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ABSTRACT
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data. Our analysis is conducted within the confines of a simple dynamic general
equilibrium model of aggregate real output, investment, hours of work and consump-
tion. We study the quantitative importance of two perturbations to the version of
our model which predicts that observed consumption follows a random walk: (i)
changing the production technology specification which rationalizes the random
walk result, and (ii) replacing the assumption that agents' decision intervals
coincide with the data sampling interval with the assumption that agents make
decisions on a continuous time basis. We find substantially less evidence against
the continuous time models than against their discrete time counterparts. In fact
neither of the two continuous time models can be rejected at conventional signifi-
cance levels. The continuous time models outperform their discrete time counter-
parts primarily because they explicitly account for the fact that the data used to
test the models are time averaged measures of the underlying unobserved point-in-
time variables. The net result is that they are better able to accommodate the
degree of serial correlation present in the first difference of observed per cap-
ita U.S. consumption.
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1. Introduction

Few subjects in macroeconomiecs have received as much attention as the
relationship between aggregate consumption and output. This attention reflects,
at least in part, the belief that an understanding of the structural determinants
of aggregate consumption is central to resolving many of the outstanding issues in
business cycle theory. During the past decade much of the empirical literature on
aggregate consumption has centered on Hall's [1978] demonstration that, under
certain conditions, the permanent income hypothesis (PIH) implies that consumption
is a random walk. Under this random walk hypothesis (RWH) no variable apart from
current consumption should be of value in predicting future consumption.

In fact, a number of authors, including Flavin [1981] and Hayashi
[1982], report statistically significant correlations between the change in con-
sumption and lagged consumption and income. The response to these findings has
generally fallen into one of two categories. First, some researchers have attri-
buted the "excess sensitivity" of consumption to current and lagged income to the
presence of a substantial number of consumers who are liquidity constrained.
Under this interpretation, the PIH is fundamentally flawed as a principle for
organizing the aggregate time series data (see for example Hall and Mishkin [1982]
and Zeldes [1985]).

A4 second view of the empirical shortcomings of the RWH is that they do
not refleet the failure of the PIH per se. Instead they reflect the failure of
the auxiliary assumptions required to derive the RWH from the PIH. This view
underlies both intertemporal capital asset pricing models (eg., Hansen and Single-
ton [1982, 1983], Dunn and Singleton [1986] and Eichenbaum and Hansen [1986]) and
real business cycle theories (eg., Kydland and Prescott [1982], Long and Plosser
[1983], and Michener [1984]) which abstract from liquidity constraints and other
market imperfections which would prevent consumers from optimally adjusting con-
sumption to permanent income. This view also underlies Lucas' [1985] argument

that the welfare gains associated with countercyclical government policies would,
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at the very best, be small. Given the radically different poliey implications of
the two types of responses it is not surprising that the relationship between
aggregate consumption and income continues to command widespread interest.

This paper pursues the second of the two responses discussed above. We
investigate whether there are perturbations of the random walk version of the PIH,
as implemented by Hall [1978] and Flavin [1981], which are consistent with the
aggregate consumption and output data. The two perturbations we consider are:
(i) changing the production technology to a specification which no longer implies
the RWH, and (ii) replacing the assumption that agents' decision intervals coin-
cide with the data sampling interval with the assumption that agents make deci-
sions on a continuous time basis.

Our analysis follows Hansen [1986] and Sargent [1986] in interpreting
the PIH as a simple version of the Brock-Mirman growth model in which the equilib-
rium law of motion for consumption and output takes the form of a constrained
vector ARMA. Consumers' preferences are defined over consumption and leisure in a
way that nests the specification considered by Hall [1978] and Flavin [1981].
Qutput is produced using both labor and capital according to a Leontieff type
production function in which the labor requirement per unit of capital is allowed
to be stochastic. When this labor requirement is nonstochastic our model satis-
fies the RWH. When agents derive disutility from working and the labor require-
ment per unit of capital is a nontrivial stochastic process, consumption does not
foliow a random walk. Aggregate income will Granger cause the first difference of
consumption and current and lagged changes in consumption will be of value for
predicting future changes in consumption. Consequently, this version of our model
can, in principle, explain Flavin's rejection of the RWH.

A& second possible explanation of these rejections is the impact of tem-
poral aggregation bias. Sims [1971], Geweke [1978], Marcet [1986] and Christiano
[1982, 1985] have shown that temporal aggregation bias can induce spurious serial

correlation and Granger causality. In fact, much of the empirical evidence
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against different versions of the PIH consists of findings that the first dif-
ference of aggregate consumption is serially correlated and is Granger caused by a
variety of other variables. If agents make economic decisions at intervals of
time that are finer than the data sampling interval these serial correlation and
Granger causality findings could be spurious in the sense that they reflect only
the effects of temporal aggregation bias.

In order to investigate this possibility we analyze continuous time
versions of our discrete time model. These models are estimated using techniques
developed by Hansen and Sargent [1980, 1981] for estimating continuous time models
from discrete time data. This strategy allows us to directly address the possi-
bility of temporal aggregation bias and to expliecitly account for the fact that
consumption and income data are not point-in-time sampled.

The remainder of this paper is organized as follows. In section 2 we
present the discrete time versions of our model. Empirical results for the dis-
crete time models are presented in section 3. In section U4 we present the contin-
uous time analogue to the models discussed in section 2. Empirical results for
the continuous time models are discussed in section 5. Section 6 concludes the

paper.

2. The Discrete Time Permanent Income Hypothesis

2.A The Model

We suppose that the time series on economy-wide consumption, the stock
of capital, and output correspond to the sclution of an optimal resource allioca-
tion problem which can be decentralized as a competitive equilibrium. The social
planning problem that we consider has more than one interpretation in terms of
consumers' preferences and the technology for producing new consumption goods.
For pedagogical reasons we find it convenient to proceed in terms of one of these

interpretations. Other interpretations are discussed after the optimal resource

allocation problem has been stated. There we indicate that, given observations
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only on aggregate consumption and output and abstracting from growth considera-
tions, our model is observationally equivalent to a version of the model consid-
ered by Sargent [1986].

A representative consumer ranks alternative streams of consumption and
leisure according to the preference specification,
(2.1) Eot:os"'[- 3 (e,-b,)°-a,h,}
where 0 < 8 < 1 is the subjective discount rate, bt denotes the consumer's bliss

point for consumption at time t, c¢_ denotes consumption at time t, ht denotes work

£

effort at time t, a_  is the marginal disutility of work in period t and E_ is the

t
expectations operator conditioned on the information set I., t 2 0. The set It
contains observations on all model variables dated t and earlier. Throughout this
paper we assume that bt and a, are deterministic functions of time.

There is a technology that converts time t consumption goods and labor

effort into time t + 1 consumption goods. This technology is given by
(2.2) V. = mi"{ékt-i'Tt-1nt-z} +e.

Here, it denotes output, k. 4 is the capital stock at the end of time t - 1. We
think of the variable e, either as the endowment of consumption at time t or as an
aggregate shock to the production function at time t which affects only the aver-

age productivity of labor and capital. The variable Efrt_I represents the labor

requirement per unit of capital.
The economy-wide resource constraint is given by:gal’

(2.3) e, + k. - (1-d)k =y

t E-1 t
where d is the rate at which a unit of capital depreciates, 0 < d ¢ 1 and & 2 d.

We impose the condition

(2.4) B[§+(1-dJ| =85 =1, where 6 = 8 + 1 - d.
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Condition (2.4) results in a unit autoregressive root in the consumption process
which is a necessary (but not sufficient) condition for the RWH.

As in Hansen [1986] and Sargent [1986], we do not impose a nonnegativity
constraint on the choice variables of the model. Imposition of this constraint
makes it difficult if not impossible to solve the model analytically. Instead we

follow Hansen [1986] in imposing the requirement that2:2/

(2.5)  E,J 8% < e
t=0

This condition emerges from viewing our infinite horizon economy as the limit of a

sequence of finite horizon economies in which we impose the constraint that the

terminal capital stock is zero (for a discussion, see Hansen, Roberds, and Sargent

[1987]). 1In deriving the solution to the optimal resource allocation problem, it

is convenient to impose the restriction that capital and labor are always fully

utilized:

(2.6) 8k, = T hy for all t.

Christiano, Eichenbaum and Marshall [1987] discuss conditions under which this

restriction is nonbinding.

Relations (2.1)-(2.3), (2.6) and the definition H, = §at/rt, imply that

the social planner's problem is to maximize

° H k]

t;_‘ 1
. 50

1o
(2.7) E ) 5 [6K —kt+e —bt}

O¢2o

£ £-1

£

Hi~—ig

by choice of a contingeney plan for k. subject to (2.3).
Planning problems observationally equivalent to (2.7) can arise from a
variety of other models. For example, we could replace (2.2) with the assumption

that no labor is required to produce new consumption goods,

(2.2)! Ve = th_1 *
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and assume that there is a stochastic labor requirement for maintaining the capi-
tal stock given by (2.6). In addition, Christiano, Eichenbaum and Marshall [1987]
show that, given only observations on consumption and output, and assuming T is
deterministic, another observationally equivalent model can be obtained by allow-
ing bt to be stochastie. An example of such a model is contained in Sargent
[1986], where no labor is needed to produce output (ie., rtsw) and b, is a non-

trivial random variable.

We use the following notation:

e

= (1-8)E, § adx, ..
pt tj“O t+j

(2.8)

- E

(2.9) Hx ot = ot T Fp-1%pee

b4

p!
Definitions (2.8) and (2.9) apply to any random variable x, for which the indi-
cated conditional expectation exists. Below, we refer to objects like Epg @s the

"permanent" value of X and to M as the innovation to the permanent value of

p'"
2.3/
Xt.-—-—m
In Appendix A, we show that the equilibrium laws of motion for k¢ and ¢,
are:
(2.10) kt - kt-1 = (et-ept} - (bt"bpt) = SHpt/(1—B).

