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Sometimes it pays to be unpredictable. Tennis players 
know this. So does the Internal Revenue Service. If  a ten-
nis player always served to the same part of  the court, the 
player's opponent would know where to be in order to 
easily return the serve. And if  the IRS published set rules 
about the factors  that would trigger an audit, taxpayers 
would know how to easily avoid one. So the best strategy 
for  both the tennis player and the IRS is to choose more or 
less randomly from  among their alternative actions. 

These kinds of  strategic choices are often  studied in 
noncooperative game theory. If  all of  the players in a game 
find  it optimal to make their play unpredictable, the game 
is said to have a mixed-strategy  equilibrium. 

One standard assumption of  noncooperative game the-
ory is that all the players' payoffs  are common knowledge. 
This is a fairly  strong assumption. In many games, it is not 
true. But without this assumption, players of  a game may 
not be able to play an equilibrium. Recent results in game 
theory show that players can reach equilibrium if  they ob-
serve the actions of  every player in the game and are able 
to use that information  to infer  the likely payoffs  to other 
players, by using a particular learning process known as 
sophisticated  Bayesian learning  (Jordan 1991, Kalai and 
Lehrer 1993). 

In this study, we use an experiment to test whether how 
much information  players have available to them about the 
structure of  a particular game affects  their ability to play 
the mixed-strategy equilibrium of  that game. We find  that, 

in our experiment, when players have all the information 
about the payoffs  and actions of  other players, they are 
able to play the game's mixed-strategy equilibrium. But 
players do not do that when they do not have complete 
payoff  information,  even when they have enough informa-
tion about the game to possibly learn what they need to 
know about other players' payoffs.  This result suggests that 
the players did not learn about the payoff  structure of  the 
game using sophisticated Bayesian learning. This result 
also suggests that economists should be careful  about as-
suming in their models that people can easily infer  every-
one else's payoffs. 

Games, Equilibrium, and Learning 
Any game can be described by the actions of  the players, 
the payoffs  to those players, and the information  that the 
players have about these actions and payoffs.  Again, non-
cooperative game theory typically assumes common 
knowledge—that  anything known about the game is 
known by all players, that each player knows what is 
known by all players, that each player knows that each 
player knows what is known by all players, ad infinitum. 
So, for  example, if  players in a game have complete in-
formation  about the payoffs  to all the players in the game, 
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common knowledge implies that each player knows that 
all players have this complete payoff  information. 

In game theory studies, the assumption of  common 
knowledge is used to derive a Nash equilibrium, the prin-
cipal solution concept in noncooperative game theory. A 
Nash  equilibrium  is a set of  strategies for  each of  the play-
ers in the game, in which no player has an incentive to 
change his or her own strategy for  choosing actions in the 
game as long as the other players do not change their strat-
egies. 

Unfortunately,  game theory does not specify  how play-
ers reach a Nash equilibrium or how they obtain the as-
sumed common knowledge. If  players have to learn about 
payoffs  to other players, they might not arrive at the Nash 
equilibrium. Depending on the game, how players learn 
can have a great effect  on whether they can play the Nash 
equilibrium. 

Theories of  the learning process in noncooperative 
games model the information  players need to resolve stra-
tegic uncertainty in order to construct individually optimal 
strategies. One learning process that has been studied ex-
tensively is, again, sophisticated Bayesian learning. 

Sophisticated Bayesian learning assumes that all players 
know their own payoff  functions  but not the payoff  func-
tions of  other players. Uncertainty is represented as a sub-
jective prior over other players' types, that is, as the deter-
minants of  other players' payoffs.  Initially, strategies are 
chosen as a Bayesian Nash equilibrium of  the static game. 
Then players observe the initial choices of  all players, up-
date their beliefs  about the payoff  functions  of  other play-
ers, play the Bayesian Nash equilibrium given the updated 
beliefs,  and repeat the process. As play proceeds, all play-
ers update their beliefs  about what determines the payoffs 
of  the other players. As they attempt to figure  out what 
characteristics of  other players could be consistent with the 
optimality of  those players' observed choices, players grad-
ually learn the game, including the payoff  functions  of  the 
other players. 

