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Abstract

We show that an increase in the minimum wage can have large effects throughout the earn-

ings distribution, using a combination of theory and evidence. To this end, we develop an

equilibrium search model featuring empirically relevant worker and firm heterogeneity. The

minimum wage induces firms to adjust their equilibrium wage and vacancy policies, leading

to spillovers on higher wages. We use the estimated model to evaluate the effects of a 119 per-

cent increase in the real minimum wage in Brazil from 1996 to 2012. The policy change explains

a large decline in earnings inequality, with spillovers reaching up to the 80th percentile of the

earnings distribution. At the same time, employment and output fall only modestly as workers

relocate to more productive firms. Using administrative linked employer-employee data and

two household surveys, we find reduced-form evidence in support of the model predictions.
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1 Introduction

To what extent do minimum wage policies shape earnings inequality? We show that—contrary to

competitive labor market theories—a change in the wage floor can have large effects throughout

the earnings distribution. Using the case of Brazil, where the real minimum wage increased by 119

percent from 1996 to 2012, we find that the policy change induced a notable decline in earnings

inequality, with spillovers reaching up to the 80th percentile of the earnings distribution.

Our analysis proceeds in three steps. In the first step, we develop a version of the canonical

Burdett and Mortensen (1998) model with worker and firm heterogeneity to assess the equilibrium

consequences of the minimum wage. Workers who differ in ability and value of leisure engage

in undirected job search, both from unemployment and on the job, in labor markets segmented

by worker type. Firms that differ in productivity post wages and vacancies in each market sepa-

rately. The equilibrium wage equation includes as a special case the specification due to Abowd,

Kramarz, and Margolis (1999, henceforth AKM). This framework nests two important benchmark

models of the labor market: that of perfect competition where workers are paid their marginal

product, and the monopsony outcome where workers are paid their outside option. In between

those two extremes, the minimum wage induces spillovers on higher earnings percentiles, as all

firms within affected markets adjust their wage and vacancy policies in equilibrium. Hence, the

strength of spillovers depends on the microstructure of the labor market.

Our main contribution is to quantify the spillover effects of a minimum wage increase in Brazil.

A difficulty with studying the effects of the minimum wage in previous work has been the small,

transient nature of policy variation and data limitations. The apparent size of the minimum wage

increase and the availability of administrative linked employer-employee data make Brazil a nat-

ural testing ground for our theory. Thus, in the second step, we estimate the structural model

via a mix of nonparametric identification and the method of simulated moments, using the AKM

specification as an auxiliary framework. By estimating the parameters guiding labor market flu-

idity and heterogeneity among workers and firms, we pin down labor market competition and

hence the strength of spillovers in our model. The estimated model replicates several untargeted

features of the wage distribution and wage dynamics in the data. We then simulate the effects of

the observed minimum wage increase on the distribution of wages and macroeconomic outcomes.

We find that the minimum wage induces a 14 log points fall in the variance of wages, with over
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half of the total impact due to equilibrium effects. While wage compression is most pronounced

at the bottom of the distribution, spillovers reach up to the 80th percentile. In line with recent

empirical findings by Alvarez et al. (2018), the policy leads to a sizable fall in frictional wage

dispersion for identical workers across employers by reducing the firm productivity pay premium.

At the same time, we find a muted negative employment and output response. The minimum

wage squeezes firm profits, leading firms to post fewer vacancies, but more so at low-productivity

firms. This effect is counteracted, however, by lower labor market congestion. Overall, this results

in equilibrium relocation of workers to more productive firms and associated efficiency gains.

In the third step, we confront our model with novel empirical facts on the impact of the mini-

mum wage in Brazil using administrative data and two household surveys. Consistent with our

model predictions, we estimate compression up to the 80th wage percentile due to spillovers,

which we identify off variation in the effective bindingness of the minimum wage across Brazilian

regions over time (Lee, 1999; Autor et al., 2016). These results are striking given that only around 2

percent of workers earn the minimum wage. Our data also allow us to test for effects on employ-

ment, including formal and informal sector jobs, as well as on firm exit and entry. Extending our

methodology, we confirm mild negative effects on employment, formality, and firm dynamics. We

corroborate key predictions of the model, including the absence of a mass point at the minimum

wage and worker relocation induced by the policy. Finally, we suggest a simple model-consistent

test for the reach of minimum wage spillovers, which confirms our previous findings.

Related literature. We contribute to three strands of the literature. The first provides a struc-

tural assessment of minimum wage effects in frictional labor markets. Eckstein and Wolpin (1990)

estimate a generalization of the Albrecht and Axell (1984) model with a minimum wage but ab-

stract from within-firm wage differences. Koning et al. (1995) and van den Berg and Ridder (1998)

use a wage posting model with on-the-job search to assess minimum wage effects on unemploy-

ment. Burdett and Mortensen (1998) and Bontemps et al. (1999) are the first to formalize the idea

that minimum wage spillovers may affect higher wages in an equilibrium search model. Flinn

(2006) highlights the importance of endogenous contact rates for optimal minimum wage levels

in a search and bargaining framework. Most recently, Flinn et al. (2017) analyze minimum wage

effects in a framework where firms endogenously choose whether or not to renegotiate wages as

in Postel-Vinay and Robin (2002), Dey and Flinn (2005), and Cahuc et al. (2006). Relative to these

papers, our contribution is to quantify the equilibrium effects of the minimum wage on wage
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inequality, for which we provide supporting evidence from a large policy change in Brazil.

A second literature is concerned with reduced-form estimates of the impact of a minimum

wage. A long list of papers has focused on employment effects, with summaries contained in

Card and Krueger (1995) and Neumark and Wascher (2008). Most findings point to small negative

effects on the number of jobs, though less is known for a minimum wage change as large as

that in Brazil. Fewer studies examine the effects on wage inequality, although notable exceptions

include Grossman (1983), DiNardo et al. (1996), and Machin et al. (2003). In a seminal contribution,

Lee (1999) uses variation in the effective bindingness of the minimum wage across US states to

estimate spillovers reaching high up in the distribution. In contrast, Autor et al. (2016) conclude

that spillovers cannot be distinguished from measurement error due to data limitations in the

Current Population Survey. Using administrative data and sizable policy variation, we document

widespread wage effects and little displacement due to the minimum wage in Brazil—striking

findings that we reconcile through the lens of our structural model.1

Finally, our findings speak to the literature on changes in between-firm pay differences as a

driver of inequality trends.2 While the econometric framework by AKM has been widely used

in applied empirical research, structural interpretations have proven problematic (Gautier and

Teulings, 2006; Eeckhout and Kircher, 2011; Lopes de Melo, 2018). Consequently, the fundamental

causes behind observed changes in the wage anatomy remain largely unexplored. A small number

of papers have provided different microfoundations for the AKM specification in the cross section,

including Barlevy (2008), Bagger et al. (2014a), and Burdett et al. (2011, 2016). We complement

these works by using an equilibrium model that nests the AKM wage equation to quantify the

effects of the minimum wage on compression in worker and firm pay components over time.

Outline. The paper proceeds as follows. Section 2 introduces the datasets, motivating facts, and

background on the minimum wage in Brazil. Section 3 develops our equilibrium search model

and characterizes the effects of the minimum wage in this environment. Section 4 estimates the

model, which we use in Section 5 to quantify the equilibrium effects of the minimum wage. Section

6 provides empirical evidence in support of the model predictions. Finally, Section 7 concludes.

1While we estimate minimum wage spillovers due to monopsony power in labor markets, similar mechanics arise
in the context of comparative advantage in skill assignments (Teulings, 1995, 2000, 2003), fairness considerations (Card
et al., 2012), hierarchical matching (Lopes de Melo, 2012) substitutability across tasks/goods (Stokey, 2016), educational
investment (Bárány, 2016), and endogenous union formation (Taschereau-Dumouchel, 2017).

2See Davis and Haltiwanger (1991), Dunne et al. (2004), Song et al. (2016), Barth et al. (2016), and Abowd et al.
(2018) for the US; Cardoso (1999) for Portugal; Iranzo et al. (2008) for Italy; Nordström Skans et al. (2009), Akerman et
al. (2013), and Lindqvist et al. (2015) for Sweden; Faggio et al. (2010) for the UK; Eriksson et al. (2013) for the Czech
Republic; Card et al. (2013) and Kantenga and Law (2016) for Germany; and Helpman et al. (2017) for Brazil.
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2 Data and motivating facts

2.1 Data description

To examine a decline in earnings inequality in relation to a concurrent rise in the minimum wage

in Brazil from 1996 to 2012, we combine an administrative dataset with two household surveys.

An introduction to these data follows, with further details relegated to Appendix A.1.

Our main data source is the Relação Anual de Informações Sociais (RAIS), a linked employer-

employee register by the Brazilian Ministry of Labor and Employment. Firms’ survey response is

mandatory, and misreporting is deterred through audits and threat of fines. Collection started in

1986, with coverage becoming near universal from 1994 onward. The data contain detailed infor-

mation on job characteristics, with 73 million formal sector employment spells recorded in 2012.

Although reports are annual, we observe for every job spell the date of accession and separation

in addition to average monthly earnings. We keep for each worker the highest-paid among each

year’s longest employment spells. As Brazil’s minimum wage is set in terms of monthly earnings,

henceforth we interchangeably refer to this income concept as “earnings” or “wages.”3

A substantial fraction of Brazil’s working-age population is not formally employed and hence

not covered by the RAIS. To address this gap, we complement our analysis using data from the

Pesquisa Nacional por Amostra de Domicílios (PNAD), a nationally representative annual household

survey. Respondents are asked to produce a formal work permit (Carteira de Trabalho e Previdência

Social assinada). Following Meghir et al. (2015), we classify as informal all self-employed and those

in remunerated employment without a work permit.

We also use a second household survey, the Pesquisa Mensal de Emprego (PME), conducted in

Brazil’s six largest metropolitan regions. The advantage of these data is that they feature for ev-

ery respondent two four-month interview spells separated by eight months. Starting in 2002, this

short panel component allows us to compute transition rates of workers between all employment

states. For presentation purposes, we label formal sector workers as “employed,” and pool infor-

mal sector workers and the unemployed under the label “nonemployed.” We distinguish between

the disaggregated categories in our empirical analysis of minimum wage effects later.

While each of these three datasets is geared at slightly different subpopulations and labor

3We also observe contractual hours, although we find little cross-sectional dispersion and changes over time along
this margin, see Section 6.2, plausibly due to Brazil’s rigid labor laws restricting part-time work arrangements.
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market questions, together they provide a holistic picture of Brazil’s labor market. We restrict

attention to male workers of age 18–49 to avoid issues related to female labor force participation

and retirement. Table 1 presents summary statistics for this worker group. The RAIS data show

that between 1996 and 2012, Brazil experienced an 18 log points increase in mean formal sector

wages while the standard deviation declined by 19 log points—a striking compression visualized

in Figure 19 of Appendix A.2. While the age distribution remained stable, there was a significant

increase in educational attainment over this period. Using the PNAD survey data, we confirm

congruent trends in the formal sector wage distribution. Relative to the formal sector, informal

wages are initially characterized by lower levels but similar dispersion. Throughout 2012, the

informal sector wage distribution saw an increase in its mean accompanied by mild compression.

At the same time, the employment rate remained stable while the formal employment share rose

by eight percentage points. Consistent with the increase in formality, the longitudinal PME data

show a slight rise in the inflow rate into formal employment and a decline in the outflow rate.

Table 1. Summary statistics from three main datasets, 1996 and 2012

Panel A. Linked employer-employee data (RAIS) 1996 2012
Mean St.d. Mean St.d.