(2.11) g, =

¢ = Spp t (bt-bpt) + [s/(i—a)]ﬁpt + (8-1)k, -

Since net ocutput, Yer is equal to consumption plus net investment, we see that
2 % = - b, - 8 (1-8).
(2.12) ey - ¥y = (ey e.) + (b, bpt) + Hptx~1 3)

Relation (2.10) implies that investment increases when the current value
of the productivity shock exceeds its permanent value and decreases when the util-
pt)' In

addition, net investment depends negatively on Hot’ reflecting the utility cost of

ity associated with a given amount of consumption is unusually high (bt>b

the labor input needed to make additions to the capital stock productive in the

future,
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Relation (2.11) implies that consumption increases when the utility
associated with consumption is unusually high and depends positively on permanent
endowment income and the capital stock. In addition consumption depends posi-
This is because high values of H

tively on H ¢ signify a low opportunity cost

pt* p
of consuming goods at time t as opposed to combining them with labor in order te
produce future consumption goods. According to (2.12) unusually high levels of

utility associated with consumption, high levels of H ¢ or unusually low levels of

p

endowment income {et<ept) cause consumption to exceed current period income.

Definition: We say that consumption satisfies the random walk hypothesis if and

only if consumption is a martingale possibly with deterministic, time varying

drift, i.e.,

(2.13) Et-lct = ¢ 4+ Ft
where f is a deterministic, but possibly trivial, function of time.géﬂ/

From relations (2.10) and (2.11) we see that
3 - - 32 - 1 -
(2.14) act = Mg t by .t + ﬂbt + [8/{1 8)]uH t Ht-‘!'
P p p

where éct = ¢ - C¢_q. Since by is by assumption deterministic, the RWH will be

satisfied if and only if Hy 1s deterministic. Since of is by assumption deter-
ministic, we conclude that the RWH will hold if and only if the time t labor re-

2
quirement per unit of capital, 7, is deterministic.2:2/

2.B Some Evidence on the Discrete Time RWH

The RWH has testable implications independent of the assumed probability
structure of e.. This section reports empirical evidence against these implieca-
tions, confirming results reported in Flavin [1981] and Hayashi [1982]. We begin
with a description of the data.

Qur model divides total output into only two categories: consumption

and investment (see (2.3)) In view of this we measure total consumption, ¢, as
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the sum of total government consumption, cg, and private consumption. The latter
was measured as real quarterly expenditures on nondurable consumption goods (cnd)
and services (cs), plus an estimate of the service flow from the stock of consumer
durables (csd). All of these measures except Csq and cg were taken from the Na-
tional Income and Product Accounts (NIPA). The service flow from the stock of
consumer durables was obtained from the data base documented in Brayton and
Mauskopf [1985]. Government consumption was measured by NIPA real government
purchases of goods and services (g) minus real government investment {ig). A
measure of ig was provided to us by John Musgrave of the U.S. Department of Com-
merce's Bureau of Economic Analysis.géé/ Gross output, y, was measured by per
capita real quarterly GNP plus Csq- All series cover the period 1950,2-1985,3 and
are converted to per capita terms using a measure of the total population that
includes armed forces overseas (data mnemonic NPT, obtained from the Wharton Eco-
nometrics data base.)

Table 2.1 provides an idea of the order of magnitude of the components
of our measure of consumption. First, note that Cod is only a small part of ¢,
going from about two percent in the 1950's to about three percent in the 1980's.

Second, c, and c 4 are both gradually declining fractions of ¢ whereas cg and Csq

g
have an upward trend. 21/ Finally, note that cg is significantly smaller than the
standard measure of pgovernment consumption, g, due to the fact that roughly 20
percent of government purchases represent investment activity.

The maintained hypothesis throughout this paper is that c and y are made
covariance stationary by detrending using a common geometric growth rate, ¢.§;§f
This is an implication of all the fully parameterized versions of the model (see
sections 2.C, 4.B, and 4.C). The value of ¢ used to construct the detrended data
is exp(8), with 8 = .004568. This value of 9 is the coefficient on time of the
regression of log ¢, and log §t on a linear time trend, computed subject to the
restriction that the growth rates in consumption and output are equal. When this

restriction is not imposed the measured growth rates in consumption and output are

.004582 and .004606.
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According to the discrete time RWH, Acy is uncorrelated with information

dated t - 1 and earlier. It is straightforward to test this implication using

results in Hansen [1982]. Define the function:

“aa c.

(2.15) £

«t
v(C,o Act) = ¢

To simplify notation, we write

~ -t 0 _ 0 -t
(2-15)l ‘bt = UJ(C,@ ﬁet)g Wt = ﬂ-l(c g¢ ﬁct_)l
where c9 = E¢'tact is an unknown parameter. According to the RWH, Et_1w2 = U, S0
that Ewgz £ = 0 for all z;, contained in I, ,. In practice we considered the
vectors:

(g ,-(E=1) -(t-M) -(t=1)~ -(t-M);

(2.16) Zyp = [?,¢ BCL _4yvees® ey o Jp_qreees0 Ve MI
and,

_ -(t-1) -(t-M) -(t=-1) ~
(2.16)" th = [11'3 act_1$-"|° Mt-b‘l"a (Ct_r)’t_ﬂ,

-(t-M) -
-.-|° (ct_M-yt_M>]?

with M = 4, Under the assumption that ¢-tnct and zj, are jointly stationary and

ergodic the generalized method of moments (CMM) procedure described in Hansen

[1982] ecan be used to estimate the parameter C and test the null hypotheses,

0 ;
Ebtzlt El T (R Define the function gy = (1/T) E bt it i =i, 2. Our

estimator of C0 is the argmax of J. iT = ng I.g T where H iT7 1s the sample covari-

ance matrix of ¢ o= The minimized value of Jjop, 1 = 1, 2 is asympto-

tZit’
tically distributed as a chi-square random variable with eight degrees of freedom.

The significance levels of our test statistics are reported in the "Lags

1 - 4" portion of Table 5.2. Tables 5.2a and 5.2b report results based on the

instrument vectors z,, and 2z,., respectively. As a check on robustness we report

results for three sample periods.

of consumption and income other than ours.

dence on the robustness of our

Moreover, we also present results for measures
In addition to providing further evi-

results, this also facilitates comparison with
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results in Hall [1978] and Flavin [1981]. The columns marked (c,y) report results
for the concepts of consumption and income in our model. The columns marked
(cnd,yd) report results for the consumption and income concepts used in Flavin
[1981] (yd = per capita disposable income), while columns marked (cnd+°sd’yd)
report results for the consumption and income concepts used in Hall [1978]. Fol-
lowing Flavin, these measures of consumption and income were detrended using dif-
ferent, though constant, geometric growth rates.gLQ/ The results of Table 5.2
provide very strong evidence against the RWH. In particular we can, with only two
exceptions, reject the discrete time RWH at the five percent significance level or

higher. In light of these results, we now turn tc a parameterization of the model

which does not satisfy the RWH.

2.C The Discrete Time Stochastic Labor Requirement Model (DSLR)

In this subsection we describe a parameterization of our discrete time
model in which the labor requirement per unit of capital, T is stochastic so
that the RWH does not hold. We refer to this version of the model as the discrete
time stochastic labor requirement (DSLR) model. The testable implications of the
DSLR model are determined by our restrictions on {et,Ht} in the sense that, absent
any such restrictions, that model is not refutable. This follows from results in
Christiano, Eichenbaum, and Marshall [1987] who show that given any Wold repre-
sentation for {mutact,¢_t(ct—§t)}, one can always find an {et,Ht} representation
such that the corresponding reduced form of our model coincides with the given
Wold representation. Of course, it is also true that the testable restrictions of
the RWH ultimately stem from restrictions on unobservables {eg., %y bt and Ht'}
Thus, viewed from a broad perspective, all of the testable restrictions of our
model derive from assumptions regarding the probability law of the exogenous,
unobserved forcing variables. This type of result is by no means unique to our
model. We conjecture that such a result holds in any dynamic stochastic general

equilibrium model when the econometrician does not observe any exogenous vari-

ables.
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As noted above, our parameterization of the technology shocks implies
that consumption and output grow at the same geometric rate over time. While this
parameterization is very restrictive, it does have an important compensating ad-
vantage: it implies that the model applies to consumption and output data which
have been detrended assuming a common geometric trend. This allows us to accommo-
date growth in an internally consistent way while preserving the applicability of

a set of econometric tools developed for nongrowing time series.

We suppose that by = b@t and a, = a¢2t where ¢ > 1 and a > 0. In order
for the representative consumer's problem to be well-defined we require that B¢2
¢ 1. By allowing b, to grow over time we are able to avoid the implication that

2

the consumer becomes satiated. The fact that a, grows at the geometric rate ¢
implies, in conjunction with the other assumptions in our model, that neither
leisure nor labor's share of net output exhibits a trend.

We model H, as an AR(1) random variable with time varying drift:

(2.17)  H = HeC + e /U1-£L), |£] < 1, 0 < H < b(e-1).

The lower bound on H guarantees that the drift in the marginal utility of consump-
tion, Ht’ is positive. The upper bound on H ensures that the drift in consump-
tion, ﬁbt - Hg_4, is positive. Since H, = Satftt, condition (2.17) implies that
the labor requirement per unit of capital is stochastic. In addition we assume

that
(2.18)  (1-L)e, = eo” +» n./(1-aL), es < b(s-1) - H, [a] < 1.