Sophisticated Bayesian learning will always converge 
to Nash equilibrium, but it requires that players process a 
large amount of  information. 

In this study, we test whether subjects in an experimen-
tal game use sophisticated Bayesian learning to learn to 
play the game's Nash equilibrium. We manipulate the 
information  available to the subjects through two experi-
mental treatments. Then we test whether subjects' play is 
consistent with the predictions of  sophisticated Bayesian 
learning. 

A Game for the Experiment 
For our test, we need to choose a game for  which we can 
create an experimental treatment in which players can ob-
serve the actions of  all other players without directly ob-
serving their payoffs.  That is, players must have the mini-
mum information  necessary for  sophisticated Bayesian 
learning. Two simple games are natural for  an experiment-
er to consider for  such a test: two-person matching  pennies 
and three-person  matching  pennies. Only one of  these 
games works for  us. 

Two-Person  Matching  Pennies 
In a game of  two-person matching pennies, each player 
can choose to play either heads  or tails.  If  the chosen ac-
tions of  the two players match, then player A wins player 
B'  s penny, while if  the actions do not match, then player 
B wins player A's penny.1 Table 1 shows how the actions 
of  the two players are linked to their payoffs. 

In this game, predictability does not pay. If  player A 
always chose heads,  then player B would always choose tails  and win A's penny. But if  player A knew that player B would always choose tails,  then player A would always 
choose tails  and win B's penny. Similarly, if  player B 
knew that player A would always choose tails,  then player B would always choose heads,  to win player A's penny. 
Each of  the four  combinations of  actions gives one of  the 
players an incentive to change actions. We thus say that 
this game has no equilibrium in pure strategies. 

The game does have an equilibrium in another kind of 
strategy, however. Neither player in the two-person match-
ing pennies game would be prepared to play heads  or tails 
consistently, but each player would be willing to randomly 
play heads  and tails,  with equal probabilities for  the two 
actions. If  each player used this strategy independently of 
the other player, then the other player could not expect to 
earn more by changing actions.2 The game has a mixed-strategy  equilibrium. 

Games with a mixed-strategy equilibrium are not just 
a theoretical nicety. Researchers have shown that mixed 
strategies are optimal in, for  example, modeling financial 
and tax audits (Border and Sobel 1987 and Mookherjee 
and Png 1989) and monitoring work effort  (Kanodia 
1985). Thus, the two-person matching pennies game 

'This is a zero-sum game: the sum of  the payoffs  of  player A and player B is zero. 
2For a complete treatment of  equilibrium in the two-person matching pennies game, 

see, for  example, Gibbons 1992, pp. 33-34. 
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Table 1 
How Actions and Payoffs  Are Linked 
in the Two-Person Matching Pennies Game... 
Payoffs  to Players A, B 
When A Wins Matches  and B Wins No Matches 

Heads 
Player A s 

A c t i o n  Tails 

might appear to be a good one to use in an experiment on 
learning. 

However, it isn't in ours. It doesn't work with sophisti-
cated Bayesian learning. This type of  learning requires that 
an experimental subject observe all the other subjects' ac-
tions but not directly observe their payoffs.  But in a two-
person game, if  a subject observes the actions of  the other 
subject and knows the payoff  structure for  the game, then 
the payoffs  are obvious as well. For example, in the two-
person matching pennies game shown in Table 1, if  player A plays heads, B plays tails,  A observes B's  action, and A 
observes Table 1, then A knows that B's  payoff  was 1. 
Player A's  knowledge of  B's  realized payoffs  cannot be 
restricted without also restricting A's observation of  B's 
actions or A's knowledge of  the payoff  structure of  the 
game. 
Three-Person  Matching  Pennies 
The use of  sophisticated Bayesian learning can be tested, 
however, with a three-person matching pennies game. 