Age 31.69 8.37 32.05 8.51
Years of education 7.78 3.92 10.73 3.18
Real wage (log BRL 2012, formal sector) 7.02 0.86 7.20 0.67
Observations 16,308,762 28,578,057

Panel B. Cross-sectional household survey (PNAD) 1996 2012
Mean St.d. Mean St.d.

Real wage (log BRL 2012, formal sector) 7.01 0.81 7.13 0.62
Real wage (log BRL 2012, informal sector) 6.26 0.81 6.56 0.78
Employment rate 0.95 0.95
Formal employment share 0.68 0.76
Observations 74,487 86,031

Panel C. Longitudinal household survey (PME) 2002 2012
Mean St.d. Mean St.d.

Transition rate nonemployed-employed 0.08 0.10
Transition rate employed-nonemployed 0.05 0.04
Observations 94,280 121,211

Notes: Statistics are for males of age 18–49. Real wage is average (RAIS) or usual (PNAD) monthly earnings. Respondents are classified
as employed if they are a domestic worker, employee, or self-employed. Formal employment is defined as being employed and having
a legal work permit. Transition rates are conditional on initial labor market status, divided into employed (formal) and nonemployed
(unemployed + informal). See Figures 17–18 and Tables 8–9 in Appendix A.1 for further details. Source: RAIS, PNAD, PME.
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2.2 Motivating facts about Brazil’s inequality decline

What explains Brazil’s inequality decline over this period? Alvarez et al. (2018) advance a statis-

tical decomposition of the inequality evolution in Brazil’s formal sector. Noting that seemingly

identical workers experience large pay differences across firms, they use the RAIS data to decom-

pose wage differences into worker and firm heterogeneity. Specifically, they estimate a two-way

fixed effects framework due to AKM, decomposing log wages wijt of individual i working at firm

j in year t within five-year periods as

wijt = αi + αj + γt + ε ijt, (1)

where αi denotes an individual fixed effect, αj denotes a firm fixed effect, γt is a year dummy, and

ε ijt a residual subject to the strict exogeneity condition E
[

ε ijt
∣∣ i, j, t

]
= 0.4

Table 2 presents the variance decomposition that results from estimating equation (1) over

repeated time windows. In the initial period 1996–2000, half of the total variance of wages of 69

log points is due to worker pay heterogeneity, while one quarter is due to the same individual

getting paid differently across different employers. Between 1996–2000 and 2008–2012, the total

variance dropped by 23 log points, primarily due to a decline in between-firm pay dispersion,

which constitutes 40 percent of the overall inequality decline over this period.5

Table 2. AKM variance decomposition, 1996–2000 and 2008–2012

1996–2000 2008–2012 Change
Total variance of log wages, Var(wijt) 0.69 0.47 -0.23
Variance of worker fixed effects, Var(α̂i) 0.34 0.27 -0.07
Variance of firm fixed effects, Var(α̂j) 0.16 0.07 -0.09
2×Covariance b/w workers and firms, 2 × Cov(α̂i, α̂j) 0.14 0.09 -0.05
Residual variance, Var(ε̂ijt) 0.06 0.04 -0.02
Observations 81,504,144 132,219,648
R2 0.92 0.92

Notes: Predicted variances (shares) due to components in log wage decomposition wijt = αi + αj + γt + εijt. Omitted are variance
terms involving year dummies γt, which account for a negligible share of the total variance. Source: Alvarez et al. (2018) using RAIS.

4Equation (1) is identified off workers switching employers across years for the largest set of individuals at firms
connected through worker flows. There has been a fruitful debate around the merits and potential biases of this frame-
work, including recent work by Andrews et al. (2008); Eeckhout and Kircher (2011); Bonhomme et al. (2017); Lopes de
Melo (2018); Card et al. (2018); and Borovičková and Shimer (2018). Alvarez et al. (2018) present a battery of specifica-
tion tests and robustness checks, and conclude that the model describes well the Brazilian data during this period.

5In an alternative decomposition, firm heterogeneity accounts for Var(α̂j)/(Var (α̂i) + Var(α̂j)) = 33% of initial
wage dispersion and ∆Var(α̂j)/(∆Var (α̂i) + ∆Var(α̂j)) = 58% of the change between periods.
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2.3 The minimum wage in Brazil

Motivated by Brazil’s inequality decline between 1996 and 2012, we turn to a salient change in the

labor market over this period: the rise in the minimum wage.6 Brazil’s statutory minimum wage

is set at the federal level and stated in terms of a monthly earnings floor. There are no provisions

for legal subminimum or differentiated minimum wages across demographics or economic sub-

divisions (Lemos et al., 2004).7 The nominal minimum wage is customarily adjusted once a year

according to a predetermined formula that depends on realized inflation from last year plus re-

alized GDP growth from two years prior. In practice, under various governments the calculation

has been subject to discretionary adjustments in consultation with Brazil’s tripartite body.

Brazil’s real minimum wage had deteriorated under high inflation before 1996 when a switch

in government ignited a gradual ascent of the wage floor by 119 percent in real terms, reaching 622

BRL or 410 PPP-adjusted USD per month by 2012. Accounting for aggregate real wage growth,

this corresponds to a 56.8 log points rise in the minimum wage relative to mean wages in the

formal sector. To put these numbers into context, the minimum wage as a fraction of median

wages increased from around 34 percent in 1996 to 60 percent in 2012. The negative comovement

of the minimum wage and the variance of log earnings over the preceding 25-year period, shown

in Figure 1, suggests that the minimum wage may be related to inequality dynamics in Brazil.8

Figure 1. Evolution of earnings inequality and the real minimum wage in Brazil, 1988–2012
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Notes: Statistics are for males of age 18–49. Real minimum wage is the annual average of the monthly time series. Source: RAIS, IPEA.

6While Brazil enacted other social policies during the mid-2000s, such as the Bolsa Família transfer program for needy
families launched in 2003, the minimum wage predates many of these policies and coincides with the timing of Brazil’s
inequality decline starting in 1996.

7The minimum wage is set for full-time workers with 44-hour contracts and adjusted proportionately for part-time
workers. Using information on hours in the RAIS and PNAD data, we find a small initial share of such workers and
no significant changes related to the minimum wage over time. Special labor contracts allow for parts of the minimum
wage to be paid in-kind in the form of accommodation and food, although in the PNAD data only 0.8 percent of
workers report receiving nonmonetary remuneration in 1996, and 0.3 percent of workers in 2012.

8By exploiting cross-sectional variation in the data, our empirical methodology will identify effects of the minimum
wage net of aggregate trends, so the fact that inequality declined in Brazil over this period is not crucial to our analysis.
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To what extent can the rise in the minimum wage account for Brazil’s concurrent inequality

decline from 1996 to 2012? Evaluating the effects of the minimum wage in Brazil over this period,

as well as designing such policies in other contexts, requires a model that is consistent with the

key roles of both worker heterogeneity and pay dispersion for identical workers across firms.

3 Equilibrium model

This section develops a version of the Burdett and Mortensen (1998) equilibrium model with

worker and firm heterogeneity that we use to assess the effects of a minimum wage increase.

In line with salient empirical facts, this framework can generate endogenous wage dispersion for

identical workers across employers. The Burdett-Mortensen model is widely used to study wage

determination, and our exposition closely follows that of Bontemps et al. (1999, 2000); Mortensen

(2003); and Jolivet et al. (2006). Our contribution is to allow for lots of empirically relevant hetero-

geneity in a tractable manner in order to use the estimated framework for quantitative analysis.

3.1 Environment

We study a stationary economy cast in continuous time that consists of a unit mass of infinitely-

lived workers and a mass M0 of firms who meet in a frictional labor market.

Workers. Workers differ in ability level θ
c∼ H (·) over support

[
θ, θ

]
. They can be employed or

nonemployed, the latter of which we map to the pool of unemployed plus informally employed in

the data later. Workers value a stream of consumption equal to their wage when employed or bθ

when nonemployed, discounted at rate ρ. In both states, workers search for jobs within markets

segmented by ability type, as in van den Berg and Ridder (1998), which can be thought of as a

continuum of separate Burdett-Mortensen economies with parameters indexed by θ.

Let λu
θ denote the job offer arrival rate for the nonemployed and λe

θ = sθλu
θ , for fixed sθ , the

arrival rate for the employed. A job offer entails a wage draw w ∼ Fθ(·) over support [wθ , wθ ].

Although workers take arrival rates and the wage offer distribution as given, both are determined

endogenously through firms’ equilibrium vacancy and wage posting decisions, possibly subject to

a minimum wage. Matches dissolve exogenously at rate δθ , leading a share uθ = δθ/
(
δθ + λu

θ

)
of

workers to be frictionally nonemployed. As employed workers gradually find higher-paying jobs
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through on-the-job search, the realized wage distribution Gθ first-order stochastically dominates

the wage offer distribution Fθ . Indeed, Gθ (w) = Fθ (w) / (1 + κθ (1 − Fθ (w))), where κθ ≡ λe
θ/δθ

governs the effective speed of climbing up the job ladder.

The values of nonemployed workers, Wθ , and of workers employed at wage w, Sθ(w), satisfy

ρWθ = bθ + λu
θ

ˆ wθ

wθ

max {Sθ(w)− Wθ , 0} dFθ(w)

ρSθ (w) = w + λe
θ

ˆ wθ

w

[
Sθ

(
w′)− Sθ (w)

]
dFθ

(
w′)+ δθ [Wθ − Sθ (w)] .

The optimal strategy of a nonemployed worker involves a reservation threshold ϕθ equal to the

flow value of nonemployment plus the forgone option value of remaining nonemployed:

ϕθ = bθ + (λu
θ − λe

θ)

ˆ wθ

ϕθ

1 − Fθ (w)

ρ + δθ + λe
θ (1 − Fθ (w))

dw.

In contrast to Albrecht and Axell (1984), our model features heterogeneity in the reservation

threshold across, but not within, θ-markets. We say the minimum wage is binding in market θ

whenever wmin > ϕθ so that workers’ reservation wage is Rθ = max
{

ϕθ , wmin}.

Firms. Firms are characterized by a productivity level p c∼ Γ0 over support [p0, p]. They operate

a linear production technology combining lθ workers of each ability type θ to produce flow output

y
(

p, {lθ}θ∈Θ
)
= p
ˆ

θ∈Θ
θlθdθ.

Motivated by Flinn (2006)’s insight that the endogeneity of contact rates has important impli-

cations for minimum wage effects, firms attract type-θ workers by posting vθ job openings subject

to cost cθ(vθ) : c′θ , c′′θ > 0. The firm commits to a wage wθ for its vacancies in market θ. Its wage

rank 1 − Fθ (wθ) together with its recruiting intensity vθ jointly determine a firm’s employment

level lθ (wθ , vθ). As production and the recruitment process are independent across markets, a

productivity p firm’s problem coincides with separate profit maximization in each market:

∀θ : max
wθ≥wmin,vθ

{(pθ − wθ) lθ (wθ , vθ)− cθ(vθ)} .

A firm makes positive profits in market θ only if it posts a wage between workers’ reservation
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wage Rθ and its productivity p. Hence, there is an active mass of firms Mθ = M0(1 − Γ0(p
θ
))

distributed Γθ(p) = Γ0( p| p > p
θ
) with lower bound p

θ
= Rθ/θ. Given optimal wage and vacancy

posting policies (wθ (p) , vθ (p)) in market θ, the wage offer distribution for a given aggregate

vacancy mass Vθ = Mθ

´ p
p

θ

vθ (p′) dΓθ (p′) is simply Fθ (wθ (p)) = Mθ

´ p
p

θ

vθ (p′) dΓθ (p′) /Vθ .