The condition on e, together with (2.10), guarantees that the deterministic compo-
nent of savings, k, - kt~1’ is positive.

Let x. = [etnt}'. The vector x. is white noise, orthogonal to I, 4 =

t

ikt—1~S’Ht-1-S’et-S’SZO}’ and satisfies

(2.19)  Exx! = Vo?F,

where V is a two by two positive definite symmetric matrix of constants.
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According to our specification, all deterministic terms and innovation

2.10/

standard deviations grow at the rate ¢.5=— Thus it is not surprising that we
can "detrend" act and ¢y - ¥ by ¢t to obtain a stationary stochastic process.
Define,
-t -t -t
* - * - ¥ = * =
(2.20) cf =0 cp, Y = Vi, €f T O e, and ng =6 ng,
and

41
A & ¥ _u* *_ *
(2.21) qt' = [ct y¥ict-o ct_1].

Relations (2.12), (2.14), and (2.17)-(2.19) imply that qt has the VAR(2) represen-

tation:

-1 ;. S
(2.22) A(s L)qt =T + X,

where,

(2.23)  A(L) = I+ AL + A5L2,

8a2-f -ga(a-f) -a(a-f) 0
a'op —a(i-fa) ;a(g”1-f) 0
ER n#/(1-8a)

Xt =
L1 10 \(1-8)et/(1-£8)

n¥ = ¢_tﬂ and =* = ¢ ‘¢

£ £ £t 7 t

and

EEX:X£] = V.
In (2.22) T is a two dimensional vector of positive constants and V4 is a two by
two positive definite symmetric matrix of constants.

Relations (2.22) and (2.23) display the basic properties of the DSLE
model which distinguish it from random walk versions of the model. First, the

is

fact the (2,1) elements of A1 and A2 are not equal to zero implies that a_tﬂet
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Granger caused by ¢'t(ct-yt). Second, the fact that the (2,2) element of A, is

not equal to zero implies that ¢‘(t"1)ﬁct_1 should be useful for predicting
-t
o act.

3. Empirical Results for the Discrete Stochastic Labor Requirement Model

3.A Estimation Strategy

In section 2 we derived the implications of our model for the vector qg
which is defined in terms of detrended aggregate consumption and detrended net
output, yg (see (2.21)). We choose not to estimate the model using NNP data for
two reasons. First, the data on aggregate depreciation is not particularly reli-
able. Second, there is little reason to believe that our model of depreciation is
consistent with the model of depreciation used by the Department of Commerce.
Consequently we implement our model in the following way using data on GNP. Let
?; denote detrended gross output:

.

“x
(3.1) yE =o'y,
and define
- o =3
' = *_u¥ * _ *
(3.2) qq = [Ct yE.cl-o ct_1].

It follows that3=1/

(3.3)  af = H(TLG,
wnere

4 1-2 0
(3.4) H(z) = -

1 - (1-d)z 0 1-(1-d)z

By substituting (3.3) into (2.22), we obtain the implications of the
model for ﬁ?, which involves consumption and gross output.iégj The assumptions we
have imposed on the structural parameters are sufficient to guarantee that &t is a
covariance stationary stochastic process with conditionally homoscedastic distur-
bances. Since |¢-1| <1, e, and §t have unconditional growth rates equal to ¢.

Tnroughout our analysis we fix the value of ¢ at exp[.004568]. (See section 2.B



wll =
for a description of the growth properties of our measures of consumption and
output.) Given ¢ we form a time series on ét and denote the demeaned value of &t

by Q.

Parameter estimates were obtained by maximizing the Ffrequency domain
approximation to the exact Gaussian likelihood function implied by the model. A
full description of this estimator can be found in Hansen and Sargent
{19813].§L§/ In implementing this procedure we fixed the value of 8 at .99 which
corresponds to a four percent annual rate of time preference. Consequently the
free parameters of the DSLR model are a, f, d, and the three independent elements

of Ud-

3.B Empirical Results

Table 3.1 summarizes the results of estimating the DSLR model. We use
two methods to assess the overall performance of this model: (1) a formal statis-
tical test of the overidentifying restrictions, and (2) an informal comparison of
the constrained VAR for Q. implied by the model with the corresponding uncon=-
strained VAR.

Our formal statistical test is based on the fact that all of the models
in this paper are nested within scalar autoregressive vector moving average
(SARMA) representations for Q¢ - While the DSLR model implies a constrained
SARMA(3,3) for Qt’ the continuous time models of section 4 imply a constrained
SARMA(3,4) for Qt.ééi; In order to allow all of the structural models to be
nested within a common unconstrained specification we use the SARMA(3,4) as our
unconstrained model.

Let Jp denote twice the difference between the maximized log likelihood
for the unconstrained SARMA specification and the maximized log likelihood L,, for
the constrained SARMA specification. Then Jp 1is asymptotically distributed as a
chi-square random variable with degrees of freedom equal to the number of restric-

tions imposed in the constrained specification. The test statistic J; can be
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multiplied by an adjustment factor suggested by Whittle [1953], Lissitz [1972],
and Sims [1980] designed to correct for small sample bias.3:2/ We denote the
resulting test statistic by Jg.

The values of Jp and Jyp reported in Table 3.1 imply that the DSLR model
is rejected at the five percent significance level, although not at the one per-
cent significance level. However, this last result reflects in part the overpara-
meterization of our unconstrained specification. When the model is compared to an
unconstrained SARMA(3,3), the Jp statistic equals 30.36, with significance level
.002, and Jg equals 28.75, with significance level .004. Thus, when compared to a
more parsimoniously parameterized alternative, the DSLR model is rejected at the
one percent significance level.iLéf

When d > 0, the DSLR model implies that Qt has an infinite ordered con-
strained VAR. However, when d is close to zero, this infinite ordered VAR is well
approximated, in a sense to be made precise below, by a finite ordered VAR. As it
turns out these VARs are more revealing for the purpose of diagnosing the empiri-
cal shortcomings of the model than the corresponding SARMA representations. We
took as our benchmark an unconstrained VAR of lag length 2 since the hypothesis
that the second lag is zero can be rejected at any conventional significance
level, while the hypotheses that lags 3, 4, 5, and 6 are zero cannot be rejected
at the five percent significance level. Table 3.1 displays the unconstrained VAR
of Q. and the truncated VAR implied by the DSLR model for Q.. Here we use the
truncation rule of not reporting matriz coefficients whose maximal elements are
smaller than .02 in absoclute value.

Recall that unlike random walk versions of the model, the DSLR model
does not impose any zero restrictions on the law of motion for m“tﬂc . Conse-

k

: i . i : -£
quently, it can in principle accommodate serial persistence in ¢ “Ac_ and any

o
pattern of Granger causality between the elements of Qt. However in practice our
particular parameterization of the (et'Hb) process and the corresponding cross

equation restrictions imposed by the DSLR model prevent it from fitting the degree



w (B
of serial correlation observed in ¢"tﬂct. This can be seen by comparing the VAR
implied by the DSLR model with the corresponding unconstrained VAR (see Table
3.1). Notice that the first row of coefficient matrices in these two VARs closely
resemble each other. This suggests that the DSLR model fits the ¢_t(ct~§t} pro-
cess fairly well. However the (2,2) element of the coefficient matrix on the
first lagged value in the unconstrained VAR is .026, more than three standard
deviations away from the unconstrained estimate of .313. Of course under the
random walk hypothesis this coefficient would be 2zero, which is another way of

seeing that the zero restrictions implied by that hypothesis are incompatible with

the data.

4. The Continuous Time Permanent Income Hypothesis

4.A The Model

In this subsection we present the continuous time analogue of the dis-
crete time model of consumption and output discussed in section 2. Our notation
is the same as that used in sections 2 and 3 except that all random variables are
assumed to evolve in continuous rather than discrete time. In addition, we adopt
the convention of placing the time index of a continuous time random variable in
parentheses.

The preferences of the representative consumer are given by:

2l

(4.1) E. | e"rt{— % [c(t)~b(t)]2

-a(t)h(t) }dt,

where b(t) = b exp(d8t), al{t) = = exp(26t), r, b, a, 8 > 0, and r-28 > 0. In
(4.1), b(t) is the representative consumer's time t bliss point for consumption,
a«(t) measures the disutility of work at time t, c(t) is consumption at time t and
h(t) work effort at time t.

As before, there is an aggregate technology that converts capital, k(t),

and labor effort into consumption goods:ngf

(4.2) 7(t) = min{dk(t),t(t)h(t)} + e(t).
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Here, t(t) represents the (possibly) stochastic labor requirement per unit of
capital, § > 0, and e(t) is an aggregate shock to the time t production func-

tion. We impose the continuous time analogue to condition (2.4):
(4.3) r = §, where § = § - d,

where d > 0 is the depreciation rate on capital.

The economy-wide resource constraint is given by
(4.4) y(t) = e(t) + Dk(t) + dk(t),

where D denctes the time derivative operator.
The representative consumer's problem is to maximize (4.1) over con-
tingency plans for setting e(t), Dk(t), h(t), and y(t) as a function of I(t), sub-

jeet to (4.2) and (4.4) and the constraint

(4.5) Eg f e—rtk(t)2dt < w,
0

The set I(t) is composed of all model variables dated t and earlier. We assume

that
(4.6) Sk(t) = t(t)h(L).