In a three-person game, all subjects' knowledge of  other 
subjects' payoffs  can be restricted while letting them see 
other subjects' actions. Consider the three-person match-
ing-pennies game introduced by Jordan (1993) and shown 
in Chart 1. In this game, the three players, Xy  Y}  and Z, can 
each choose either heads  or tails.  Each player has a coun-
terpart: X's  counterpart is Y}  Y's  counterpart is Z, and Z's 
counterpart is X.  Each player's payoff  is determined by 
whether the player's own choice of  action matches the ac-

tion of  his or her counterpart. If  the player's action is the 
same as the counterpart's action, then the player receives 
nothing. If  the player's action is different  from  the counter-
part's action, then the player receives a penny. 

Table 2 shows an example of  actions and payoffs  for 
the three players in this game. Suppose X  chooses heads, 
Y  chooses heads,  and Z chooses tails.  Because X's  action 
matches Y's  action, X  receives nothing. Because Y's  ac-
tion does not match Z's action, Y  receives a penny. Be-
cause Z's action does not match X's action, Z receives a 
penny. 

With three players instead of  two, the information  that 
experimental subjects have about other subjects' payoffs 
can easily be varied so that subjects can observe the ac-
tions of  all other subjects, even if  they do not observe the 
payoffs  to all subjects. Suppose that in a particular experi-
mental treatment, subjects see the actions of  all the other 
subjects. If  subjects are told that every subject has a coun-
terpart and subjects all know how matches are rewarded, 
then even if  a subject observes the other subjects' actions, 
that subject will not know the other subjects' payoffs  un-
less the subject sees Chart 1. For example, if  X  knows that 
X's counterpart is Y,  but X  does not observe Chart 1, then 
X  does not know whether Y's  counterpart is X  or Z. 

Not surprisingly, this three-person matching pennies 
game in Chart 1 has no equilibrium in pure strategies. If 
each player chose a pure strategy, one player would want 
to change actions.3 However, this game does have a unique 
Nash equilibrium in mixed strategies: each player chooses 
heads  with probability Vi  independently. With this mixed 
strategy, the expected payoff  to each player is half  a penny. 
No player has an incentive to change the probability of 
choosing heads  as long as each of  the other two players 
also chooses heads  with probability Vi. 

Again we point out that sophisticated Bayesian learning 
converges to the Nash equilibrium. Therefore,  if  subjects 
use sophisticated Bayesian learning in repeated play of  the 
three-person matching pennies game, then after  enough pe-
riods, subjects should play the mixed-strategy Nash equi-
librium. 

3 Suppose, as in Table 2, that X chooses heads, Y  chooses heads,  and Z chooses tails. 
Then Y  and Z would each receive a penny, and X  would receive nothing. Thus, X  would 
have an incentive to change to the strategy of  playing tails.  Since X  has this incentive 
to change, the assumed choice of  actions cannot be an equilibrium. Now suppose that 
X  changes his or her choice, but the others do not: X  chooses tails, Y  chooses heads,  and 
Z chooses tails.  Then X  and Y  would each receive a penny, and Z would receive nothing. 
Now Z would have an incentive to change from  tails  to heads,  so this set of  pure strat-
egies cannot be an equilibrium. Similarly, it can be shown that no other set of  pure strat-
egies is an equilibrium for  this game. 

Player B s Action 
Heads  Tails 

1,-1 -1,1 
-1,1 1,-1 
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Chart 1 and Table 2 

. . . And in the Three-Person Matching Pennies Game 

Chart 1 Payoff  Structure 

Table 2 Payoff  Example 
Payoffs  When a Match  Pays Nothing and No Match  Pays a Penny 

Player Action Payoff 

X  Heads  0 

Y  Heads  1 

Z Tails  1 

• Our  Game 
The game in our experiment differs  in four  ways from  the 
three-person matching pennies game described above. 

• To make the payoff  salient, we made the payoff  for 
not matching the action of  the counterpart a dime in-
stead of  a penny.5 

• To avoid suggesting randomization, we changed the 
labels for  the players' possible actions from  heads  or 
tails  to the neutral A or B. (For simplicity, here, how-
ever, we will continue to use the labels heads  and 
tails.) 