Matching. The effective pool of searching workers, u + s (1 − u), and vacancy mass, V, together

produce matches according to the Cobb-Douglas function χ [u + s (1 − u)]1−α Vα, where χ is a

matching efficiency parameter and α governs the elasticity of matches with respect to vacancies.

We can then express the nonemployed job finding rate as λu
θ = χ (Vθ/ (uθ + sθ(1 − uθ)))

α, the em-

ployed job finding rate as λe
θ = sθλu

θ , and firms’ contact rate as qθ = χ ((uθ + sθ(1 − uθ)) /Vθ)
1−α.

3.2 Equilibrium effects of the minimum wage

We define, characterize, and outline a solution algorithm for a search equilibrium with a minimum

wage in Appendix B.1–B.3. We illuminate here the model’s mechanism giving rise to wage disper-

sion for identical workers across firms and the effects of the minimum wage in this environment.

We focus first on a single θ-market. Job-to-job mobility renders firms’ wage and vacancy poli-

cies interdependent. In choosing a wage, firms take as given the distribution of competing wage

offers Fθ and weigh two opposing forces. On the one hand, a lower wage increases per-worker

profits. On the other hand, a higher wage rank raises steady-state employment through increased

poaching and decreased voluntary quits. As has been well known since Burdett and Mortensen

(1998), this trade-off leads more productive firms to post higher wages, leading to equilibrium

wage dispersion for identical workers.9 Perturbations to this environment lead to spillovers be-

tween all employers in a θ-market, even if only a subset of firms is directly affected.

Concretely, let us consider the effects of a minimum wage raise between steady states. A set

of firms will adjust their wage offers to comply with the new wage floor. As firm optimization in-

duces the equilibrium wage offer distribution to be continuous and wages to be strictly increasing

in productivity, other firms adjust wages in equilibrium to retain their pay rank. Such competitive

pressure leads the minimum wage to spill over to higher-paying firms. Finally, fewer vacancy

postings due to lower profit margins and firm exit will result in higher frictional unemployment.

9We focus here on the empirically relevant case of firm heterogeneity, which gives rise to a unique pure strategy
equilibrium. In contrast, the model with homogeneous firms has a unique mixed strategy equilibrium with an upward-
sloping wage density, different from the heterogeneous firms equilibrium considered here.
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We now turn to the economy with a continuum of segmented markets. In markets where

the minimum is binding, the strength of the above mechanism depends on the labor market con-

figuration. Minimum wage bindingness is determined by workers’ reservation wages. Markets

where the minimum wage is nonbinding remain unaffected. In this sense, labor market segmenta-

tion puts a cap on the spillover effects that are omnipresent in the original Burdett and Mortensen

(1998) framework. Evidently then, the mix of worker versus firm heterogeneity will be a crucial

input to our estimated model when considering equilibrium effects of the minimum wage.

The assumption of perfect market segmentation shuts down spillovers between markets for

the sake of tractability. Specifically, it allows us to characterize minimum wage effects that would

plausibly extend to more general formulations. Furthermore, it delivers as an equilibrium out-

come a structural wage equation resembling the AKM worker and firm fixed effects regression,

which permits us to interpret the data through the lens of our model. We will present evidence in

support of the assumption holding in our data, at least approximately. Consequently, we consider

equilibrium spillovers between firms within each θ-market but abstract from any spillovers across

θ-markets.10

Our framework relates closely to the empirical literature on pay decompositions into worker

and firm heterogeneity started by AKM. To see this, with exogenous contact rates, (λu
θ , λe

θ , δθ)

constant across θ-markets, bθ ∝ θ and a non-binding minimum wage, equilibrium wages in our

model coincide with the log additive specification (1) that has been popular in empirical studies

of the wage distribution and its changes over time:

log w(p, θ) = αi (θ) + αj (p) , (2)

where the “worker effect” αi(θ) = log θ is an increasing function of ability, while the “firm ef-

fect” or piece rate αj (p) = p −
´ p

p [(1 − Γ0(p) + κ(1 − Γ0(p)))/(1 − Γ0(p) + κ(1 − Γ0(x)))]2dx is

independent of worker ability and strictly increasing in firm productivity. Under more general pa-

rameterizations or a binding minimum wage, the exact decomposition in equation (2) is perturbed

but the wage function w
(

p, θ; wmin) retains its important monotonicity properties.

How does the minimum wage affect wage inequality in this equilibrium framework? It is

instructive to characterize the spillover effects of the minimum wage for a special case of the

10More generally, the degree of complementarity or substitutability between different worker types in the production
function guides the direction and strength of intermarket linkages between wages and job openings.
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model. We later confirm the generality of these results in numerical simulations.

Proposition. Assume exogenous contact rates, constant (λu
θ , λe

θ , δθ) ∈ R3
++ for all θ, and bθ ∝ θ. Then

for markets where the minimum wage binds, {θ|wmin ≥ ϕθ}, a marginal increase in the minimum wage

1. increases wages at all firms: ∂w
(

p, θ; wmin) /∂wmin > 0 ∀p;

2. decreases the productivity pay premium across firms: ∂
[
∂w

(
p, θ; wmin) /δp

]
/∂wmin < 0; and

3. decreases the returns to worker ability: ∂
[
∂w

(
p, θ; wmin) /δθ

]
/∂wmin < 0.

Proof. See Appendix B.4.

We interpret the proposition as follows. Part 1 states that wages increase for all workers with

a reservation wage below the minimum wage. In the presence of search frictions, rent sharing

is an equilibrium outcome, and the minimum wage acts as a transfer from firms to workers in

the markets it affects. Part 2 characterizes the nature of spillovers between firms within a market.

Wage increases at the initially lowest-paying firms are one-for-one with the minimum wage but

gradually decline for higher-paying firms, leading to a flattening of the firm productivity-pay

gradient. Finally, part 3 shows that among all affected markets, lower ability workers gain more

from the minimum wage, leading to a flattening of the worker ability-pay gradient.

Our model nests two important benchmarks: that of perfectly competitive labor markets with

workers paid their marginal product (λe
θ/δθ → +∞), and the monopsony outcome where all ob-

served wage heterogeneity reflects differences in workers’ outside option (λe
θ/δθ = 0). In both

cases, though for different reasons, there is no “frictional wage dispersion” across firms so that

the minimum wage induces no spillovers. For the intermediate range, the paramterization of the

model determines the strength of equilibrium spillovers. Hence, the model’s predictions for min-

imum wage effects depend crucially on estimates of the heterogeneous labor market parameters.

4 Estimation

We discipline the previous section’s model with Brazil’s RAIS linked employer-employee data.

For our core exercise, we estimate structural model parameters to the “pre-period” 1996–2000

through a mix of nonparametric identification and the method of simulated moments via indirect

inference (MSM-II) (Gourieroux et al., 1993; Smith, 1993). We use the estimated framework for the

quantitative analysis of a rise in the minimum wage.
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4.1 Estimation strategy

Our procedure exploits the model architecture to estimate key parameters in two stages, extending

Bontemps et al. (2000), Jolivet et al. (2006), and Bagger et al. (2014a,b) to our environment with

lots of heterogeneity. We pre-set a small number of “deep parameters.” The first estimation stage

then uses ordinal information on unobserved worker and firm types to nonparametrically identify

labor market parameters off worker flows. The second stage takes these parameters as given and

estimates via MSM-II the distributions of worker ability and firm productivity, using the AKM

two-way fixed effects specification in equation (1) as an auxiliary model.11

Pre-set parameters. We set the elasticity of the aggregate matching function to α = 0.3 (Petron-

golo and Pissarides, 2001) and normalize match efficiency to χ ≡ 1. We use the vacancy cost

function cθ(v) = cθv1+c1 / (1 + c1) with curvature parameter c1 = 1 (Shephard, 2017). We set the

discount rate to ρ = 0.0041, corresponding to a 5 percent annual interest rate (Hornstein et al.,

2011). The relative mass of firms, M0 = 0.05, replicates a mean firm size of about 20 in the data.

First stage. The goal of the first stage is to estimate four labor market parameters by worker

type: {δθ , λu
θ , λe

θ , Rθ}. We begin by estimating on the 1996–2000 RAIS data a version of the worker

and firm fixed effects model due to AKM as in equation (1): yijt = αi + αj + γt + ε ijt. Recalling

the strictly monotonic equilibrium wage mapping from our model, we group workers by esti-

mated AKM worker fixed effects decile and rank firms continuously according to their estimated

AKM firm effect. We nonparametrically identify labor market parameters by worker group off a

monthly panel of worker flows, making use of the structural restrictions implied by the model:

1. We estimate the monthly separation rate as the average rate of leaving formal employment

for at least one month: δ̂θ = E(nonemployedt+1|employedt, θ).

2. We estimate the job hazard from nonemployment, λ̂u
θ , by tracking workers for up to 24

months after leaving a formal sector job, and estimating via nonlinear least squares the fol-

lowing proportional hazard model: log P(# months until reentry ≥ t|θ) = t × log(1 − λu
θ ).

11An insightful strand of the literature has abandoned the assumption implicit here that workers and firms are glob-
ally rankable and instead allows for more flexible wage functions. See, for example, Shimer and Smith (2000); Lise
et al. (2016); Hagedorn et al. (2017); Bagger and Lentz (2018). Absent monotonicity in the wage function, estimated
AKM coefficients can be misleading vis-à-vis the respective economic models used by those authors. We show below
that AKM, albeit misspecified, corresponds closely to the economic model from the previous section, making it an
informative auxiliary model in our MSM-II procedure.
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3. We map the rate of upward mobility across AKM firm fixed effects ranks into the effec-

tive speed of climbing up the job ladder, κθ . To this end, we exploit the model restriction

Gθ(w) = Fθ(w)/(1 + κθ(1 − Fθ(w))) using nonparametric density estimates of the AKM

firm effects distribution, Gθ

(
α̂j
)
, and AKM firm effects starting distribution from nonem-

ployment, Fθ

(
α̂j
)
, to estimate κ̂θ .12 Combined with our estimate of the separation rate, we

obtain the job-to-job mobility parameter of interest using the model relation λ̂e
θ = κ̂e

θ × δ̂θ

and hence ŝθ = λ̂e
θ/λ̂u

θ .

4. We infer workers’ reservation wage as the smallest accepted wage, Rθ = mini{wi
θ}, which

Flinn and Heckman (1982) show is a strongly consistent estimator for the reservation wage

Rθ in our model. To limit the influence of measurement error, we trim the lowest percentile

of the starting wage distribution.

To simulate our model with more types, we feed a linear interpolation of the above labor market

parameters into the computer, using 50 grid points in practice.

Second stage. The goal of the second stage is to estimate the distributions of worker ability and

firm productivity. We assume that worker ability is distributed θ ∼ logN (µ, σ2) with mean µ and

standard deviation σ, and that firm productivity is distributed, p ∼ Pareto(ζ) with tail parameter

ζ and scale parameter normalized to one. While we could presumably improve the model fit by

being more flexible, we find the parametric families describe the data reasonably well.