Relations (4.1), (4.2), (4.4) and (4.6) imply that the representative consumer's

problem is to maximize:
(u.7) g [ e %[5k(t)—Dk(t)+e{t)—b(t)IE—H(t)k(t)}dt

by choice of a contingency plan for Dk(t), subject to (4.5). In (4.7), H(t) =
§a(t)/t(t). Let
(4.8) x (t) = & [ e °TE_x(t+r)dr,

P 0 12

for any x process such that (4.8) converges. In Appendix B we show that the equi-

librium laws of motion for Dk(t) and ec(t) can be written as
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(4.9) Dk(t) = e(t) - ep(t) + bp(t) - b(t) - Hp(t}/ﬁ
e(t) = ep(t) + b(t) - bp(t) + 8k(t) + Hp(t)/&.
As before we let y(t) denote net output: y(t) = c(t) + Dk(t). Then
(4.10)  e(t) - y(t) = ep(t) - e(t) + [b(t)~bp(t)l + Hy(€)/8
and

(4.11) De(t) = e (t) - Uy (t) + Db(t) + Hy (t)/8 - H(t)

P P p

where u_ (t) is the change in the value of xp(t) due to a disturbance in x(t) that
is unpr;;ictable on the basis of I(t-t), for all t > 0. (See Appendix B for a
more careful discussion of this point.) Finally, we say that consumption satis-
fies the continuous time RWH if De(t) is a continuous time white noise process
with deterministic time varying drift. This does not imply that the detrended
first difference of measured consumption will satisfy the discrete time random
walk hypothesis. Consequently the empirical results of section 2.B cannot be used
as evidence against this version of the model. In the next subsection we describe
a parameterization of the unobserved exogenous forcing variables which satisfies

the continuous time random walk hypothesis. We refer to this version of the model

as the continuous time random walk {(CRW) model.

4_.B The Continuous Time Random Walk Model (CRW)
Given our assumptions on the b(t) process, relation (4.11) implies that
e(t) is a random walk with deterministic drift if, and only if, H(t) is determin-

istie. Accordingly, we assume

(4.12) H(t) = H exp(8t),

where H > 0. The shock to endowment income is assumed to satisfy,
(4.13) e(t) = e1(t) + ez(t),

where
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n.(t)

Dei{t) = e, exp(et) + )
(ai+D}

where a; > 0, i = 1, 2, and a; is not equal to a,. Let x(t) = [n1(t) n2(t)]‘. The
vector x(t) is the continuous time linear least squares innovation to the joint

[eq(t) eE(t}] process and satisfies,
(4.14)  E[x(t)x(t-u)'] = exp(26t)g(u)Vv,

for all real values of u. Here, g(u) is the Dirac delta generalized function
and V is a two by two positive definite symmetric matrix of constants. Thus, e(t)
is the sum of two stochastic processes whose first derivatives are AR(1) continu-
ous time stochastic processes. The reason for assuming that the endowment process
is the sum of two stochastic processes, the realizations of which are separately
observed by agents, is to guarantee that the observed bivariate consumption and
income process is of full spectral rank. An alternative way of ensuring this
condition is to suppose that a; = a, and assume that observations on the average
value of consumption and income over the diserete sampling interval are contami-
nated by measurement error. Under these circumstances the true consumption and
output process would not be of full spectral rank but the output and consumption
process observed by the econometrician would not display any stochastic singulari-
ties. (See Hansen and Sargent [1980a] for a general discussion of error terms in
linear rational expectations models.)

Substituting (4.12) and (4.13) into (4.11), we obtain

(4.15) De(t) = n, (t)/(a,+8) + wg(t)f(ag+6) + TC exp(et)

1

where T is a positive scalar constant. According to (4.15), the derivative of

el
} 4
consumption is a serially uncorrelated continuous time white noise process.iLg;

Substituting (4.12) and (4.13) into (4.10) we obtain,

(4.16) e(t) - y(t) = Dej(t)/(al+5) + DeZ(t)f(a2+6) + Tc exp(8t)

2

m

where T,> is a positive scalar. We define the vector
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q*(t) = [c*(t)-y*(t),(D+0)c*(t)]",

where c*(t) = exp[-8tle(t), y*(t) = exp[-otly(t). Relations (4.13), (4.15), and

(4.16) imply that g¥(t) has a continuous time VAR(2) representation:

(4.17) AC(D+9Jq*(t) = X(E) + TC

where
(4.18) A(D) =1 + A .D+ 4 _D°
‘ c cl e2” !
(a1+a2)/(aTa2) —1/(a1az) 1/{3132) 0
A = , A = ;
cl 0 0 c2 0 0
1 *
\7a,  1/a, n1(t)/(a1+5)
Xt) =
1 1 n¥(t)/(a,+8)
2 2
n¥(t) = exp[-8tln, (t), i =1, 2,
and
E[X(t)X(t-u)'] = £(u)v,.

In (4.17) T, is a two dimensional vector of positive constants and in (4.20) VC is
a two by two positive definite symmetric matrix of constants. An implication of
(4.17) and (4.18) is that c(t) satisfies the continuous time RWH. This does not

imply that measured consumption will satisfy the discrete time RWH.

4.C The Continuous Time Stochastic Labor Requirement Model (CSLR)

In this subsection we display the continuous time analogue to the dis-
crete time model of section 2.C. Our specification of b(t) and a(t) is the same
as that given in section 4.B. However, we abandon the assumption that the labor

requirement per unit of capital is nonstochastic. Instead, we assume

(4.19) H(t) = H exp(st) + e(t)/(f+D)

(]
.

where E[a(t)s(t—u)'} = exp(Zet)g(u)ui and cf > The shock to endowment income,

e(t), is assumed to satisfy
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(4.20) De(t) = e exp(ot) + n(t)/(a+D)
where E[n(t)n(t-u)] = exp(zet)g(u)aﬁ and ai > 0. Let x(t) = [e(t) a(t)]'. The

vector x(t) is the continuous time linear least squares innovation to the joint

[H(t),e(t)]| process and satisfies
(4.21)  E[x(t)x(t-u)'] = exp(28t)g(u)V

where V is a two by two positive definite symmetric matrix of constants.

Substituting (4.19)-(4.20) into (4.10) and (4.11) we obtain
(4.22) c(t) - y(t) = De(t)/(a+8) + SH(t)/(f+8) + TCT exp(8t)
De(t) = n(t)/(a+s) + [D-8]8H(t)/(f+8) + T,o exp(et)

where T,, and T,, are positive scalar constants. Relations (4.19)-(4.22) imply

that q*(t) has the continuous time VAR(2) representation:

(4.23) A,(D+0)g*(t) = X(t) + T,

where

2

it

a+f's/a  f/a-1 1-f/a 0
Ay = /£(a+6), Ay = /f(a+s),
-a(f+8) £+6 -(f+8) 0
T/aI 1/f n*(t)/(a+s)
X(t}) = '
1 -8/f e¥(t)/(f+8)
n¥(t) = exp[-8t]n(t), e*(t) = exp[-0tle(t),
and
E[X(E)X(t-u)"] = g(u)V,.
In (4.23) T, is a two dimensional vector of positive constants and in (4.24) V, is
a two by two dimensional positive definite symmetric matrix of constants. Rela-

tions (H4.23) and (4.24) imply that c(t) does not satisfy the continuous time RWH.
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5. Empirical Results for the Continuous Time Models

Before considering the empirical performance of the fully parameterized
versions of our continuous time model, we first consider implications of the CRW
model which do not depend on the specific parameterization of the e(t) process.
From the perspective of the continuous time model, measured consumption is the
time average of consumption over the discrete time sampling interval. It then

follows that measured Ac,_ is the average of innovations to underlying continuous

t
time consumption from the beginning of quarter t - 1 to the end of quarter t.
Since the guarter t - 1 innovations also appear in ﬁct_1, the continuous time RWH

implies that dct and Act_1 have nonzero covariance. In addition, act and v i
will also be correlated because continuous time output is correlated with previous
innovations to continuous time consumption and y._; is the average value of output
during quarter t - 1. For these reasons, time aggregation can in principle ac-
count for the rejections of the RWH reported in section 2.B. A simple extension
of the preceding argument shows that the continuous time RWH implies that the
detrended first difference of measured consumption is uncorrelated with consump-
tion and income lagged two periods and more. In subsection 5.A we test the latter
orthogonality conditions, and the continuous time RWH's implications for the auto-
correlation structure of o_taet. In subsection 5.B we discuss the way in which
the fully parameterized versions of the continuous time models are estimated and

tested. Finally, in subsection 5.C we report empirical results for the CRW and

CSLR models.

5.A Simple Tests of the Continuous Time RWH

Abstracting from growth, Working [1960] showed that the first difference
of a time averaged continuous time random walk has an autocorrelation at lag one
of .25 and zero at higher lags. Christiano and Marshall [1987] showed that, after
rounding to three digits, this result is also valid when ¢ = exp[.004568]. Thus,

the continucus time RWH implies that wo defined in (2.15)', has mean 2zero and

t?

autocorrelation .25 and 0 at lags 1 and 2, respectively.
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We began our investigation of the continuous time RWH by estimating the

autocorrelation of ¢"tac at lag 1. Define the functions

¢

(5.1) i, & H(¢'tac C) = (v, (0 ¥, .- 4:2)]'

: g = EHRaYd = ARpN Rl mHYe L
and

0 ., .-t 0.0

(5-2) Ht = H(¢ Mt'pT’C )y
where v, is defined in (2.15)" and o) = E¥w) /E(v)°, i = 1, 2, .... Under the
continuous time RWH, p? - .25, Moreover, Et_aﬂg = 0, which implies EHE = 0.2:1/

-t ; 3 g 5
Since ¢ “Ac_ is by assumption a stationary and ergodic stochastic process, this

t
set of unconditional moment restrictions can be used to estimate the parameters ¢

and p? using the GMM procedure described in Hansen [1982]. Define the function gs
7 !
= (1/T)tz1Ht° Qur estimator of (Co,p?) is the argmax of gq' H%TgT, where Wy is a

consistent estimate of the spectral density of H0 evaluated at frequency 0.2:2/

£

Table 5.1 reports point estimates and standard errors for p The col-

1
umn marked c,, denotes the consumption concept used in Flavin [1981] and the col-
umn marked ¢ 4 + cyq denotes the consumption concept used in Hall [1978]. Notice
that for all measures of consumption and all sample periods, the estimated value
of 0, is well within one standard deviation of .25. Proceeding as above, wWe also
used Hansen's [1982] GMM procedure to estimate and test the null hypothesis og
= 0. In no case can we reject this null hypothesis, at the five percent signifi-

cance level, Consequently, this set of tests provides virtually no evidence

against the continuous time RWH.