• To minimize repeated-game effects,  we put three 
players instead of  just one at each node of  the triangle 
in Chart 1, for  a total of  nine subjects.6 Each player 
thus had three counterparts, and the player's payoff 
was determined by the number of  counterparts whose 
actions differed  from  the player's action. For example, 
if  one person in group X  chose heads  while two peo-
ple in group Y  chose tails  and one chose heads,  then 
the person in group X  failed  to match two counter-
parts and received 20 cents. Depending on the actions 
of  his or her counterparts, a player could earn 0, 10, 
20, or 30 cents each time the game was played. 

• As is common in economic experiments, we repeated 
the game for  many periods with the same players, in 
order to see whether their behavior changed over 
time.7 

• Treatments 
We designed two experimental treatments, which differ 
only by how much information  players had about what de-
termined the payoffs  to other players. 

In our first  treatment, it was common knowledge that 
the subjects were matched according to Chart 1, which was 
shown and explained to the subjects in the common in-

The Experiment 
Design 
We designed an experiment to test whether controlling 
how much information  that players have about the payoffs 
to other players affects  their ability to play the mixed-strat-
egy equilibrium of  a version of  the three-person matching 
pennies game.4 

4For a complete description and analysis of  this experiment and its results, see 
McCabe, Mukheiji, and Runkle 2000. 

5With this payoff,  subjects who played the equilibrium would earn at least $12 per 
hour. This was more than twice the rate that the subjects—who were college students— 
could earn for  unskilled on-campus employment at the time. 

6This follows  a suggestion of  Friedman (1996). 
7We did this to test whether subjects can learn to play the mixed-strategy equilib-

rium of  the one-period game. In some games, the equilibria of  the repeated game are not 
the same as the set of  equilibria of  the one-period game. Repetition can expand the set 
of  strategies and payoffs;  players can condition their behavior over time to punish or 
reward their counterparts. In this experiment, since there is a unique equilibrium in the 
one-period game, repeating it many times does not change the set of  equilibria. 
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structions. The subjects also saw the entire history of 
choices for  all subjects as it grew. The notion here was that 
if  subjects' behavior in this baseline treatment is consistent 
with the mixed-strategy equilibrium, then we can legiti-
mately investigate the role of  payoff  information  by ana-
lyzing subjects' behavior in the other treatment. 

In our second treatment, every subject knew from  the 
common instructions that every subject's payoff  depended 
on whether his or her choices matched those of  three coun-
terparts. However, nothing else was specified  about those 
payoffs—who  the counterparts were, for  example. Over 
time, each subject observed the entire history of  choices for 
all nine subjects. In this treatment, therefore,  a subject had 
enough information  to apply sophisticated Bayesian learn-
ing. While a subject did not know the incentives of  the 
other subjects, these could be inferred  from  the history of 
play. If  those inferences  were made correctly, then the 
resulting observed behavior could be consistent with a 
mixed-strategy equilibrium. Sophisticated Bayesian learn-
ing is consistent with this possibility. 

• Subjects,  Sessions,  and Periods 
As subjects for  our experiment, we selected undergraduate 
students at the University of  Minnesota. Each session in 
each treatment consisted of  nine subjects who played the 
game for  between 70 and 79 periods. We conducted sev-
eral sessions for  each of  the two treatments, with 3,249 
subject-actions in the first  treatment and 3,312 subject-
actions in the second treatment.8 For participating in the 
experiment, subjects were each paid $5.00 plus earnings.9 

In each session of  the experiment, the subjects were 
separated by partitions, so that they could not see each 
other, and they were not allowed to talk to each other. Af-
ter all the subjects had been seated, the experimenter dis-
played the instructions for  the treatment on an overhead 
projector and read them to all subjects simultaneously. 
Then play began. Each session lasted between 60 and 90 
minutes. 