We simulate from our model a large number of worker histories. The indirect inference step

consists of estimating the auxiliary model in equation (1) on simulated data, as we did on the RAIS

microdata. We choose structural parameters to minimize the sum of equally weighted squared

log differences between empirical and simulated moments. Heuristically, the following moments

inform these parameters in the indirect inference step: The distance between mean wages and

the minimum wage informs average worker ability, µ; the dispersion in AKM worker fixed effects

informs the standard deviation of worker ability, σ; the dispersion in AKM firm effects informs the

shape parameter of the firm productivity distribution, ζ; and the pre-estimated value of λu
θ informs

the vacancy cost intercept, cθ . Although each of these moments is particularly informative about

one particular parameter, all parameters are jointly determined.
12In a previous version of this paper, we obtained similar estimates for κθ using two additional model-consistent

methods: one from a job duration regression and the other by comparing the wage distribution of new hires to that of
the population.
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4.2 Parameter estimates

First stage. Figure 2 shows the 40 estimated first-stage labor market parameters by worker ability

decile. While the employment-to-nonemployment (EN) hazard in Brazil is similar to that in the

US, the nonemployment-to-employment (NE) hazard is lower and more in line with continental

Europe (Engbom, 2017). We find substantial heterogeneity in parameter estimates across worker

ability groups. The EN hazard of the lowest worker decile is more than four times that for the

highest decile,13 while the NE hazard is 32 percent lower and relative on-the-job search intensity

is 53 percent lower. Reservation wages equal the minimum wage for the lowest four deciles of the

ability distribution, and convex increasing thereafter. As we will see, this heterogeneity in labor

market parameters implies substantial sorting of higher-paid workers to higher-paying firms.

Figure 2. Estimated labor market parameters by worker ability decile, 1996–2000
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Notes: Each worker ability decile contains around 9 million observations. Source: RAIS.

Second stage. Table 3 shows estimated second-stage model parameters guiding worker and firm

heterogeneity. A log-normal worker ability mean value of µ = 1.85 and standard deviation of

σ = 0.48 together with a firm productivity Pareto tail index of ζ = 7.70 minimize the MSM-II

criterion.14 In Appendix C.1, we vary two parameters at a time to verify that our criterion function

is well behaved around the estimates. Appendix C.2 shows the estimated vacancy cost schedule.

Table 3. Estimated worker ability and firm productivity parameters, 1996–2000

Description Parameter Value Target
Log-normal mean worker ability µ 1.85 Min-to-mean wage ratio
Log-normal st.d. of worker ability σ 0.48 Variance of AKM worker effects
Pareto tail index of firm productivity ζ 7.70 Variance of AKM firm effects

Notes: Mean and variance of worker ability refer to log-normal distribution parameters. Tail index of firm productivity refers to shape
parameter of the Pareto distribution, with mean firm productivity normalized to 1. Source: simulations.

13Pessoa Araujo (2017) also finds a negative relation between separation rates and wages in Brazil’s RAIS data.
14Market segmentation ameliorates some challenges highlighted by previous work, as “frictional wage dispersion”

or AKM firm effects constitute only 24 percent of total wage variance. Our model produces a sizable mean-min ratio of
2.62 for a mildly negative mean flow value of nonemployment, Eθ [bθ ] = −0.27 (Hornstein et al., 2011). Similarly, we
need no implausibly large values of productivity to match the right tail of the wage distribution (Bontemps et al., 2000).
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4.3 Model fit

The estimated model successfully matches both targeted and untargeted moments of the cross-

sectional wage distribution and labor market dynamics for Brazil’s “pre-period” 1996–2000. Fig-

ure 3 plots the empirical and simulated wage distributions in panels (a) and (b).15 The model

overpredicts the mass of workers in the upper half of the distribution but overall does a good

job despite only targeting three moments of the underlying worker ability and firm productiv-

ity distributions. While not targeted, the simulated model produces a labor share—defined as

wage payments divided by output net of vacancy costs—of 0.62, which is close to its empirical

counterpart of 0.55 from the Penn World Tables (Restrepo-Echavarria and Reinbold, 2017).

Figure 3. Data vs. model: Wage distribution in the model and data, 1996–2000
(a) Data
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Notes: Histograms of wages constructed using 60 equi-spaced bins. For this figure only, model distribution includes added measure-
ment error ε ∼ logN (0, 0.036) to match residual variance from AKM regression. Source: RAIS and simulations.

Table 4 shows that the model matches separately the variances of AKM worker and firm effects

from the auxiliary regression. It also replicates the positive covariance between worker and firm

components due to higher-ability workers’ faster speed of climbing the job ladder, κθ . Overall, the

model generates 98 percent of the variance of empirical log wages net of the residual.

Table 4. Data vs. model: AKM variance decomposition, 1996–2000

Data Model
Total variance of log wages, Var(wijt) 0.69 0.62
Variance of worker fixed effects, Var(α̂i) 0.34 0.33
Variance of firm fixed effects, Var(α̂j) 0.16 0.16
2×Covariance b/w workers and firms, 2 × Cov(α̂i, α̂j) 0.14 0.12
Residual variance, Var(ε̂ijt) 0.06 0.00

Notes: Predicted variances (shares) due to components in log wage decomposition wijt = αi + αj + γt + εijt. Omitted are variance
terms involving year dummies γt, which account for a negligible share of the total variance. Source: RAIS and simulations.

15For this figure only, we added a small amount of measurement error ε ∼ logN (0, 0.036) to simulated wages to
match the residual variance from the AKM regression below. We have experimented with including the noise variance
as a parameter in the estimation routine with similar results. Of course no subminimum wages would occur otherwise.
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We also confront our model with two exercises that the literature has proposed as AKM diag-

nostic tools (Card et al., 2013). We view these as specification checks for the AKM regression on

our model-generated data, and also validating our model as a good description of the Brazilian

data. The first diagnostic tool is to check symmetry between wage gains and losses of switchers

across the firm effects distribution. Figure 4 shows an event study of average wages for workers

starting in the first and fourth firm effect quartiles. The qualitative and quantitative features of the

empirical event study in panel (a) are captured well by the model equivalent in panel (b).

Figure 4. Data vs. model: Event study graph of wage gains from switching firms, 1996–2000
(a) Data
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Notes: Figure plots changes in mean log wage upon switching employers between year 0 and year 1. Different lines show transitions
from first and fourth quartiles of AKM firm fixed effects distribution for the period 1996–2000. Source: RAIS and simulations.

The second diagnostic tool is a residual plot to detect systematic deviations from AKM’s ad-

ditive separability assumption. Comparing panels (a) and (b) of Figure 5 shows that the model,

while generating a smaller magnitude of systematic residual variance, reproduces the pattern of

residual variation across worker and firm effects groups found in the data. The minimum wage

induces low-low matches to be associated with a positive residual, indicative of the nonlinear

nature by which the wage floor affects pay schedules across worker and firm types.

Figure 5. Data vs. model: AKM wage residuals, 1996–2000
(a) Data
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Notes: Figure shows estimated AKM residual ε̂ijt = wijt − α̂i − α̂j − γ̂t by worker and firm effect deciles. Source: RAIS and simulations.
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5 Simulated policy experiment

We use the estimated model to simulate the following policy experiment: what are the steady-

state effects of a 44 log points increase in the real productivity-adjusted minimum wage between

1996–2000 and 2008–2012 on the wage distribution and macroeconomic variables, holding fixed

all structural parameters?

5.1 Equilibrium effects of the minimum wage

Effects on wage levels and wage inequality. In line with part 1 of our model proposition, the

minimum wage leads to higher wage growth at the bottom of the ability distribution. By construc-

tion, wages of the lowest-paid workers rise by 44 log points due to the minimum wage increase.

Since there is no mass of workers employed at the minimum wage, however, the gains from the

policy change are lower than that, even for the lowest-skill group. Panel (a) of Figure 6 shows that

workers in the lowest skill group, conditional on remaining employed, experience average wage

gains of 26 log points. The gains remain positive and significant, though gradually fading out,

until around the 80th percentile of the ability distribution.

The unequal incidence of the minimum wage induces a decline in the variance of wages of 14

log points, or 61 percent of the empirical decline. Panel (b) compares log percentile ratios in the

model and in the data over time. The P50–P10 declines by 22 log points in the model and 31 points

in the data, while the P90–P50 declines by 7 log points in the model and 13 points in the data. It

is worth highlighting that the share of workers employed at the minimum wage is far below 10

percent throughout this period, suggesting far-reaching spillover effects of the minimum wage.

Figure 6. Data vs. model: Effects on wage distribution, 1996–2000 and 2008–2012

(a) Wage change by worker ability
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(b) Log percentile ratios

1996–2000 2008–2012 Change
P50–P10 Data 0.86 0.55 -0.31

Model 0.96 0.74 -0.22

P50–P25 Data 0.48 0.33 -0.15
Model 0.58 0.48 -0.10

P75–P50 Data 0.60 0.50 -0.10
Model 0.65 0.60 -0.06

P90–P50 Data 1.30 1.17 -0.13
Model 1.16 1.09 -0.07

Notes: Panel ?? plots the change in log average wages between 1996–2000 and 2008–2012 from the model. Panel ?? shows log percentile
ratios of wages in the data and in the model. Source: RAIS and simulations.
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To quantify the importance of minimum wage spillovers, we propose a two-step decomposi-

tion. Let us define the “direct effect” as moving workers up to the new wage floor and the “indirect

effect” as the additional adjustment due to workers’ and firms’ equilibrium responses, as panel (a)

of Figure 7 illustrates. Panel (b) shows that around 40 percent of the total change in the variance of

log wages is due to the direct effect, both in the data and in the model. This leads us to conclude

that indirect effects or spillovers lead to sizable propagation of the minimum wage.

Figure 7. Data vs. model: Direct and indirect effects on wages, 1996–2000 and 2008–2012

(a) Illustration
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Var (w) Change
Panel A. Data
“Pre-period,” 1996–2000 0.69 -
Only direct effect 0.61 -0.08
Direct + other effects 0.46 -0.23

Panel B. Model
“Pre-period,” 1996–2000 0.65 -
Only direct effect 0.59 -0.06
Direct + indirect effects 0.51 -0.14

Notes: Panel (a) illustrates direct and indirect minimum wage effects. Panel (b) implements the decomposition, where in the data
“other effects” include indirect minimum wage effects and other effects outside of our model. Source: RAIS and simulations.

Macroeconomic consequences. Panel (a) of Figure 8 summarizes the impact of the minimum

wage on macroeconomic outcomes. As in Flinn (2006), firms respond by creating fewer jobs,

leading to a 0.4 percentage points increase in the aggregate nonemployment rate but sevenfold

that for the lowest-skill workers, as shown in panel (b). Gross output declines by a modest 0.1

log points, while output net of hiring costs and labor productivity increase by 0.4 log points.

Combined with a wage bill increase of 3.3 log points, the model predicts a labor share increase of

1.9 percentage points, broadly in line with the empirical 0.9 log points increase over this period.

What explains the muted negative response of the macroeconomy to the minimum wage?

We show in Appendix B.2 that firms’ optimal vacancy posting policy can be written as vθ(p) =

{qθπθ(p)/cθ}1/c1 , where πθ (p) is a per-vacancy profit function that is increasing in p. The min-

imum wage squeezes per-vacancy profits for all firms, ∂πθ (p) /∂wmin < 0, but relatively less so

for high-productivity firms. The dashed red line in Figure 9 plots the resulting distribution of

vacancy cuts in partial equilibrium, that is, for a fixed worker-finding rate qθ . In general equi-

librium, however, the fall in aggregate vacancies increases the worker-finding rate, encouraging
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Figure 8. Model: Effects on macroeconomic outcomes, 1996–2000 and 2008–2012

(a) Macroeconomic aggregates

1996–2000 2008–2012 Change
Nonemp. rate 0.142 0.146 0.004
Output 2.116 2.116 -0.001
Net output 2.013 2.017 0.004
Labor prod. 2.267 2.270 0.004
Wage bill 1.529 1.562 0.033
Labor share 0.616 0.635 0.019

(b) Nonemployment response by worker ability
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Notes: Panel (a) shows the effects on macroeconomic aggregates, where (net) output is the log of the sum of total output (minus
vacancy costs); labor productivity is the log of output per worker; wage bill is the log of the sum of wages; and labor share is the total
wage bill divided by net output. Panel (b) plots the response of nonemployment across worker ability levels. Source: simulations.

firms to create vacancies due to lower congestion externalities (Shimer and Smith, 2001). The solid

blue line shows that this general equilibrium force is strong enough that high-productivity firms

on net increase vacancy creation. Consequently, the negative effects of the minimum wage are

moderated by efficient reallocation of workers toward more productive firms.