Next, we tested the continuous time RWH's implication that ¢_t£\ck is
uncorrelated with elements of agents' time t - 2 information sets, i.e., Et 2@3
= 0. This conditional moment restriction implies the unconditional moment re-
e 0" & ; : . ) =
. Y — 1 y - ) ~ :
striction Hutzit = 0 for all Zie contained in It—z’ 1% T 2% In practice Zie
and 2,5, wWere specified as:

, o -(t-2) =(t=4) ~(t=2)~ -(t-U)~ ;
(5.3) Zip = [1,¢ BeL oyeveyd de, ),0 Ve preeest jt-4]
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Al
and,
' ——_— -(£-2) -(t-4) ) 5
(5.3) Zye = [1,6 ey 5penes0 Aey yy0 (e, Ve o)
-(t-4) ~ i
.. !¢ (ct—u_yt—ll)] .

~

We tested the null hypotheses Ewgzit =0, 1 =1, 2 using the GMM proce-
dure described in section 2.B. In particular, our estimator of c? is the argmax

—— g 2 ; : -
of Jijp = giTwT i1 where gir = (1/T)t20¢»tzit and Wy is a consistent estimate of
the spectral density matrix of VeZit evaluated at frequency zero. Under our null

hypothesis, the minimized value of Jj¢, i = 1, 2 is asymptotically distributed as
a chi-square random variable with six degrees of freedom.

Significance levels of the computed test statistics appear in the "Lags
2 - 4" portion of Table 5.2. Three features of these results are worth noting.
First, in only one case do the significance levels in the "Lags 2 - 4" part of the

table fail to exceed their counterparts in the "Lags 1 - 4" part of the table.

Second, in only one case can we reject the null hypothesis, Ewgz1t = 0, at the one

percent significance level. Also, in only one case can we reject the null hypo-
thesis Ewgz2t = 0 at the five percent significance level,.

We conclude this section by reporting the results of testing the joint

hypotheses, {Ewgzitzﬁ,e?z.25}, i = 1, 2. Each of these null hypotheses imply the

set of nine unconditional moment restrictions, EHSZi* = 0, where Z;¢ is the two by

nine block diagonal matrix with first and second diagonal blocks zit and 1, re-

; ; : & 0 5
spectively, i = 1, 2. OQur estimator of parameters o, and LO

Y

were the argmax of

JiT = g;INE%gQT, where gyr = (1/T) ) H*Z‘t and W;p 1s a consistent estimate of the

: . g=g © *
. " : 5 e ; 5 ; : g
spectral density matrix of H““Lt evaluated at frequency zero, i = 1, 2. The mini-
¥
mized value of J;p, 1 = 1, 2 is asymptoticalily distributed as a chi-square random

variable with seven degrees of freedom. Significance levels of the test statis-

tics are reported in Table 5.3. Two important results emerge here. First, we can

never reject the null hypothesis that EHSZzt = 0 at the one percent significance
I
| level. Second, in only one case can we reject the null hypothesis that EHOZ = B

£ 1t



e
at the one percent significance level. However, this exception occurs when our
data set is used over the sample period 1951,3-1985,3 in which case the signifi-
cance level of the chi-square statistic is .008.

In sum, the evidence against the continuous time RWH is sufficiently
weak to warrant investigating the CRW model described in section U4.B. Since that
model embodies a simple parameterization of the e(t) process, it allows us to
& ). At the same

investigate the cross dynamics between ¢'tﬁc and ¢

t Ce-17Y¢-1
time the evidence reported in this subsection with our data set contains suffi-
cient evidence against the continuous time RWH to suggest that deviations from the
CRW model are worth investigating. In subsection 5.B we discuss the ways in which

the CRW and CSLR models are estimated and tested.

5.B Estimation Strategy for CRW and CSLR Models

In section 4 we derived the constrained continuous time VAR representa-
tions for q*(t) implied by the CRW and CSLR models [see (4.17)-(4.18) and
(4.23)-(U4.24) respectively]. In order to proceed with estimation we must deduce
the implications of these VARs for the probability law of the vector of observable
variables. We define q(t) to be the 2x1 continuous time stochastic process whose
first element is the difference between detrended quarterly averaged consumption
and gross output, and whose second element is the detrended first difference of
quarterly averaged consumption. The vectors g¥*(t) and q(t) differ in two impor-
tant respects. First, g®*(t) involves a measure of detrended NNP, whereas q(t)
involves a measure of detrended GNP, Second, g¥*(t) represents point in time mea-
sured variables, whereas g(t) represents variables which have been averaged over
the discrete data sampling interval.

Cur strategy for cbtaining the probability law for q(t) is to derive the
linear mapping relating q*(t) and q{t), and then to use this expression to substi-
tute out for q*(t) in terms of q(t) in (4.17) and (4.23). We proceed by first

obtaining the linear mapping between undetrended q*(t) and undetrended g(t). Let
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z(t) denote the undetrended process underlying q(t), i.e., z(t) =
[e(t)-F(t),De(t)]'. Let Z(t) denote the undetrended, averaged data underlying

q(t), ie., z(t) = exp[ot]g(t). Formally,

1 1
Jr [C(t—r)—gfft—ﬂ]dr _r [C(t—r)—ﬁ(t—:)]dr
0 0

(5.“) E{t) = =

1 11
[ [e(t-1)=c(t-1-1) |d= [ J pe(t-t-u)duldz
0 0 0

1
Here we have used the fact that [ De(t-u)du = c(t) - c(t—1).243/ In operator

0
notation:iéif
{5.5) z(t) = G(D)z(t),
where
D 1 0
(5.6) G(D) = [(1-e77)/D]

o [(1-eP)/p]

Let g(t) denote the undetrended value of q*(t), i.e., q(t) = exp(8t)

q*(t) = [e(t)-y(t),De(t)]. In operator notation, the link between q(t) and z(t)

is given byiéé/

£5.7) q(t) = H(D)z(t)

where

. D o0
(5.8) H(D) = .
D'+ d o pya

Substituting (5.7) inte (5.5), we obtain

(5.9) q(t) = H(D)G(D) 'z(¢t)

which provides a mapping between the continuous time processes q(t) and z(t) i.e.,
between undetrended q¥*(t) and undetrended g(t). Finally, the link between q(t)

and g*(t) is obtained by multiplying both sides of (5.9) by exp(-6t):

(5.10)  q*(t) = H(D+6)G(D+6)" '(t).
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Substituting (5.10) into (4.17) and (4.23), we obtain the time series representa-
tions for q(t) implied by the CRW and CSLR models.

We now describe the procedure used to estimate the continuous time mod-

els. Define
(5.11) Q(t) = q(t) - Eq(t).

Suppose we have a sample on Q(t), t = 1, 2, 3, ..., T. Our estimation criterion
is the frequency domain approximation to the Gaussian density function suggested
by Durbin [1961], Hannan [1970] and Hansen and Sargent [1981a].§é1/ This eri-
terion requires that we compute the theoretical spectral density of the discrete
process {Q(t), t integer} at frequency w, Z(w). We accomplish this in two
steps. First, using results in Phillips [1958] it can be shown that the spectral
density of {Q(t), t real} implied by the CRW model and equations (4.17) and (5.10)

is given by:

(5.12) 2%u) = ¢(im+e)Ac(im+e)"1vc[ac(-im+e)']‘1¢(-im+e)'

for -» € w < =, where Y(s) = G(s)H(s)"!. The corresponding spectral density im-
plied by CSLR model is

(5:13) 2%(w) = w(iw+e)ﬁc(im+e)-1Vc[Ac(—iw+9)']-1w(—iw+9)'.

Second, Hannan [1970, p. 45] shows that the following "folding operator" links
Z(w) and 2%(w):

c .
27 (w+27k).

@

(5.14) Z(w) =

lr=
K=

I ~18

Equations (5.12) or (5.13) and (5.174) provide a computationally feasible algorithm

for obtaining Z(w) for a given w from [v,ﬂ,vcl or [w,A,UC]. Because this algo-

rithm is relatively slow, we used an alternative method based on a partial frac-
e

tions decomposition of Z“ (see Durbin [1961], Hannan [1970, pp. U405-407] and

Hansen and Sargent [1981]).
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The preceding estimation strategy assumes that the values of 6 and
EG(t) are known. We proceeded as in the discrete time case, by replacing Eq(t) by
its sample mean and setting 8 to .004568.2:8/ Finally we note that an implication
of results in Christiano and Marshall [1987], is that both the CRW and CSLR models

give rise to constrained SARMA(3,4) representations for Q(t).2:9/

5.C Empirical Results

OQur estimates of the CRW and CSLR models are reported in Table 5.4. The
parameter r is set equal to .0098, which implies an annual rate of time preference
of four percent.§419/ According to both the unadjusted and adjusted likelihood
ratio statistics (JT and Jp respectively) neither the CRW nor the CSLR model can
be rejected, at the five percent significance level.iLll/ This is to be con-
trasted with our findings that the discrete RWH and the DSLR model can be rejected
at close to the one percent level. Thus there is some evidence that the continu-
ous time formulations are in greater conformity with the data than their discrete
time counterparts.