The experiment was run on a computer network. In 
each experimental period, the subjects saw on their com-
puters information  about the choices they and the others 
had made in the previous periods. (But, again, the amount 
of  information  the subjects had about the past varied by 
treatment.) In each period, subjects made their choices and 
entered them on their computers. After  all subjects had 
made their choices in a particular period, their payoffs  and 
the actions of  all the other subjects were displayed. 

Predictions 
We tested whether controlling how much information  sub-
jects had about the structure of  the matching pennies game 
affected  subjects' play in the game. We tested two predic-
tions: If  the subjects in the experiment play a mixed-strat-
egy equilibrium, then 

• On average they should play heads  with probability 
Vi 

• They should also randomize between heads  and tails 
with probability Vi  regardless of  the past actions of 
any of  the subjects in the game. In particular, the 
probability that any subject chose heads  in any given 
period should not depend on the number of  heads 
chosen by the subject's counterparts in the preceding 
period. 

For each of  our two experimental treatments, we per-
formed  two tests to see whether the subjects played the 
mixed-strategy equilibrium of  independently randomizing 
between heads  and tails  with a probability of  Vi 

• We tested whether, on average, the subjects played 
heads  with probability Vi 

• We tested whether, in a particular period, the proba-
bility that a subject chose heads  was V2, regardless of 
whether the subject's counterpart group had played 
zero, one, two, or three heads  in the preceding period. 
For this test, we estimated four  separate probabilities 
of  playing heads—one for  each possible number of heads  played by the counterpart group in the preced-
ing period—and tested whether the estimated proba-
bilities were all Vi 

It seems reasonable to assume that subjects in the first 
experimental treatment, who have all the information  about 
the structure of  the game and can observe the actions and 
payoffs  of  all players in the game, will play the mixed-
strategy Nash equilibrium. In fact,  unless subjects play the 
mixed-strategy Nash equilibrium in the first  treatment, the 
second treatment will not be interesting. Why test whether 

8We randomized the number of  periods so that the subjects would not know how 
many periods the experiments would last. This is consistent with O'Neill's (1987) ex-
periment, in which subjects did not know how long it would last. 

The average number of  periods for  the two experimental treatments was close to 73. 
If  each of  five  sessions had had 73 observations, there would have been 3,285 (5 x 9 x 
73) subject-actions in each experimental treatment. 

9The subjects' median earnings were $17.40; the 25th percentile of  earnings was 
$16.20, and the 75th percentile, $18.00. 
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Charts 2-3 
How Counterpart Play Affected  a Subject's Actions 
The Probability of a Subject Playing Heads  in a Period vs. 
The Number of Heads  Played by Counterparts in the Preceding Period 

Chart 2 With Complete Payoff  Information 

0.52 0.53 0 5 0 

• • • 

0 1 2 3 
Number of Counterpart Heads  Last Period 

Chart 3 With Incomplete Payoff  Information 

0.83 
0.68 

0.31 
0.18 

0 1 2 3 
Number of Counterpart Heads  Last Period 

subjects with limited information  play the mixed-strategy 
Nash equilibrium if  subjects with complete information  do 
not? 

Subjects in the second experimental treatment have lim-
ited information  about the payoff  structure of  the game, but 
they observe the actions of  all subjects. Therefore,  they 
could use sophisticated Bayesian learning to determine the 
best strategy for  their play. If  all subjects used sophisticat-
ed Bayesian learning in this treatment, then they would 
randomize, that is, play the mixed-strategy Nash equilibri-
um. 
Results 
In our experiment, subjects do not seem to have used so-
phisticated Bayesian learning. 

The unconditional probability that the subjects played 
heads  was about the same in the two experimental treat-
ments. In both, subjects came close to unconditionally ran-
domizing between heads  and tails  with equal probability. 
(The probabilities are 0.508152 for  the first  treatment and 
0.500468 for  the second.) This result should not be sur-
prising, at least for  the first  treatment. Subjects in the first 
treatment have complete information,  so we expect them 
to play the mixed-strategy Nash equilibrium and random-
ize between heads  and tails  with equal probability. If  sub-

jects in the second treatment used sophisticated Bayesian 
learning, then overall they would also randomize between heads  and tails  with equal probability. 