Figure 9. Model: Effects on vacancy creation, 1996–2000 and 2008–2012
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Notes: Figure shows vacancy response by firm productivity in lowest θ-market. “Fixed finding rates” plots the counterfactual effects
of the minimum wage on vacancy creation for fixed worker-finding rate qθ . “General equilibrium” plots the full equilibrium change
allowing the finding rate to adjust. Source: simulations.

5.2 The anatomy of minimum wage effects

Worker and firm wage components. Our investigation was motivated by Brazil’s inequality de-

cline featuring lower between-firm pay dispersion for identical workers. We find that the rise in

the minimum wage can help us understand this trend. Table 5 presents results from the AKM
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wage decomposition (1) over time in the data versus the model. The variance of firm effects falls

by 5 log points, or 52 percent of the observed decline. Through the lens of our model, we interpret

this as a reduction in frictional wage dispersion. The variance of worker effects also falls by 7

log points, close to its empirical counterpart. Our model interprets this as an increase in relative

bargaining power among low-skill groups. The correlation between worker and firm pay com-

ponents declines by a small amount as a result of negative assortative matching induced at the

bottom of the wage distribution. Naturally, our analysis leaves room for explanations other than

the minimum wage to account for the remaining changes in the wage structure over time.

Table 5. Data vs. model: AKM variance decomposition, 1996–2000 and 2008–2012

1996–2000 2008–2012 Change
Data Model Data Model Data Model

Total variance of log wages 0.69 0.62 0.47 0.47 -0.23 -0.14
Variance of worker fixed effects 0.34 0.33 0.27 0.26 -0.07 -0.07
Variance of firm fixed effects 0.16 0.16 0.07 0.12 -0.09 -0.05
2×Covariance b/w workers and firms 0.14 0.12 0.09 0.09 -0.05 -0.03
Residual variance 0.06 0.00 0.04 0.01 -0.02 0.00

Notes: Predicted variances (shares) due to components in log wage decomposition wijt = αi + αj + γt + εijt. Omitted are variance
terms involving year dummies γt, which account for a negligible share of the total variance. Source: RAIS and simulations.

Changes in returns as the main driver. Although all structural parameters are held constant in

our policy experiment, changes in worker and firm wage components arise for two reasons: First,

the minimum wage changes the match distribution due to the unequal incidence of nonemploy-

ment across worker abilities and vacancy adjustments across firm productivities. In line with the

data, such compositional changes account for a small share of the total minimum wage impact.

Second, as predicted by parts 2 and 3 of our model proposition, the minimum wage reduces

the returns to pay-relevant worker and firm characteristics. Figure 10 shows a flattening of AKM

firm effects across productivity in panel (a), and of AKM worker effects across ability in panel (b).

Changes in returns, rather than compositional changes, explain most of the inequality decline due

to the minimum wage. This is in line with Alvarez et al. (2018)’s finding that lower productivity

pay premia and lower returns to worker ability were the key drivers behind compression of AKM

firm and worker fixed effects, and hence overall wage inequality, in the data.
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Figure 10. Model: Gradient effects of the minimum wage, 1996–2000 and 2008–2012
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(b) Lower returns to worker ability
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Notes: Estimated firm and worker pay components from log wage decomposition wijt = αi + αj + γt + εijt. Source: simulations.

6 Evidence in support of the model predictions

We confront our model with novel empirical facts on the impact of the minimum wage in Brazil.

Our starting observation is that wage inequality, while declining overall in Brazil between 1996

and 2012, fell disproportionately in initally low-income regions for which the minimum wage was

more binding. Figure 11 groups into “low income” and “high income” the three lowest and three

highest among Brazil’s 27 states ranked by mean log wage in 1996, and plots normalized wage

inequality measures between 1996 and 2012. Panel (a) shows that the variance of log wages drops

by more than half in initially low-income states, but by less than one-fifth in initially high-income

states. Panel (b) shows that lower-tail inequality drops especially in initially low-income states,

with the P50–P10 and P50–P25 for this group declining by 50 and 40 percent, respectively, but by

markedly less for initially high-income states. In contrast, upper-tail inequality, measured by the

P75–P50 or the P90–P50, declines only in initially low-income states, as shown in panel (c).

6.1 Spillover effects identified off regional variation

These patterns lead us to ask: to what extent can the rise in the minimum wage rationalize the

observed heterogeneity in wage inequality in the cross section and over time? As the policy is

set at the federal level, it is hard to find exogenous variation in its treatment intensity. To iden-

tify minimum wage effects in this environment, we follow Lee (1999) and Autor et al. (2016) in

exploiting heterogeneous exposure across subpopulations that differ in initial bindingness with
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Figure 11. Data: Evolution of wage inequality measures across state groups, 1996–2012
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(c) Upper-tail inequality
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log wages, panel (b) shows lower-tail wage percentile ratios, and panel (c) shows upper-tail wage percentile ratios. Source: RAIS.

respect to the federal minimum wage. We define the “effective minimum wage” or Kaitz index

for subpopulation s at time t, kaitzst ≡ log wmin
t − log wmedian

st , as the log difference between the

prevailing minimum wage, wmin
t , and the median wage of subpopulation s, wmedian

st .16

Figure 12 plots the relation between different wage percentile ratios and the Kaitz index for

the data compared to the model.17 Panel (a) plots empirical lower-tail inequality, measured by

the P50–P10, against the Kaitz index across Brazilian states over time. The negative 45 degree line

marks states where the minimum wage is binding for the lower 10 percent of workers. Panel (b)

repeats the same exercise on our simulated data. Both plots show a negative relationship between

the P50–P10 and the Kaitz index that grows more pronounced for more binding states in the cross

section and over time. For comparison, panels (c)–(d) show a weaker relationship between top

inequality, measured by the P90–P50, and the Kaitz index.18

Following Lee (1999) and Autor et al. (2016), we regress an outcome variable yst (p) for wage

percentile p of state s in year t on the effective bindingness of the minimum wage and controls:

yst (p) =
N

∑
n=1

βn (p) kaitzn
st + γst (p) + εst (p) (3)

where N is the polynomial order of the Kaitz index, γst (p) denotes either year dummies or linear

16Figure 22 in Appendix D.1 shows that variation in the Kaitz index across Brazilian states is large initially and
declines as the minimum wage increases, while roughly preserving the ranking of states over time.

17We produce data from our model by simulating 27 separate economies with mean worker ability, µ, and the reser-
vation threshold, ϕθ , scaled by a common factor to match the empirical Kaitz index distribution across Brazil’s states.
The simplifying assumption that each state is a separate labor market is stark but motivated by the fact that only 3–5
percent of all workers switch jobs between states in a given year.

18Figure 25–26 in Appendix D.3 show that our conclusions are robust to considering a broader set of earnings per-
centile ratios and to running the analysis at a more granular level for Brazil’s 559 microregions.
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Figure 12. Data vs. model: Wage percentile ratios across Brazilian states over time, 1996–2012

(a) Data: P50–P10
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(c) Data: P90–P50
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(d) Model: P90–P50
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Notes: Each marker represents one state-year combination for each of Brazil’s 27 states in the data, and 27 separate model simulations
with estimated mean wages for the model to match the empirical Kaitz index distribution. Source: RAIS and simulations.

state-time trends plus year dummies, and εst (p) is an error term that we assume satisfies the

strict exogeneity assumption E[εst(p)|kaitzst, . . . , kaitzn
st, γst (p)] = 0. After estimating equation

(3) separately by wage percentile p, we compute the marginal effect of the minimum wage as

ρp ≡ ∑N
n=1 nβn (p) kaitzn−1

st . Allowing for polynomials of order N ≥ 2 is important to capture the

nonlinear effects of the minimum wage as it becomes more binding.

We first consider as an outcome variable in equation (3) the log ratio between wage percentile

p and the median wage, yst (p) = log wst (p)− log wmedian
st , for various values of p.19 To the extent

that the minimum wage leads to higher wage growth at lower percentiles, we expect the esti-

mated marginal effect ρp to be weakly decreasing across wage percentiles p. We interpret positive

(negative) point estimates of ρp for p < 50 (p > 50) as an increase in the minimum wage leading

to compression in the lower (upper) tail of the wage distribution. We interpret as spillovers the

downward-sloping range of ρp estimates.

19The identifying assumption then becomes that conditional on controls γst (p), the “centrality measure,” or Kaitz
index, is not systematically correlated with “underlying” wage dispersion across states and over time. Appendix D.2
provides evidence in support of this identifying assumption holding in Brazil.
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Table 6 shows results from estimating equation (3) with polynomial order N = 2 in the RAIS

microdata and in our model-simulated data.20 Specification (1) is a variant of that in Lee (1999)

with only year effects estimated across Brazil’s 27 states. We find that the minimum wage has

significant marginal effects up to the 80th percentile of the wage distribution, with spillovers (i.e.,

negative gradient of marginal effect estimates) reaching up to just below the 80th percentile. For

example, a ten percent increrase in the minimum wage increases the tenth wage percentile by five

percent relative to the median. Specification (2) is the preferred OLS specification from Autor et

al. (2016) and adds a set of linear state-time trends, leading to qualitatively similar conclusions

although slightly higher point estimates. As additional robustness checks, we run specification

(1) across Brazil’s 556 microregions and across 54 2-digit industries in specifications (3) and (4),

respectively. The estimated spillover effects under these two specifications reach between the 70th

and the 90th wage percentile, though standard errors make them hard to distinguish from our

modal estimate of spillovers up to the 80th percentile.

Table 6. Data vs. model: Marginal effects of the minimum wage on wage percentile ratios

p = 10 p = 20 p = 30 p = 40 p = 60 p = 70 p = 80 p = 90
Panel A. Data
Specification (1) 0.467*** 0.283*** 0.149*** 0.057*** -0.063*** -0.117*** -0.092*** 0.006

(0.014) (0.011) (0.008) (0.005) (0.006) (0.013) (0.022) (0.027)
Specification (2) 0.748*** 0.492*** 0.392*** 0.185*** -0.111*** -0.143*** 0.023 -0.013

(0.032) (0.028) (0.023) (0.020) (0.023) (0.038) (0.047) (0.051)
Specification (3) 0.466*** 0.313*** 0.182*** 0.070*** -0.041*** -0.064*** -0.047* 0.054

(0.024) (0.022) (0.016) (0.007) (0.008) (0.017) (0.026) (0.035)
Specification (4) 0.558*** 0.353*** 0.222*** 0.109*** -0.110*** -0.225*** -0.356*** -0.483***

(0.035) (0.026) (0.020) (0.011) (0.014) (0.028) (0.046) (0.065)

Panel B. Model
Specification (5) 0.467*** 0.263*** 0.147*** 0.063*** -0.046*** -0.079*** -0.102*** -0.116***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.003)
Notes: Table shows predicted marginal effects evaluated at the worker-weighted mean across years 1992–2012. * = significant at the
10% level, ** = 5%, *** = 1%. Underlying regressions are variants of equation (3) with polynomial degree N = 2. Specification (1)
includes year effects and is run across 27 states. Specification (2) includes additional linear state-time trends. Specification (3) is the
same as specification (1) run across 556 microregions with cluster-robust standard errors. Specification (4) is the same as specification
(1) run across 54 2-digit industries with cluster-robust standard errors. Model specification (5) is the same as specification (1) run on
computer-simulated data across 27 states differing in their distance to the minimum wage. Source: RAIS and simulations.