The large number of parameters in the unconstrained SARMA used to con-
struct the likelihood ratio tests raises questions regarding the power of our
specification tests. Since the SARMA(3,4) is the most parsimoniously parameter-
ized unconstrained model that nests the continuous time structural models, we
cannot formally compare the performance of these models with a more tightly para-
meterized alternative. However, the point estimates reported in Table 5.4 suggest
a way of reformulating the continuous time models so that they are nested in an
unconstrained SARMA(2,3). The point estimates of as and a are extremely large so
that the e2(t} and e(t) processes are virtually indistinguishable from continuous

5el2d

time random walks. It follows that in the SARMA(3,4) representations implied

by both the CRW and CSLR models, the MA matrix coefficient in the fourth lag and

Hullay

the AR coefficient on the third lag are approximately =zero. Hence we can

compute likelihood ratio statisties by comparing the likelihood values given in
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Table 5.4 with the value obtained for the unconstrained SARMA(2,3). The resulting
test statisties, which are distributed asymptotically with 12 degrees of freedom,

are given below. (Significance levels are in parentheses,)

CRW Model CSLR Model
Jop 22.74 22.20
(.030) (.035)
JT 21.61 2110
(.o42) (.049)

According to these results, neither model is rejected at the three percent sig-
nificance level.

In Table 5.5 we report the constrained VAR for Q. implied by our esti-
mates of the CRW model. In principle this VAR is infinite ordered, so we use the
truncation rule of not reporting matrix coefficients whose maximal element are
smaller than .02 in absolute value. Notice that the CRW model and discrete random

walk versions of the model differ substantially in their implications for ¢“bact.

By construction, the implies that ¢“tac is uncorrelated with lagged values of

£

both ¢ CAc, and at(ct-—§t). While the CRW model embodies this restriction for the

t

continuous time point-in-time sampled data, it does not imply this restriction for
the actual measured, discrete time data.

Our evidence suggests that the effect discussed by Working [1960] is the
major factor accounting for the improved fit of the CRW model relative to the

diserete time RWH model since it accounts for the coefficient 0.27 that appears on

. . =T ; & y 2 Gl G : i z
the first own lag of ¢ act in the constrained VAR. This is within one standard

error of the point estimate (.313) of the corresponding ccefficient in the un-

; 5 ; y -t o . , .
constrained VAR. Moreover the first own lag on ¢ ‘Ac_ in the unconstrained VAR is
| ¥

more than three standard deviations away from zero. Taken together these observa-

tions suggest that the change in the value of the coefficient of once lagged
a5 B

@"tAct on ¢_“Act from 0 in discrete random walk versions of the model to 0.27 in

the CRW model has a substantial effect on the likelihood ratio statistic.
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The nonzero values of the coefficients on lagged values of ¢'t(ct-§t) in

the second row of the VAR in Table 5.5 corresponding to the CRW model also reflect
the effects of time averaging. However, when we compare these point estimates to
the corresponding entries in the unconstrained VAR we see that this effect may be
harmful with regards to the overall fit of the CRW model. This is because the

'(t-1)(c

sign on ¢ ) in the @'tact equation of the constrained VAR is posi-

t—1-§t-1
tive, in contrast to the negative sign of the corresponding term in the uncon-
strained VAR. Since the latter coefficient is not precisely estimated, this ef-
fect is not sufficiently important to negate the favorable impact of the effects
suggested by Working [1960].

Next, we contrast the empirical performance of the DSLR and CSLR mod-
els. The constrained VAR(2) implied by the DSLR model for Qt is reported in Table
3.1. The corresponding VAR implied by the CSLR model is reported in Table 5.5.
Because the constrained VAR's are in principle infinite ordered we again use the
truncation rule of not reporting matrices whose maximal element is smaller than
.02 in absolute value. Comparing Tables 3.1 and 5.5 we see that the DSLR and CSLR
models do not differ in any substantial way regarding the dynamics of m-t(ct-ﬁt).
However they do differ substantially in their implications for é_tﬁct. In the VAR
-(t-1) t

Ac in the ¢ “Ac

corresponding to the CSLR model the coefficient on ¢ £

t
equation is approximately .27 while the corresponding coefficient in the DSLR
model 1is approximately .03. Thus, the principal difference between the DSLR and
CSLR models is that the latter model is able to handle substantially more serial
correlation in o_z.ﬁcg.

In summary we find that the CRW and CSLR models appear to be empirically
more plausible than discrete random walk versions of the model and the DSLR
model. In our view the evidence against the CRW model and the CSLR model is far
from overwhelming. This is surprising given the simplicity and parsimonious para-
meterization of both these models. In both instances the impact of moving to a

continuous time model is an enhanced ability to mimic the serial correlation prop-

erties of the quasi difference of consumption.
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6. Conclusion

This paper develops and tests fully specified equilibrium models of
consumption and output which are consistent with the fact that measured aggregate
consumption does not behave as a random walk. It is not particularly challenging
to develop theories which can explain this faet in principle. The random walk
hypothesis is clearly a special case of the permanent income hypothesis. However,
as much of the recent literature on the macroeconomics of consumption reveals, it
is quite challenging to develop empirically plausible models of the comovements in
aggregate consumption and output.

We investigated two possible reasons why the change in consumption fails
to behave like a white noise, The first possibility is that exogenous shocks to
the economic system generate serial persistence in the first difference of con-
sumption. We modeled this shock as a stochastic perturbation to the amount of
labor required to make capital productive. As it turns out, there is a great deal
of evidence against this version of our model when it is implemented under the
assumption that agents' decision intervals coincide with the data sampling inter-
val. However, there is surprisingly little evidence against the continuous time
version of this model.

The second possibility is that the RWH holds in the (unobserved) con-
tinuous consumption process, with serial persistence in measured consumption being
an artifact of temporal aggregation. Our results indicate that when temporal
aggregation bias is taken into account, the fit of the random walk model improves
substantially. This suggests that the random walk hypothesis may yet be a useful
way to conceptualize the relation between aggregate consumption and output.

While both of the continuous time models that we tested outperform their
discrete time counterparts, it is very difficult, at least on the basis of aggre-
gate consumption and output data, to distinguish between the two continuous time
models. However the CEW model does have a number of implications which we did not

test in this paper but which call its plausibility into question. One such impli-
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cation 1is that the capital-labor ratio is deterministic. This implication is
obviously counterfactual. While this could be remedied by allowing for measure-
ment error, we regard the CLSR model as a more promising starting point for future
research.

A different set of implications which were not explored in this paper
concern the equilibrium wage rate and real interest rate. ©Unlike the quantity
variables, our models imply that these price processes are nonlinear functions of
the state variables in the system (see footnote 2.5). Conseguently, deriving the
laws of motion for measured wages and interest rates that are implied by our con-
tinuous time meodels involves technical difficulties not encountered in this pa-
per. Nonetheless, we believe that our results for the consumption and output are
sufficiently encouraging to warrant an empirical investigation of the model's

implications for relative prices.
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Footnotes

gél/In a formulation which allows for positive population growth, the
expression on the left hand side of (2.3) must be replaced by cp + k¢ -
[{1—d)/n]kt_1, where n denotes the gross growth rate of the population.

gLg/[-{amsen's [1986] model differs from ours in that he sets oy = O.

gLi/ThiS terminology is slightly unconventional since 8'1 is not the

gross rate interest in our model economy. (See footnote 2.5.)

2.4/ha11 [1978] and Flavin [1981] do not distinguish between the hypoth-
esis that consumption follows a random walk (possibly with drift) and the hypothe-
sis that consumption is a martingale (possibly with drift). While the latter
hypothesis is the actual focus of attention in the literature, it is typically re-
ferred to as the random walk hypothesis (RWH).

2.5/The derivation of the RWH in this paper and the derivation in Hall
[1978] impose strong restrictions on the underlying economic model. Hall derives
the BRWH by directly restricting the stochastic structure of the risk free real
rate of interest, Lty which he assumes to be constant. In our model, however, the
risk free real rate of interest, denominated in units of the consumption good, is
stochastic even under those circumstances for which the RWH is satisfied. To see
this notice that the representative consumer's intertemporal Euler equation for
one period risk free consumption loans c¢an be written as (bt-ct) E

ertEt(bt+1- ). Relation (2.14) implies Et(bt -¢, .) = (bg-c,) + H.. Conse-

Cee 5 o #1741

quently, ry equals 8 [I+Ht/{bt—ct)] so that ry will be stochastic even if Hg is
deterministic (so that the RWH is satisfied) as long as e is stochastic. Thus a
constant risk free real interest rate is not a necessary condition for the RWH to
hold.

oo
2:9/0ur measure of government Investment is a revised and updated ver-

sion of the measure discussed in Musgrave [1980].

2:7/0ur estimate of the size and trend of the government's share in
total consumption may be distorted by the fact that we ignore the service flow

from the stock of government capital in our measure of consumption and output.

34§’Hayashi [1982] also makes this assumption. (3See also footnote 2.10

below. )

2.9/1n contrast to our measures of consumption and income (e¢,y) and in
contradiction to the models of sections 2 and 4, the per capita growth rates of

consumption and income in both these data sets are quite different. Over the
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| sample period 1950,2-1985,3 the growth rates in c 4 + ¢4, ¢,4, and y  are .004987,
.003076, and .005502 respectively. (That Chq*Cs has a higher growth rate than c,g4

alone is consistent with the evidence in Table 2.1).