However, the probability of  playing heads  in the two 
treatments was quite different  when subjects' actions were 
conditioned on the previous actions of  their counterparts. 

In the first  experimental treatment, remember, the sub-
jects saw all the actions of  the other subjects and had all 
the information  they needed to compute the payoffs  to all 
those other subjects. Here the subjects played heads  and tails  with nearly equal probabilities, regardless of  the num-
ber of  heads  played by their counterpart groups in the 
preceding period. Chart 2 shows that in this treatment, the 
probability that a subject played heads  was about 0.52 if 
no counterpart had played heads  in the preceding period 
and about 0.47 if  all three counterparts had played heads 
in that period. Thus, subjects in this treatment do seem to 
have chosen heads  and tails  with equal probability regard-
less of  counterpart play in the preceding period. We tested 
statistically the hypothesis that the true probability of 
choosing heads  in this treatment was Vi, regardless of 
previous counterpart choices. The test failed  to reject this 
hypothesis at the 5 percent level of  significance. 

Subjects acted differently  in the second experimental 
treatment. In this treatment, remember, subjects were al-
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lowed to see all other subjects' actions, but they were not 
told the rules necessary to determine all the other subjects' 
payoffs.10  Chart 3 shows that in this treatment, the proba-
bility that a subject played heads  was about 0.83 if  no 
counterpart had played heads  in the preceding period, but 
was only about 0.18 if  all three counterparts had played 
heads.  Thus, subjects in this treatment do not seem to have 
chosen heads  and tails  with equal probability regardless of 
counterpart play in the preceding period. We statistically 
tested the hypothesis that the true probability of  choosing 
heads  in this treatment was Vi, regardless of  previous 
counterpart choices. The test strongly rejected that hypoth-
esis. 

If  the subjects in the second treatment had used sophis-
ticated Bayesian learning to determine what their best strat-
egy should be, then they would have played the mixed-
strategy Nash equilibrium of  choosing heads  with proba-
bility Vi regardless of  previous counterpart choices. The 
fact  that the subjects did not randomize actions with equal 
probability, regardless of  previous counterpart choices, 
shows that they did not use sophisticated Bayesian learning 
in this experiment. 
Conclusions 
In our experiment, information  affects  players' ability to 
play a game's mixed-strategy equilibrium. The only dif-
ference  between our two experimental treatments is how 
much information  the subjects have about the payoff 
structure for  all the other subjects. In the first  treatment, 
subjects were told all about that payoff  structure, while in 
the second treatment, they were not. Even though this dif-
ference  between the treatments should have had no effect 
on the subjects' ability to randomize if  subjects had used 
sophisticated Bayesian learning, the subjects' play in the 
two treatments was significantly  different.  With complete 
payoff  information,  subjects did randomize and play the 
mixed-strategy equilibrium. Without complete payoff  in-
formation,  they did not. We conclude, therefore,  that sub-
jects in the second treatment did not use sophisticated 
Bayesian learning to find  their best strategy, which was to 
randomize between the two actions with equal probability. 

These results confirm  the importance of  information  for 
playing mixed strategies. The results also suggest that 
economists should rethink models that assume people 
know the payoffs  to everyone in the model. Since that is 
seldom true in real life,  people often  must infer  payoffs 
after  observing other people's actions. However, as this 
study demonstrates, people may not make those inferences 
correctly, even when theory suggests that they could. 
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In this experimental treatment, recall, it is common knowledge that each subject 
is matched with three other subjects, but subjects did not know how they were matched. 
There are many ways in which nine subjects can be matched with one another while still 
matching each subject with three other subjects. Our research tested whether subjects 
learned the actual structure of  the payoffs  (shown in Chart 1) by observing the past 
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unique mixed-strategy equilibrium. 

20 