Applying the same regression model as in specification (1) to our model-generated state-level

data, the estimated marginal effects for lower-tail wage percentile ratios are strikingly congruent

between the model and the data, suggesting that we can interpret the empirical estimates as due to
20We tried polynomials of order N > 2 without obtaining significantly different results to those presented below.
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minimum wage spillovers. The model also predicts upper-tail elasticities in line with the data up

to the 90th percentile. Above that, the model shows a more negative point estimate relative to the

data, although little evidence of spillovers (i.e., a small gradient of marginal effect estimates). We

interpret this as relative wages in the top decile comoving with the minimum wage bindingness

for reasons outside of our model.

In some specifications, we find estimated marginal effects that are upward sloping in the up-

permost range of the wage distribution, usually above the 90th percentile. This could be a sign

of transitory shocks affecting the upper tail and the Kaitz index simultaneously, possibly due to

concurrent changes in Brazilian labor markets. Nevertheless, by cutting the data along different

dimensions and at levels of aggregation, as well as using alternative specifications, we consistently

find significant minimum wage effects up to the 80th percentile of the wage distribution.

6.2 Employment effects identified off regional variation

So far, our analysis has been silent on the issue of informality in Brazil. The distinction between in-

formality and unemployment is important to the extent that each may represent a separate margin

of adjustment. We now extend our regression framework to investigate the effects of the minimum

wage on both formal and informal employment in Brazil between 1996 and 2012. To this end, we

combine administrative data with two household surveys to estimate variants of the specification

in equation (3) with the dependent variable, yst, at the state-year or metropolitan area-year level.

Panel A of Table 7 shows that the minimum wage has precisely estimated zero effects on the

population size, labor force participation rate, employment rate, and formal employment share.

These estimates accord well with our model prediction of muted employment effects due to the

minimum wage.21 Results from the PME data in panel B show significant but moderate negative

effects on transition rates from nonformal to formal as well as from formal to nonformal employ-

ment. The mild slowdown of recruitment of workers from outside the formal sector matches our

model prediction of fewer aggregate vacancies.22 Finally, panel C shows that the estimated effects

on mean hours worked, as well as firm entry and exit rates, defined as the employment share at

new firms relative to the previous year and the employment share at firms that exit in the fol-

21In the PNAD data, the formal employment share rose by 16 percentage points over this period, largely accounted
for by changes in educational composition of the workforce but little movement in within-group formality rates.

22The reduction in labor market exit, while beyond the confines of our model, could be consistent with less voluntary
exit from the formal sector due to the rise in its average wage level.

27



lowing year, respectively. Our estimates indicate that the effects of the minimum wage on these

outcome variables are indistinguishable from zero.23

Table 7. Data: Employment effects of the minimum wage, 1996–2012

Marginal effect (s.e.)
Panel A. Cross-sectional household survey (PNAD)
Log population size -0.050 (0.041)
Labor force participation rate -0.001 (0.016)
Employment rate -0.003 (0.010)
Formal employment share -0.005 (0.024)

Panel B. Longitudinal household survey (PME)
Transition rate nonformal-formal -0.045* (0.024)
Transition rate formal-nonformal -0.026** (0.012)

Panel C. Linked employer-employee data (RAIS)
Log mean hours worked -0.011 (0.031)
Firm entry rate 0.002 (0.017)
Firm exit rate 0.001 (0.007)

Notes: Table shows predicted marginal effects with standard errors in parentheses evaluated at the worker-weighted mean across
Brazil’s 27 states from 1996 to 2012. Underlying regressions are variants of equation (3) with polynomial degree N = 2 including year
effects and linear state-year trends. * = significant at the 10% level, ** = 5%, *** = 1%. Results for the PNAD and PME data are weighted
by the appropriate sample weights. Source: PNAD, PME, RAIS.

6.3 Other testable implications of the model

Our theoretical framework in Section 3 built on some key assumptions about the mechanics of

Brazilian labor markets. Among those were the importance of wage dispersion for identical work-

ers across firms, strategic wage posting, substitutability between worker abilities in the production

function, and labor market segmentation by worker type. We already motivated the first ingredi-

ent in Section 2.2. Here, we briefly discuss the remaining points vis-à-vis the Brazilian data.

Little mass point at the minimum wage. A feature of the Burdett and Mortensen (1998) model

that carries over to our framework is the continuity of the wage distribution. This prediction is the

direct result of strategic wage posting by firms, which in equilibrium rules out mass points any-

where, in particular at the minimum wage. We Many authors have noted that this feature of the

model is at odds with the data in certain contexts, such as Manning (2003) for the US, suggesting

23Our results match evidence on minimum wage effects on job flows and employment in the US (Dube et al., 2016;
Cengiz et al., 2017) as well as firm dynamics in the UK and Hungary (Draca et al., 2011; Harasztosi and Lindner, 2017).
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that the benchmark wage posting model is not a good description of those labor markets.

Although we find substantial heterogeneity in the bindingness of the minimum wage in Brazil,

our administrative data show a small spike at the wage floor for male workers of age 18–49. Figure

13 shows the share of workers earning exactly the minimum wage by state in 1996 and 2012 against

the relative bindingness of the minimum wage measured by the Kaitz index, with the area of cirles

proportional to their population size. We find that a stable average of 2 percent, ranging across

states from 0.5 to 9.5 percent, of workers in the population earn the minimum wage, although

most heterogeneity appears to be state-specific and varying little over time.24

Figure 13. Data: Worker share earning exactly the minimum wage across states, 1996 and 2012
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Notes: Figure shows share of male workers of age 18–49 earning exactly the minimum wage against the Kaitz index, kaitzst ≡
log wmin

t − log wmedian
st , across states in 1996 and 2012. Area of circles is proportional to population size. Source: RAIS.

We can broaden our definition of “mass point” to three measures whose evolution from 1996

to 2012 is depicted in Figure 14. The share of workers earning exactly the minimum wage, shown

by the blue line, remains flat at two percent. A little more than 1.5 percent of workers in 1996 and

around three percent of workers in 2012 report earning less than the minimum wage, shown by the

red line. These observations are likely due to a mix of legal exceptions, misreporting, and illegal

employment. Our most generous definition includes workers within a 5 percent band around the

minimum wage, shown in green. This most generous measure rises from 3.5 to 7 percent over this

period, not far from our model equivalent of three percent. Against the backdrop of a 119 percent

rise in the real minimum wage, we interpret these numbers as broadly in line with our model

predictions and the institutional constraints on individual bargaining embedded in Brazilian labor

market institutions. While some degree of bargaining plausibly takes place in Brazil, we view the

absence of a large mass point as an informative distinction between our wage posting model and

24For comparison, in the US around 3.3 percent of hourly paid workers earned the prevailing federal minimum wage
or less in 2015 (U.S. Bureau of Labor Statistics, 2017).
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the bargaining approach embedded in Flinn (2006), Flinn (2010), and Flinn et al. (2017).

Figure 14. Data: Worker share at, below, or around the minimum wage, 1996–2012
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Notes: Blue line shows share of workers earning exactly the minimum wage. Red line shows share at or below the minimum wage.
Green line plots share within 5 percent of the minimum wage. Source: RAIS.

Negative sorting at lowest skill levels. An important part of our argument rested on the as-

sumption that workers are perfectly substitutable in firms’ production function. As a consequence,

low-ability workers displaced from their jobs by the minimum wage could relocate to higher pro-

ductivity firms, thereby buffering the adverse employment effects of the policy. A prediction of

this model is that the worker input mix at low-productivity firms will tilt toward higher mean

worker abilities, giving rise to negative sorting at the bottom of the wage distribution. Figure 15

confirms that in spite of the overall positive sorting pattern we reported before, there is a neg-

ative correlation between AKM worker and firm fixed effects at the bottom of the firm effects

distribution. Although we interpret this correlation cautiously in the light of recent econometric

critiques by Andrews et al. (2008), Bonhomme et al. (2017), and Borovičková and Shimer (2018),

we observe, in line with our model prediction, a strengthening of this negative correlation as the

minimum wage becomes more binding in Brazil between 1996 and 2012.

Figure 15. Data: Negative sorting at the bottom of the wage distribution, 1996 and 2012
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αi + αj + γt + εijt, in 1996 and 2012. Source: RAIS.
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A simple test for the reach of spillovers. Our empirical strategy, in line with our model predic-

tions, identified spillover effects of the minimum wage reaching up to the 80th wage percentile.

In the data, these effects were estimated off systematic comovement of the wage distribution with

the Kaitz index. In our model, these effects were disciplined by the microstructure of worker and

firm heterogeneity that we estimated. We now provide a model-consistent empirical test of the

reach of spillovers that can be easily implemented in longitudinal worker data. Our proposed test

ranks workers by their current wage and computes for each wage rank the share of individuals

who previously, say over the past five years, earned the minimum wage. Through the lens of

our model, we expect spillovers to reach up to the highest wage rank at which a positive mass of

workers have been previously employed at the minimum wage. Figure 16 shows the results of

implementing our test on the Brazilian data for 1996 and 2012. Confirming our previous results,

we find a positive mass of workers previously earning the minimum wage up to around the 80th

percentile of the wage distribution in 1996 and up to the 90th percentile in 2012.25

Figure 16. Data: Worker share who recently earned the minimum wage, 1996 and 2012
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Notes: Figure shows share of workers who have held a job paying the minimum wage over the past five years across percentiles of the
current wage distribution. Source: RAIS.

7 Conclusion

What are the effects of the minimum wage on inequality? The answer to this question depends

crucially on the microstructure of the labor market. We developed a flexible equilibrium model

in the spirit of Burdett and Mortensen (1998) to quantify the effects of a minimum wage increase

on wage inequality and other macroeconomic outcomes in Brazil between 1996 and 2012. Our

analysis was disciplined by empirically relevant dimensions of worker and firm heterogeneity

25Another validation of our findings comes from inspection of Figure 17 in Appendix A.1, which shows a pronounced
elevation of average wages and a number of pay-relevant worker covariates above the 80th wage percentile. Reassur-
ingly, the minimum wage appears to have had little effect on the highest skill groups including college graduates whose
population shares increase steeply after the 80th wage percentile, as shown in Figure 18 in Appendix A.1.
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estimated through the AKM framework. Conversely, our structural model could be mapped into

the AKM decomposition of a large decline in wage inequality in Brazil, a significant share of is

explained by the rise of the minimum wage.

In contrast to competitive labor market theories, we find that the change in the wage floor had

large effects throughout the distribution, inducing a 14 log points decline in the variance of wages

and affecting workers up to the 80th percentile. We also find a muted nonemployment response

and small efficiency gains from the policy. The effects of the minimum wage are mediated by a

lower firm productivity pay premium and lower returns to worker ability. We present empirical

evidence from administrative linked employer-employee data and two household surveys in sup-

port of these findings. We conclude that the minimum wage can have large effects on inequality.

These insights point to fruitful avenues for future research. First, it would be interesting to

quantify spillovers of Brazil’s formal sector minimum wage into the informal economy, which is

not directly constrained by the policy. Second, our finding of large spillovers poses a challenge to

recent empirical work attempting to identify minimum wage effects by comparison to a control

group. Third, it may be worth revisiting the contribution of labor market policies and institu-

tions including unions, unemployment benefits, non-compete agreements, and antidiscrimination

laws—all of which affect only a small worker share directly but may lead to sizable equilibrium

effects—towards inequality trends in other countries. Finally, while we have stopped short of

optimal policy analysis, our results will be an important ingredient for any such venture.
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Appendix

We structure the additional materials as follows: Data (Appendix A), Theory (Appendix B), Esti-

mation (Appendix C), and Empirics (Appendix D).

