C.i) collapses to a one-index

model is the case in which nt = nt , or more generally, when the
w

variance of nt - nt is sufficiently small that little goodness of

fit is lost by lumping the terms in (nt-nt ) with the disturbance

ut. This is another way of representing the notion that the

distinction between unexpected and expected aggregate demand is

unimportant, in this particular case because agents presumably

have full enough information sets and short enough information

lags to prevent large squared forecasting errors on average.

A third case in which (C.1) collapses to a one-index

model is one in which expected aggregate demand nt is a function

only of lagged values of nt, say
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nt = f(L)n

where f(L) = ~ f Lj . In this case, (C.1) can be written in the
=1

one-index form

yt = {a(L)(I-f(L))+b(L)f(L)}nt+ uyt

pt = {c(L)(I-f(L))+d(L)f(L)}nt + upt

This case is of practical importance, especially if nominal aggre-

gate demand is thought to be observable to private agents with a

short lag, thereby making it likely that nt = f(L)n t provides a

good approximation in the mean squared error sense to the actual

law by which nt is formed.

We assume that none of these degenerate cases obtains,

and that it requires two indexes to account for the covariation of

yt and Pt and to fit well. To avoid the last-mentioned degener-

acy, we follow Lucas and posit that nominal aggregate demand {nt)

is unobservable to agents: agents don't even see lagged values of

nt. At time t, agents have observations on a set of variables

Gt. Agents are assumed to form their expectation of nt according

to

(C.2) nt h=0 t

where {h} is a vector of distributed lag weights. At this point,

we have imposed no restrictions on the expectation generating

process (C.2) except to require that its outcome nt cannot be well

approximated by a process lying in the space spanned by past

nt' s. In particular, we have not imposed that expectations be
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"rational," as we could be requiring that nt be the projection of

nt on the space spanned by {(1,t-isl, .}.

A version of (C.1) which represents the "natural rate"

or "neutrality" hypothesis is one in which b(L) = 0 and d(L) *

0. Here the model becomes

Yt = a(L)(nt-nt) +Uyt

(c.3)

Pt= c(L)(nt-nt) + d(L)nt + Upt"

We' intend that d(L)n t account for a substantial proportion of the

variance of pt. The force of (C.3) is that expected changes in

aggregate demand leave real quantities unaltered, but do affect

nominal quantities. In effect, (C.3) asserts that a one-index

model is adequate to account for most of the covariation of real

quantities, but that a two-index model is required when two or

more nominal variables are added to the system.

If the information set St in (C.2) includes current

and/or lagged observations on (yt,Pt), then substituting (C.2)

into (C.1) or (C.3) gives rise to a mixed observable index, unob-

servable index model. An unobservable index arises from the fact

that nt itself is not directly observed either by private agents

or the econometrician, making nt - nt unobservable. An observable

index emerges if current and/or lagged (yt,Pt)'s are important

components of Ot in (C.2), making nt observable. While the mixed

observable-unobservable index model is probably the most faithful

statistical representation of the theoretical ideas described

above, practical methods are not presently available for estimat-
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ing such models with large dimension. For this reason, we shall

somewhat compromise the theoretical ideas by fitting unobservable

index models. As aruged by Sargent and Sims [16], this will do

little harm to the extent that the index model fits the data well.

To begin preparing the model for empirical implementa-

tion, we shall renormalize the model formed by (C.2) and (C.3) as

follows. Form the projection of n t on past, present, and future

values of the (nt-nt ) process,

(C.h) n ( g.L J ) (n t
--nt) + t

where nt obeys the least squares orthogonality conditions

E(nt-n t ) n s = 0 for all t and s. Substituting (C.4) into (C.3)

gives
A

yt = a(L)(nt-n t ) + uyt

(c.5)

Pt= {c(L)+d(L)g(L)}(nt-n t ) + d(L)nt + Ut.

The system (C.5) is in the form of a two-index model in which the

two indexes are (nt-n t ) and nt, "unexpected aggregate demand" and

"that part of expected aggregate demand that is orthogonal to the

entire n - n process," respectively. The cross covariogram be-

tween nt - nt and r t is identically zero, as is the cross spec-

trum. Notice that the polynomial in the lag operator g(L) is in

general two-sided.

The preceding theory imposes no restrictions on the

vector u t = (uyt , u p t )' other than that Eut u t' be small relative to

the variances of y and p. To proceed with estimation, we impose

I
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the conditions on ut required to convert (C.5) into the unobserv-

able index model of Sargent and Sims [161. In particular, we

require (i) that the spectral density matrix of the vector ut be

diagonal, so that each component of u is orthogonal to the past,

present, and future of every other component of u; (ii) that ut be

orthogonal to the past, present, and future of both (nt-nt ) and

T t .  With these conditions on {ut}, (C.5) is an "unobservable

index" or "dynamic factor" model with a set of zero identifying

restrictions. As emphasized by Sargent and Sims [161, the side

conditions that have been imposed on the u's have no foundation in

the theoretical ideas motivating the model. On the contrary, if

the observable series (Yt,Pt) are elements of the information set

.t in (C.2), one would, in general, expect the orthogonality

condition (ii) to be violated. The conditions are imposed not

because they are believed to be true, but because some such condi-

tions must be imposed to proceed with estimation.

To transform the model (C.5) into a form matching (2.1),

let nt - n t and nt have univariate Wold moving average representa-

tions

nt - v1 3 l t- = 1(L)f lt
j=

Ut O V2J2t-j 2(L)f2t

where {vlj} and (v2 j} are each square summable sequences, and

where flt is a fundamental white noise for nt - nt and f2tis a

fundamental white noise for nt .  We are free to normalize so

that Eflt2 = Ef 2 t2 = 1. Since E(nt-n t ) * ns = 0 for all t and s,

t follows that Efltf2s = 0 for all t and s. System (C.5) can now

be written in the form of (2.1), with the definitions



qY t-- a(L)v 1 (L)

xt , A ( c(L)+d(L)gv(L)Iv(L)

ut = ' t It

ut f2t

0

d(L)v2(L)

- 3 -
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