2:10/The idea of inducing stationarity in the observable time series by
geometrically scaling variables by the growth rate of the standard error in the
innovations to the underlying shocks in linear-quadratic rational expectations
models is discussed in Hansen and Sargent [1981]. We know of no analytically
tractable alternative way to accommodate the observed heteroskedasticity in the
data, which is consistent with the essential linearity of our model.

3Ll’/Equat:J'.on (3.4) can be seen as follows:

-1
(1-0"'L) 1
-1 - =2 =) [k*-(1-d)e” k* ]

o ~(le*o % - =

ce-Ye (kE-o kE_4) 1-(1-d)e~ 'L © =l
* = = =
Qt < '1* *'1* *'t*

e CLoq G~ Ciog eL-¢ ct_q

S
H(s» "L)a,

1

# &
where the last equality follows from (3.1) and (3.2) and kt = tkt.
§L§/According to the DSLR model it has a constrained ARMA(3,1) represen-

tation.

Z’-~‘~~:"5/Le~:'{: Q = ﬁt = Ear and let Z(w) and I{w) denote the theoretical spec-
tral density matriz and the periodogram of the Q. process respectively at fre-
quency wy = 2wj/T, j = 1, 2, ..., T. Using results in Hannan [1970] it can be

J
shown that the Gaussian log likelihood function can be approximated by

L., = -.5T log[2n] - .5 y tr[z(mj)"rtwj}l.
The theoretical spectral density matrixz of the Q(t) process is

& -iw, 4 1 -lw, " 4 —in R . _Lwé 1
Z(w;) = Hle e ) Als e ) VA(e e ~) H(se e )

3:%/That Q, is predicted to be SARMA(3,3) 1is proved in Christiano,

Eichenbaum, and Marshall [1987].

iLE/WhittlefS [1953] correction for small sample bias is as follows:
Let N equal the total number of parameters under the alternative hypothesis (ex-
cluding the covariance matrix of the observables), M = number of equations, and T

= number of observations. Then JT = JT(1—NIMT} where JT is the unadjusted likeli-
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hood ratio statistic and JT is the adjusted likelihood ratio statistic. When the
unconstrained alternative is a SARMA(3,4), N =19, M =2, and T = 141, so Jp =
0.932624?JT.

§4§/we also estimated the DSLR and unconstrained SARMA(3,4) models using
a one step version of the estimation method described in section 3.8 in which the
growth rate ¢ 1is estimated simultaneously with the other parameters of the
model. Under the assumption that Jqo is asymptotically distributed as a Chi-square
random variable with degrees of freedom equal to the number of restrictions im-
posed in the constrained model we can summarize our results as follows. Testing
the DSLR model, which has 16 degrees of freedom, yields a Jp statistic of 32.67
with associated significance level .008. Thus this model is rejected at the one

percent significance level.

4. Vgquation (4.2) differs from (2.2) in the timing of the productive
inputs. (4.2) results as a limiting case of (2.2) if we rewrite the latter as §t=

mln{ﬁt_g,tt_eht’S; + e, and let ¢ » 0 from above.

2:2/ynile De(t) is not a physically realizable process, its average over
any discrete interval of time is physically realizable.

0
t- 2 t

€, _q» Where |6] < 1 and e is fundamental for wE

is unigque under the statlcnarlty assumption on 1

E .p%o = E,_(e+0¢,_ )(e, ) = oEe :E&
62" ot

Eél/To see that E = 0, consider the Wold representation ¢E = €+
This representation exists and
used to justify GMM. Then
£-2 £-1 £ -1 . t £-1 which, together wle the
aeflnltlon of ChY establzshes Et 2[5 Ve —91(vt) ] 0. Trivially, Et—2$t = {,

establishing the result sought.

5:2/Tpe condition, Et > E 0 implies that HS is autocorrelated at lag
one but not higher. Consequently, inference was carried out using Hansen's [1982]
correction for serial correlation, imposing the restriction that HS has an MA(1)
representation. See Hansen, Heaton, and Ogaki [1987] for a discussion of the

efficiency gains associated with imposing the exact MA(1) structure on error terms
in GMM estimation problems. Similar MA(1) corrections were used for all the in-

ference carried out in this subsection.

s hr N
QAi’Treating measured consumption and income as unift integrals of the
underlying instantaneous quantities is a rough approximation to the methods used

by the Department of Commerce to gather data.



-36 -

2:5/1n deriving (5.6) we use the fact that

R - "
[ x(t-t)dr = [ e"x(t)dr = [(1-e7")/D]x(t).

0 0

iééfﬁquation (5.8) can be derived as follows:

c(t)-y(t) -Dk(t) -(D+d)k(t) ~
q(t) = = = H(D) = H(D)q(t)
De(t) De(t) De(t)

where the last equality follows from (4.4) and (5.5).

§¢1/F0r time domain methods of estimating continuous time models from
discrete data, see Bergstrom [1983], Harvey and Stock [1986] and Zadrozny [1984].

5.8/1he relationship between 8 and ¢ is ¢ = e?.

2:9/The particular SARMA representation corresponding to a given con-

tinuous time model is characterized by a third order scalar polynomial, Ed(-), the
two by two fourth order matrix polynomial, Cd(d, and the two by two positive
d
v

semidefinite matrix which satisfy:

z(w) = e vy /[ed e )Y (™) ].

Here, we impose the normalizations C9(0) = I,det[Cd(z)] = 0 implies [z| 2 1, and
Ed(D) = 1. The algorithm we used to calculate Ed, Cd, and V9 is the one described
in Rozanov [1967, chapter I, section 10]. Thus both continuous time models are

nested within the SARMA specification:

Ed(L>Qt = cd(L)xct,

where Xc* is the serially uncorrelated innovation in Q(t), with variance Ud, and
o PN d, d. 2 de3
o (I._) = 1 +E3L..+E2L +£3L_. '
c(L) = 1+ cfL + L%+ 5L« ciut,

5 / . i ; ; i " ; ¥ »
2:10/ e relationship between 8 in the discrete formulations and r in

. . . -r
the continuous formulations is 8 = e .

lei’We also estimated the CRW, CSLR, and unconstrained SARMA(3,4) mod-
els using a one step version of the estimation method described in section 5.B in
which the growth rates of consumption and output are estimated simultaneously with

the other parameters of the model. Under the assumption that Jp is asymptotically
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distributed as a Chi-square random variable with degrees of freedom equal to the
number of restrictions imposed in the constrained model we can summarize our re-
sults as follows: (i) testing the CRW model, which has 16 degrees of freedom,
yields a Jp statistic of 23.10 with associated significance level .111, (ii) test-
ing the DSLR model, which has 16 degrees of freedom, yields a Jp statistic of
24.35 with associated level .080. Thus neither continuous time model can be re-

jected at the five percent significance level.

2:12/That the reported point estimates imply that eg(t) and e(t) behave
essentially as continuous time random walks can be seen from the following argu-
ment . If x(t) is a continuous time first order autoregression: xft) =
e(t)/(a+D), e(t) continuous time white noise, then x(t) has an exponentially de-

clining impulse response function:

co

2(t) = [ e @Te(t-1)dr.
0
Therefore, the impulse response function for De,(t) is e_28T and for De(t) is
-1
2 '2T. These functions deecline so steeply that past impulses have negligible

effect on current values of Dez(t) and De(t).

5.13/1n the SARMA(3,4) implied by the CRW model, the MA matrix coef-
ficient on the fourth lag consists entirely of zeroes and the AR coefficient on
the third lag equals 0.9 x 10~'2. In the case of the CSLR model, the MA matrix
coefficient on the fourth lag has no element greater than 3 x 107 in absolute

value and the AR coefficient on the third lag is -7 x 1070,
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Table 2.1
Time Average of Relative Magnitude of Components of

Our Measure of Total Consumption1

Sample Period cnd/c cs/c csd/c cg/c ig/g
50, 1-59, 4 .384 .335 .018 .264 .227
(.014)° (.013) (.0013) (.024) (.018)

80, 1-85, 3 .324 428 .029 .219 176
(.002) (.003) (.0004) (.004) (.008)

1

The table provides time averages and standard deviations for the indicated ratios
over two sample periods. For variable definitions, see the discussion in the
text.

INumbers in parentheses are the sample standard deviation.
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Table 3.1

The Discrete Stochastic Labor Requirement (DSLR) Model

f a d ys

d
| Point Estimate*# .915 .215 .066 656.25
(0.24) (.085) (.035) (156.99)
-495 49
L. = -846.44 Jr = 32.14 J¥ = 29.97
T T “(.010) T " (.018)
! Unconstrained VAR(2) Representation for Q;+
| 1.070  -.136 -.204 -.206
‘ (.084)  (.132) (.084)  (.130) s
Q = Q + Q +J(
© |- o7y 313 | ©! .065 25 | B2
(.055) (.085) U-05“) (.085)

|

|

! 217.02 -.867

| EX X! i
et -.867  92.74

Constrained VAR (Truncated) Implied by the DSLR Model

1.166  -.189 ~.201 0
Q. = Q - Q + X
b o120 Lo2e| b o034 of T2 Ot
| 261.14  -18.64
cXtX£ =

_18.64 107.85|

-495.49
(135.81)

4y2 .58
(118.17)

*Vd is the innovation in the SARMA representation implied by the DSLR model.

*¥Standard errors in parentheses.

+Jp 15 defined in footnote 3.5. Significance level of Jy and Jp in parentheses.

== - -
++Q, is demeaned [¢ e, -y, )¢ L’Jr.&ct].

+++Xt is the disturbance term in the VAR.