A Data Appendix

This appendix provides details on the datasets used in Section 2 and throughout the paper, in-

cluding subsections on data sources, cleaning procedures, variable construction, and summary

statistics (Appendix A.1), and the wage distribution by year (Appendix A.2).

A.1 Data sources, cleaning procedures, variable construction, and summary statistics

Linked employer-employee data (RAIS). We use the RAIS microdata with person and firm

identifiers covering the period 1992–2012 available to us under a confidentiality agreement with

the Brazilian Ministry of Labor (Ministério do Trabalho, or MTb). We also use a version of the same

data going back to 1988, which we accessed through Brazil’s Institute of Applied Economic Re-

search (Instituto de Pesquisa Econômica Aplicada, or IPEA) at the Brazilian Institute of Geography

and Statistics (Instituto Brasileiro de Geografia e Estatística, or IBGE). We devise our own cleaning

procedure for these data, starting with the raw text files, benefiting from guidance by the data

team at IPEA.

Our cleaning procedure consists of three stages. The first stage reads in and standardizes the

format of the raw data files that were transmitted to us at the region-year level, saving a set of files

at the region-year level. The second stage reads in all region files within a year and applies a set of

cleaning and recoding procedures to the data to make them consistent within each year, saving a

set of yearly files. The third stage reads in all yearly files and applies a set of cleaning procedures

to the data to make them consistent across years.

Whenever possible, we use the official crosswalks provided by IBGE to convert industry codes

(IBGE, CNAE 1.0, and CNAE 2.0 classifications) and municipality codes (IBGE classification).

Cross-sectional and longitudinal household surveys (PNAD and PME). The raw microdata

are publicly available for download starting from 1996 for PNAD and starting from March 2002

for PME at ftp://ftp.ibge.gov.br/Trabalho_e_Rendimento/. For basic cleaning, starting with
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the raw data in text format, we use the standardized cleaning procedures adopted from the Data

Zoom suite developed at PUC-Rio and available for replication online at http://www.econ.puc-rio.

br/datazoom/english/index.html. From there, we apply a set of procedures to clean and recode

key variables used in our analysis.

Figure 17. RAIS cross-sectional summary statistics, 1996 and 2012
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Notes: Figure shows mean monthly earnings (“wages”), years of education, age, and tenure across wage percentiles for 1996 in panel
(a) and for 2012 in panel (b). All statistics are for adult male workers of age 18–49. Source: RAIS.

Figure 18. RAIS education degree shares, 1996 and 2012
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Notes: Figure shows shares of education degrees across wage percentiles for 1996 in panel (a) and for 2012 in panel (b). All statistics
are for adult male workers of age 18–49. Source: RAIS.
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Table 8. Summary statistics for cross-sectional household survey (PNAD)

Real wage (formal) Real wage (informal) Employment Formal
# Workers Mean Std. dev. Mean Std. dev. rate share

1996 74,487 7.01 0.81 6.26 0.81 0.95 0.68
1997 78,731 7.02 0.79 6.26 0.82 0.94 0.68
1998 79,060 7.03 0.78 6.26 0.81 0.93 0.67
1999 81,230 6.97 0.77 6.21 0.79 0.93 0.66
2000 -- -- -- -- -- -- --
2001 89,102 6.93 0.74 6.20 0.81 0.93 0.66
2002 90,855 6.90 0.73 6.19 0.81 0.93 0.66
2003 91,490 6.84 0.71 6.12 0.77 0.92 0.67
2004 94,526 6.85 0.69 6.15 0.77 0.94 0.68
2005 97,348 6.89 0.67 6.19 0.77 0.93 0.68
2006 97,757 6.94 0.66 6.25 0.76 0.94 0.69
2007 95,598 6.97 0.65 6.30 0.78 0.94 0.71
2008 93,677 7.00 0.65 6.35 0.76 0.95 0.72
2009 95,170 7.02 0.63 6.36 0.76 0.94 0.73
2010 -- -- -- -- -- -- --
2011 84,910 7.07 0.62 6.51 0.75 0.95 0.76
2012 86,031 7.13 0.62 6.56 0.78 0.95 0.76

Notes: Table shows summary statistics on wages, employment rates, and formal employment shares between 1996 and 2012. All
statistics are for adult male workers of age 18–49. Real wages are measured in 2012 BRL and in logs. Surveys are not available for
census years 2000 and 2010. Source: PNAD.

Table 9. Summary statistics for longitudinal household survey (PME)

Transition rate Transition rate
# Workers employed-nonemployed employed-nonemployed

2002 94,280 0.08 0.05
2003 140,734 0.09 0.06
2004 146,847 0.08 0.05
2005 154,159 0.08 0.05
2006 153,646 0.08 0.04
2007 154,338 0.09 0.05
2008 150,104 0.10 0.05
2009 149,762 0.10 0.04
2010 150,443 0.10 0.04
2011 145,012 0.11 0.04
2012 121,211 0.10 0.04

Notes: Table shows summary statistics on transition rates between employment (formal) and nonemployment (nonformal + unem-
ployed) between 1996 and 2012. All statistics are for adult male workers of age 18–49. Surveys start in March 2002. Source: PME.
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A.2 Wage distribution by year

Figure 19. Data: Wage distribution by year, 1996–2012
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Notes: Each panel shows the wage histogram based on 60 equi-spaced bins for population of male workers aged 18–49 for one year
between 1996 and 2012. Source: RAIS.

39



B Theory Appendix

This appendix provides details on the model outlined in Section 3, including subsections on the

equilibrium definition (Appendix B.1), equilibrium characterization (Appendix B.2), the solution

algorithm (Appendix B.3), and proof of the proposition (Appendix B.4).

B.1 Equilibrium definition

Definition. A search equilibrium with a minimum wage consists of a set of firms’ wage and va-

cancy posting policies (wθ (p) , vθ (p)), wage offer distribution Fθ (w), employment level function

lθ (w, v), unemployment rate uθ , aggregate vacancy mass Vθ , contact rate qθ , reservation wage pol-

icy Rθ , transition rates
(
λu

θ , λe
θ

)
, separation rate δθ , and flow value of nonemployment bθ subject to

a minimum wage wmin:

1. Worker optimality: Given transition rates, the separation rate, the flow value of nonemploy-

ment, and the offer distribution, the reservation wage policy solves workers’ problem;

2. Firm optimality: Taking as given the employment level function and wage offer distribution,

wage and vacancy policies solve firms’ problem;

3. Enforcement: No worker accepts, or else no firm posts, a wage below the minimum wage;

4. Labor market aggregation: The unemployment rate is consistent with transition rates and the

separation rate, the aggregate vacancy mass is consistent with firms’ vacancy posting poli-

cies, transition rates are determined through the aggregate matching function, and the em-

ployment level function and the wage offer distribution are consistent with wage and va-

cancy posting policies.

B.2 Equilibrium characterization

The size of a firm, lθ(w, v), evolves according to the Kolmogorov forward equation:

l̇θ (w, v) = − [δθ + sθλu
θ (1 − Fθ (w))] lθ (w, v) + vqθ

[
uθ

uθ + (1 − uθ) sθ
+

(1 − uθ) sθ

uθ + (1 − uθ) sθ
Gθ (w)

]
. (4)

The separate terms are explained as follows. Out of a firm’s current workforce lθ , a fraction δθ

exit to nonemployment and a fraction sθλu
θ (1− Fθ(w)) quit to better-paying employers. At rate qθ ,
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each of the firm’s vacancies contacts a worker, and a share uθ/ (uθ + sθ(1 − uθ)) of those workers

is nonemployed while the remainder are currently employed. Nonemployed workers accept all

wage offers in equilibrium, while a fraction Gθ(w) of employed workers accept an offer of wage

w. In the stationary equilibrium, equation (4) must equal zero such that

lθ (w, v) = vqθ
1

δθ + sθλu
θ (1 − Fθ (w))

[
uθ

uθ + (1 − uθ) sθ
+

(1 − uθ) sθ

uθ + (1 − uθ) sθ
Gθ (w)

]
.

Recall also that uθ = δθ/
(
δθ + λu

θ

)
and Gθ (w) = Fθ (w) / (1 + κθ (1 − Fθ (w))) in the in the station-

ary economy. Substituting and simplifying, for given vacancy and wage policies (w, v), a firm’s

stationary equilibrium size is given by

lθ (w, v) = vqθ

(
1

δθ + sθλu
θ (1 − Fθ (w))

)2 δθ

(
δθ + sθλu

θ

)
δθ + λu

θ

. (5)

Define the piece rate w̃θ such that wθ = θw̃θ . We can write the problem of firm p in market θ as

max
w̃≥Rθ/θ,v

{
vqθ

δθ

(
δθ + sθλu

θ

)
δθ + λu

θ

θ (p − w̃)

(
1

δθ + sθλu
θ (1 − Fθ(w̃))

)2

− cθ(v)

}
.

Imposing our assumed functional form for the cost of vacancy creation, cθ(v) = cθv1+c1 /(1 + c1),

the first-order conditions with respect to vacancies and piece rates are

vθ(p) =

{
qθ

cθ
[p − w̃θ(p)]

δθ

(
δθ + sθλu

θ

)
δθ + λu

θ

θ

[
1

δθ + sθλu
θ (1 − Fθ [w̃θ(p)])

]2
} 1

c1

(6)

1 = [p − w̃θ(p)]
2sθλu

θ fθ(w̃θ(p))
δθ + sθλu

θ [1 − Fθ (w̃θ(p))]
. (7)

Recall that the distribution of wage offers is given by

Fθ (wθ (p))=Mθ

ˆ p

p
θ

vθ (p′)
Vθ

dΓθ

(
p′
)

, (8)

where total vacancies equal

Vθ = Mθ

ˆ p

p
θ

vθ

(
p′
)

dΓθ

(
p′
)
, (9)
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and finally the job finding rate of workers is implicitly defined by

λu
θ =

(
δθ

δθ + λu
θ

+
sθλu

θ

δθ + λu
θ

)−α

Vα
θ , (10)

while firms’ contact rate is given by qθ =
(
λu

θ

) α−1
α . Note that we can write equation (6) as

vθ(p) =
{

qθ

cθ
πθ(p)

} 1
c1

,

where

πθ(p) = max
w̃≥Rθ/θ

{
(p − w̃)

δθ

(
δθ + sθλu

θ

)
δθ + λu

θ

[
1

δθ + sθλu
θ (1 − Fθ(w̃))

]2
}

.

Since πθ(p) is increasing in productivity and cθ , c1 > 0 , it follows that v′θ(p) > 0. That is, more

productive employers create more jobs. As in Burdett and Mortensen (1998), a single-crossing

property of the profit function with respect to productivity and wages for a given vacancy policy

implies that the optimal wage policy, w̃θ(p), is strictly increasing in productivity. Similarly, the

equilibrium wage offer distribution has no mass points.

B.3 Solution algorithm

Define hθ(p) = Fθ(wθ(p)) so that fθ(wθ(p)) = h′θ(p)/w′
θ(p) and vθ(p) = Vθ

Mθ

h′θ(p)
γθ(p) . Substituting

this into the first-order conditions (6)–(7), we have

h′θ(p) =
Mθγθ(p)

Vθ


(
λu

θ

)− 1−α
α

cθ
[p − wθ(p)]

δθ

(
δθ + sθλu

θ

)
δθ + λu

θ

θ

[
1

δθ + sθλu
θ (1 − hθ(p))

]2


1
c1

(11)

and

w′
θ(p) = [p − wθ(p)]

2sθλu
θ h′θ(p)

δθ + sθλu
θ [1 − hθ(p)]

(12)

We have estimates of δθ , sθ and λu
θ from the data, imposing a restriction on the total mass of

vacancies, Vθ , from equation (10), Vθ =
(
λu

θ

) 1
α

(
δθ

δθ+λu
θ
+

sθλu
θ

δθ+λu
θ

)
. Taking Vθ and the finding rates

as given, we can solve the system of first-order ordinary differential equations (11)–(12) subject to

the boundary conditions

wθ

(
p

θ

)
=

max
{

ϕθ , wmin}
θ

, and lim
p→p

θ

hθ(p) = 0
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to obtain h′θ(p) and wθ(p). For the solution to be sensible, we require that limp→p hθ(p) = 1, that

is, that Fθ(wθ(p)) is a valid cumulative distribution function. This amounts to finding the cost

parameter cθ that ensures that this condition holds.26 We find such a cθ by guessing an initial cθ ,

solving the problem, and checking whether the condition limp→p h(p) = 1 holds. If it does not,

we update cθ until convergence.

In order to subsequently evaluate the impact of a rise in the minimum wage, we take the

estimated cost parameter cθ as given and instead find the job finding rate λu
θ that ensures that

limp→p h(p) = 1 holds.

B.4 Proof of the proposition

Under the assumption that labor market parameters are the same across worker types and that

the minimum wage is initially low enough to be nonbinding, equilibrium wages can be written as

w(p, θ) = θ

[
p −
ˆ p

p
θ

[
1 + κe

θ (1 − Γ0(p))
1 + κe

θ (1 − Γ0(x))

]2

dx

]
(13)

Part 1. We want to show that an increase in the minimum wage raises all wages in markets where

it becomes binding. Differentiating equation (13) with respect to the minimum wage gives that

∂w(p, θ)

∂wmin =

 1 + κe
θ (1 − Γ0(p))

1 + κe
θ

(
1 − Γ0

(
wmin

θ

))
2

> 0,

which establishes the first part of the proposition.

Part 2. Consider a market where the minimum wage is binding. Differentiating equation (13)

with respect to productivity gives that the productivity-pay gradient is given by

∂w(p, θ)

∂p
= θ2κe

θγ0(p) [1 + κe
θ (1 − Γ0(p))]

ˆ p

p
θ

(
1

1 + κe
θ (1 − Γ0(x))

)2

dx.

26Note that this condition ensures that vacancy creation aggregates to the total amount of vacancies in the economy

since Mθ

´ p
p

θ

vθ(p)dΓθ(p) = Mθ

´ p
p

θ

Vθ
Mθ

h′θ(p)
γθ(p)γθ(p)dp = Vθ

´ p
p

θ

h′θ(p)dp = Vθ

[
hθ (pθ)− hθ

(
p

θ

)]
= Vθ .
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Differentiating this equation with respect to the minimum wage gives that

∂
(

∂w(p,θ)
∂p

)
∂wmin = θ2κe

θγ0(p) [1 + κe
θ (1 − Γ0(p))]

(
−1

θ

) 1

1 + κe
θ

(
1 − Γ0

(
wmin

θ

))
2

< 0.

Hence, the firm productivity-pay gradient falls with the minimum wage.

Part 3. Consider markets where the minimum wage is binding. Differentiating equation (13)

with respect to ability gives that the ability-pay gradient is given by

∂w(p, θ)

∂θ
= p −

ˆ p

p
θ

[
1 + κe

θ (1 − Γ0(p))
1 + κe

θ (1 − Γ0(x))

]2

dx − wmin

θ

 1 + κe
θ (1 − Γ0(p))

1 + κe
θ

(
1 − Γ0

(
wmin

θ

))
2

Differentiating this equation with respect to the minimum wage gives that

∂
(

∂w(p,θ)
∂θ

)
∂wmin =

1
θ

 1 + κe
θ (1 − Γ0(p))

1 + κe
θ

(
1 − Γ0

(
wmin

θ

))
2

− 1
θ

 1 + κe
θ (1 − Γ0(p))

1 + κe
θ

(
1 − Γ0

(
wmin

θ

))
2

− wmin

θ
[1 + κe

θ (1 − Γ0(p))]2 (−2)
(
−κe

θγ0

(
wmin

θ

))
1
θ

 1

1 + κe
θ

(
1 − Γ0

(
wmin

θ

))
3

=− 2wmin

θ2 [1 + κe
θ (1 − Γ0(p))]2 κe

θγ0

(
wmin

θ

) 1

1 + κe
θ

(
1 − Γ0

(
wmin

θ

))
3

< 0.

Hence, in markets where the minimum wage is binding, the worker ability-pay gradient falls with

the minimum wage. □
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C Estimation Appendix

This appendix provides details on the estimation procedure described in Section 4, including sub-

sections on the estimation criterion (Appendix C.1) and the estimated vacancy cost profile (Ap-

pendix C.2).

C.1 Estimation criterion

As outlined in Section 4, we estimate the average worker ability, the dispersion in worker ability,

the shape of the productivity distribution, and the cost of creating jobs by indirect inference. We

implement this by repeatedly solving the model over a pre-specified grid for the first three pa-

rameters and recording the model-predicted values for the targeted moments. Within each loop,

we iteratively solve for the cost of creating jobs that allows the model to match the UE hazard rate

estimated in the first step of our estimation.

We use a 25-by-25-by-25 point grid in the three parameters of interest defined over a suffi-

ciently large domain. Solving and parallel-simulating the model 15,625 times is relatively efficient

and runs for about 16 hours on a modern quad-core desktop computer. We search on a given

parameter grid for the triplet
(
µ, σ2, ζ

)
that minimizes the sum of squared log square differences

between three target moments in the data versus the model:

argminµ̂,σ̂2,ζ̂

log

[
Var

(
αM

i

)
Var

(
αD

i

) ]2

+ log

Var
(

αM
j

)
Var

(
αD

j

)
2

+ log
[

mMM

mMD

]2
 , (14)

where Var(αi) denotes the variance of AKM worker fixed effects, Var(αj) denotes the variance of

AKM firm fixed effects, and mM denotes the minimum-to-mean wage ratio.

To guarantee a unique interior solution, we analyzed the behavior of the objective function

in two dimensions at a time, fixing the third parameter at its estimated value. This is plotted in

Figure 20. The variance of worker ability appears well identified, while there is some ambigu-

ity in the worker ability-firm productivity shape dimension. Specifically, a higher mean worker

ability—implying a less binding minimum wage—can be compensated for by a higher shape pa-

rameter of the firm productivity distribution—implying less dispersed firm productivity.

We have reevaluated the impact of an increase in the minimum wage for different combina-

tions of (µ, ζ) that produce only a slightly worse fit to the data compared to our best estimates,
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and find that our results are quantitatively robust to such perturbations.

Figure 20. Distance metric from estimation procedure, 1996–2000
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Notes: Figure plots the distance minimization criterion in equation (14). Mean (µ) and variance (σ2) pertain to a log-Normal worker
ability distribution, while shape (ζ) is the Pareto tail parameter of the firm productivity distribution. Source: simulations.

C.2 Estimated vacancy cost profile

Figure 21 shows estimated second-stage vacancy cost intercepts cθ across worker abilities. The

vacancy cost relative to worker ability (solid blue line) is downward sloping, implied by the slope

of job finding rates across ability groups. The absolute vacancy cost cost (dashed red line) is

upward sloping, implied by the magnitudes of job finding rates across ability groups.

Figure 21. Estimated relative and absolute vacancy posting cost cθ across worker abilities
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Notes: Figure plots vacancy cost intercept cθ relative to worker ability (solid blue) and in levels (dashed red). Source: simulations.
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D Empirics Appendix

This appendix provides further empirical evidence related to what is presented in Section 6, in-

cluding subsections on the evolution of the Kaitz index by state over time (Appendix D.1), evi-

dence supporting the empirical identifying assumption (Appendix D.2), and additional results on

spillover effects identified off regional variation (Appendix D.3).

D.1 Evolution of the Kaitz index by state

Figure 22. Data: Evolution of the Kaitz index by state, 1996–2012
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Notes: Kaitz index is defined as kaitz = log (minimum wage)− log (median wage). Each blue line markets one of Brazil’s 27 states.
Red line marks equally weighted mean across states. Source: RAIS.

D.2 Evidence supporting the empirical identifying assumption

This section provides support for our empirical identifying assumption in Section 6, namely that

cross-state variation in the “centrality” of the wage distribution is not systematically related to the

shape of the “underlying” wage distribution in Brazil. Although the assumption is not literally

testable, we here provide two proxy tests for the assumption.

We show as a first test of our identifying assumption, namely that Brazilian states share a “la-

tent wage distribution,” the resemblance of the wage wage distribution in one of Brazil’s poorest

states in 1996 and that of one of its richest states in 2012 under the higher minimum wage. Figure

23 shows histograms of wages for the state of Maranhão, the second poorest in Brazil, and for the

state (federal district) of Distrito Federal, the richest in Brazil, in 1996 and 2012. Both states see

pronounced compression in their distribution over time as the minimum wage increases. We note

the striking similarity in the shape of the wage distribution between panel (a) showing the poor
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state Maranhão in 1996 and panel (d) showing the rich state Distrito Federal in 2012.

Figure 23. Data: Wage histograms for a poor versus rich state of Brazil, 1996 and 2012
(a) Poor state (Maranhão), 1996
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(b) Poor state (Maranhão), 2012
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(c) Rich state (Distrito Federal), 1996
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(d) Rich state (Distrito Federal), 2012
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Notes: Figure shows wage histograms for the state of Maranhão, the second poorest in Brazil, and in the state (federal district) of
Distrito Federal, the richest in Brazil, in 1996 and 2012. Source: RAIS.

We now demonstrate as a second test of our identifying assumption that the upper tail of the

wage distribution is invariant to the level of the “effective minimum wage.” Figure 24 shows that

the relation between various upper-tail wage percentile ratios and the median wages across states

from 1996 to 2000 is mostly flat, consistent with a shared “latent distribution” across states that is

differentially uncovered by the federal minimum wage.

Figure 24. Data: Upper-tail inequality versus median earnings across states, 1996–2000
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(b) P70-P50
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(c) P80-P60
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Notes: Blue dots represent state-year observation. Red line represents worker-weighted linear fit. Specification with no state dummies
or state trends. Source: RAIS.

48



D.3 Additional results on spillover effects identified off regional variation

Figure 25. Data: Wage percentile ratios across Brazilian states over time, 1996–2012
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(b) P50-P20
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(c) P50-P30
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(d) P70-P50

0
.0

0
.4

0
.8

1
.2

1
.6

2
.0

P
7

0
−

P
5

0

−2.0 −1.6 −1.2 −0.8 −0.4 0.0
log(minimum wage)−P50

1996 2000 2004 2008 2012
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(f) P90-P50
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Notes: Figure plots different wage percentile ratios against the Kaitz index, kaitzst ≡ log wmin
t − log wmedian

st , with each marker repre-
senting one state-year combination for each of Brazil’s 27 states. Source: RAIS.

Figure 26. Data: Wage percentile ratios across Brazilian microregions over time, 1996–2012
(a) P50-P10
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(b) P50-P20
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Notes: Figure plots different wage percentile ratios against the Kaitz index, kaitzst ≡ log wmin
t − log wmedian

st , with each marker repre-
senting one state-microregion combination for each of Brazil’s 556 microregions. A small number of outliers are dropped for presen-
tation purposes. Source: RAIS.
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