Table 5.1:
First Order Autocorrelations of

Detrended Consumption First Differences

Sample Period Cnd Chq *+ Cg c
51,3-85,3 .260 .237 .256
(.070) (.072) (.078)
52,3-85,3 .276 .269 .276
(.072) (.065) (.087)
51,3-79,1 .250 .201 .269
(.082) (.080) (.086)

'This table reports estimates of the first order autocorrelation of the detrended
first difference of consumption under the maintained hypothesis that higher order

autocorrelations are zero. The standard errors appear in parentheses.

Column

headings indicate the measure of consumption used. For variable definitions, see

section 3.4A.
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Table 5.2a:

Detrended First Difference of Consumpt,icm1 on
Lagged Values of Itself and Lagged Detrended Income

Lags 1 - U Lags 2 - 4
Sample . _
Period c,y Cod * Cgi¥q Cnd* ¥4 ey Chd * C51¥4 Chq:¥4
51, 3-85, 3 .001 .002 .008 .029 - 119 .013
52, 3-85, 3 .000 .001 .009 .029 <157 .007
51, 3-79, 1 .013 .007 .066 .159 142 . 105

iSignif‘icance levels of tests of null hypothesis that coefficients on lagged de-
trended first difference of consumption and lagged detrended income are zero.
Columns labelled "Lags 1 - 4" refer to tests that allow nonzero coefficients on
lags 1 - 4 of the explanatory variables under the alternative hypothesis (H;).
Columns labelled "Lags 2 - 4" refer to tests that allow only lags 2, 3, U4 to have
nonzero coefficients under H,. Column headings indicate the measure of consump-
tion and income used in the calculations. These variable definitions are given in
section 3.A.

Table 5.2b:

Detrended First Difference of Consumptionl on
Lagged Values of Itself and Lagged Detrended Consumption Minus Income

Lags 1 - 4 Lags 2 - 4
Sample B ~
Period C,¥ Chy * Ss¥g Cndr Y4 cyy Chd * C51¥g  Chge¥g
51, 3-85, 3 002 .003 .013 o 141 017
52, 3-85, 3 .000 .001 015 .086 220 .056
51, 3-79, 1 .018 .019 .084 210 149 .080

- E § = = P 3
For an explanation, see Table 5.2a. The only difference between this table and the
latter one is that here detrended income is replaced by detrended consumption
minus income as an explanatory variable.
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Table 5.3

GMM Test of Continuous Time Random

Walk Hypothesis for Consumption]

Lagged Detrended Income Lagged Detrended
Consumption Minus Income

Sample . .

Period G ¥ Cnd *+ Cs1¥4 Chg: ¥4 e,y Cnd *+ Cg1Y4 Cnd+¥d
51, 3-85, 3 .008 170 .024 .028 .210 .029

52, 3-85, 3 .04 . 1817 .012 .118 270 .091

51, 3-79, 1 .040 174 <135 242 . 180 L0380

‘Significance level of test of joint hypothesis that regression on explanatory
variables lagged 2, 3, and 4 periods are zero and that the first order autocorre-
lation of detrended consumption first differences are zero. The first set of
three columns pertains to the case when the explanatory variables are detrended
first difference of consumption and detrended income. The second set of three
columns pertain to the case where the explanatory variables are detrended consump-
tion first differences and detrended consumption minus income.
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Table 5.4
The Continuous Time The Continuous Time Stochastic
Random Walk Model Labor Regquirement Model
Parameter Point Estimate® Parameter Point Estimate
a, .152 f .089
(.060) (.035)
a5 2757 a 11. 95
(81.81) (11.29)
d .0032 d .058
(.058) (.042)
Estimated Covariance Estimated Covariance
Matrix #% vV, Matrix#** |
488.51 -521.63 659.82 483,60
-521.63 719.52 483,60 465.28
£T = -843,249 ET = -842.982
(.058) (.066)
Jp¥%*% = 24,02 JT*** = 23.52
‘ (.089) (.100)

*Standard errors in parentheses.

*¥V, is the covariance matrix of the vector [ﬁ?(u}f{31+dj,n§(b)ﬁ{a

covariance matrix of the vector [n*(t)/(a+8),se*(£)/(f+s)].

*¥*¥Significance level of Jp and Jp in parentheses.



-4y -

Table 5.5

Comparison of VAR(2) Representations for Qt*

Truncated VAR Implied by the Continuous
Time Random Walk Model

1.126 -.033 -.300  .018 080  -.007
Q. = Q + Q + Q
¢ o011 270l &' o016 -.o73] B2 | .008  .o1g| U3
~.021  .003
- Q + K u¥
<003 - b05] Tt ok

255.87 -17.93

B % .* = :
ebet  lanes  tena2
Truncated VAR Implied by the Continuous Time
Stochastic Labor Requirement Model
1.241 -.072 -.343 .038 .096 -.016
Q, = Q + Q + Q
.o .217| ' |-0t0 -.075] ©2 |.o07  .020] 73
-.024 .006
+ Q&_ﬁ
-.001 -.005] ~
268.25 -22.90
Exctxct' =

-22.90 100.13

-t 5 -t
#Q, is demeaned [¢ “(ct«y#),a ﬂckj.

W E R - E[Qt Q _ s = 1,2,... under the null hypothesis of the CRW model | .
Xop = Q¢ - E[Qt Q,_giS = 1,2,... under the null hypothesis of the CSLR model .
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Appendix A
Derivation of (2.10) and (2.11)

The social planner chooses a contingency plan for capital to maximize

(2.7) subject to (2.5). The resulting stochastic Euler equation is:
E {[1-s8L""1[1-sL1k. } = E {[1-68L"'I(e b, 1-H_ }
£ £ & t 't £
or, since 68 = 1,

-7 Ife -b_1-H,}.

=1
(A.1) Et{[i—L I[1—6L]kt} - Et{

Note that we can rewrite the characteristic polynomial of (B.1) as
-1 -1
[1-27 "1{1-82] = [&-27 "1[1-Z].

The condition 68 = 1 implies that constraint (2.5) is binding (see Hansen [1986]),
so (A.1) can be solved by applying the forward operator [{:‘»-L'1]'1 to both sides of

the equation, yielding:

) I T IR -1,-1
k, - kg4 = Et{iﬁ-L 17 [1-L7 1(e -b,)-[6-L7 ] Ht}
= — . -5 )= s "
= By 1 o7 {(ep-by)-(eg, 1-by 4)-H, )
- 8L
- =] : @ _-‘[ o 3
= g€ { ] 8l(e, .-b, )-] 837 (e, b )= Y 8H_ .}
t j=0 E+] E+] §21 t+] B+ =0 E+]
Rearranging terms,
(8.2) k;- -k, = (B=1)E, E 5j{e.. b;..;) * By, = 8, = BE. E a-H
v C=i Ej:O T4+ C+] 24 i LJ:O L
Rewriting (A.2) using the notation defined in (2.8) results in (2.10). Equation

(2.11) is obtained by using (2.10) and the fact that ¢, = Sk, 4 - X + ec.
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Appendix B

Derivation of Decision Rules for the Continuous Time Model

This appendix provides an informal derivation of the decision rules,
(4.9) - (4.10) for the continuous time planning problem, (4.7). Proceeding as in
Hansen and Sargent [1980] we can show that the Euler equation for the social plan-

ner's problem is
(B.1) D(D-8)k(t) = D[e(t)-b(t)]| + H(t).
The unique solution to this problem which satisfies (4.5) is

(B.2)  Dk(t) = e(t) - b(t) - €, [ e T{e(ter)-b(ter)}dr - OE, [ e % H(t+r)dr.
0 0

This is easily shown to equal the first equation in (4.9) after the definition
(4.8) is taken into account. The second equation in (4.9) is obtained by sub-
stituting the first into the relationship c{t) = 8k(t) - Dk(t) + e(t). Equation
(4.10) is just the sum of the two equations in (4.9).

To derive (4.11), we first present some preliminary results regarding
xp(t}. Suppose the fundamental representation for x(t) is x(t) = C(D)e(t). Here,
C(s) = 0O implies Real(s) < 0 and the poles of C(s) lie in the closure of the left
side of the complex plane (see Sargent [1982] for a discussion of the link between
these conditions and e(t) being fundamental for x(t)). Then,

1 i C(D)
<Y = —GEt g

- c(D) - C(8)
£ D~ 8

D - 5 E(t)?

(B.3) xp(t} = -8E e(t) = -8

by a formula due to Hansen and Sargent [1980]. Multiply both sides of (C.3) by D

- & and rearrange, to obtain
(B.4) (D-é)xp{:} + dx(t) = 8C{8)e(t).

We identify Uy (t) with 8C(é8)e(t). To see wny, first write,
P

(B.5) x(t) = C(D)e(t) = [ e(x)elt-t)dr,
0

where the function ¢(=z), = =2 0 is uniquely defined by
(B.6) c(s) = [ e(t)e®"dr, Real(s) » O.
0

Equation (B.5) defines ¢ as the impulse response function of x(t) to e(t).
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Consider the effect of a disturbance in x(t) that is uncorrelated with
I(t-t), = > 0. This arises from a pulse in e(t), which leads to a revision in the
forecast of x(t+t) in the amount c(t)e(t) t 2 0. The permanent value of this
revision is 8C(é8)e(t). Thus the effect of the pulse in e(t) is to disturb xp{t)
by 6C(8)e(t), which is why we identify 8C(8)e(t) with M (t). We conclude that

P
(B.7) (D-8)x_(t) + 8x(t) = u_ (t).
b Xp
From (4.10),
(B.8) De(t) = Dep(t) + Db(t) - Dbp(t:) + &8Dk(t) + DHp(t)/G.

Equation (4.11) is obtained by first substituting the first equation in (4.9) into
(B.8) and then making use of (B.7).
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