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Abstract

This paper puts forward a method for improving the forecasting

accuracy of an existing macroeconometric model without changing its

policy response characteristics. The procedure is an extension and

formalization of the practice of additive adjustments currently used by

most forecasters. The method should be of special interest to fore-

casters who use models built by other investigators because it does not

involve reestimation of the original model and uses only information

routinely included in the documentation available to model users. The

paper ends with a demonstration of the prediction improvement realized

by application of this method to a version of the MIT-Penn-SSRC (MPS)

model.
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Improving Econometric Forecasts
By Using Subperiod Data

It is widely recognized that existing large-scale structural

econometric models do not forecast well when operated mechanically. For

example, Nelson [8], Cooper and Nelson [1], and Cooper [2] present

evidence that existing models can be "beaten" by low-order autoregres-

sive forecasts. In spite of this evidence, structural models continue

to be used for several reasons: a) reduced forms are inadequate for

certain kinds of policy evaluations, b) the available time series are

too short to permit direct estimation of the reduced forms of any but

the simplest models, and c) economic theory usually implies restrictions

on the parameters of structural equations.

Because of their weak mechanical forecasting performance,

large models are typically kept "on track" by adjusting the constant

terms of the structural equations. It is unlikely that the systematic

errors in mechanical forecasts are solely the result of the parallel

shifts of schedules that this practice implicitly assumes. However, the

method of constant (or "con") adjustments is widely used as a convenient

means of reducing forecast error while leaving the policy response

characteristics of a model substantially intact.

Determination of the size of the adjustment for the initial

forecast quarter, and its projection to future quarters, is usually

accomplished by a process which blends mechanical processing of equation

residuals with judgment based on outside data and nonquantifiable infor-

mation. In general, the model forecasts are not reproducible by anyone

other than the model's proprietor. Haitovsky, Treyz, and Su [6] discuss
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this adjustment process in some detail, and Green [5] describes a

mechanical procedure in the context of the OBE model.

We hypothesize that subperiod data which become available

during the first period of a multiperiod forecast contain useful infor-

mation about shifts in the structural equations. We have developed a

methodology for testing whether a set of subperiod data help predict the

"constants" in the structural equations of a given model and for incor-

porating those data that pass the test into the model forecasts. This

paper describes our procedure and presents an application of our method

to the problem of using monthly data to improve the forecasts of the

quarterly MIT-Penn-SSRC (MPS) model.

We obtain a substantial reduction in the mean-squared forecast

errors (MSEs) of real GNP, the implicit deflator, and the unemployment

rate by using our method of constant adjustments. For one-quarter-

ahead forecasts, our procedure leads to a 65 percent reduction in the

mean-squared forecast error (MSE) of the GNP deflator, but the MSE for

real GNP turns out to be larger. However, for two-, three-, and four-

quarter-ahead forecasts, we obtain sizeable reductions in the HSE for

all three primary system variables. The reductions in the MSEs range from

25 to 54 percent for real GNP, from 13 to 36 percent for the GNP deflator,

and from 25 to 54 percent for the unemployment rate. A second set of

simulations indicate that a great deal of reduction in the forecast

error variance can be obtained using time series methods of Granger and

Newbold [4], even without resorting to monthly data.

Our evidence indicates that consideration should be given to
the estimation of mixed monthly-quarterly models with a higher-order

F
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error structure. But until such models are available, our procedure

should be of interest to forecasters and to policy analysts who wish to

incorporate the most recent monthly data into their projections.

The next section describes the rationale underlying our pro-

cedure and the following section describes the empirical results. The

data and procedural details are relegated to the appendix.

I 
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Improving Econometric Forecasts

The hypothesis that subperiod data may be used to update an

econometric forecast is based on both theoretical and practical consid-

erations. Discrete-time econometric models are commonly viewed as

approximations to a dynamic system which operates over shorter time

intervals than the quarterly or monthly periods imposed, usually, by

data availability. Most models reflect the quarterly National Income

Accounting interval; more frequently available data (typically financial

and employment data) are averaged to a quarterly basis. The conditions

under which the structure of the "finer" model may be inferred from the

aggregate or "gross" model are very stringent (see Skoog [101 and Geweke

[3]). This situation opens up the possibility that the information in

the detailed time record of monthly and weekly observations of certain

variables may not have been incorporated into forecasts efficiently.

As a practical matter, the authors have found inspection of

monthly and weekly data helpful in making constant adjustments to the

MPS model for forecasting. A complete integration of subperiod data

into a quarterly model would require the formulation of a well-articu-

lated model on, say, weekly intervals and the deduction of the form of the

relation between quarterly, monthly, and weekly time series on the basis

of that consistent structure. We satisfy ourselves, for the time being,

with a direct regression of the quarterly structural equation residuals

on the monthly data.-/

-A similar effort is included by P. A. Tinsley [11]. Tinsleyconsiders a variety of issues. In the section of greatest relevance toour project, he develops a scheme for predicting quarterly residuals by
using the residuals of an explicit monthly model.
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A Single-Equation Model

The source of the predictive gain we hope to achieve is easily

seen by examining a simple model. Consider the following model:

(1) Yt = bxt + et

(2) et = ret- 1 + ut

(3) u t = dmt + v

where y is the endogenous variable whose value at time t we wish to

forecast, x is an exogenous variable all of whose past, present, and

future values are known exactly, e, u, and v are unobservable error

terms, and m is an observed subperiod datum which is related to ut via

Equation (3). We assume that mt and vt are jointly normal, serially

uncorrelated, independent random variables with zero means and variance

s and s , respectively. We shall further assume that m and v arem v

orthogonal to x and to past y's, i.e.,

(4) E(mtIyt- 1 ,X) = E(v yt_1,X) = 0

where X stands for the sequence {xt_ , , ... xt, ... , xt+oo}. The dis-

tribution of ut may be derived from the distribution of m and v. It is

a serially uncorrelated random variable with mean zero. Further, we

know

(5) E(utlYt- 1,'X) = dE(mtlYt 1,X) + E(v IYt 1,X)

and

(6) s E E(u2tyt ,X) = d2  +u tYt-1t s + sm v

I



Equation (1) is a simplified version of a behavioral equation from a

model. Equation (2) is the first-order error structure most commonly

assumed. The parameters b and r are usually estimated from time series

data. For the prediction problem we consider, we shall assume that they

are estimated without error. Equation (3) is the relation between u and

the observed (perhaps monthly) quantity m which is not used in standard

forecasts.

The standard forecast is formed on the basis of the model

stated in terms of y and x as

(7) yt = bxt + r(yt_1 -bx t ) + u t

where (7) is derived by combining (1) and (2). Taking expectations in

Equation (7), with respect to y and x, and noting Equation (5), yields

the forecasting equation

(8) E(yt ty_,X) = bx + r(yt- -bx ).

Under the assumptions we have made, the error in forecasts from Equation
(8) is identically ut . Hence, we know that the expected forecast error

(conditional on Yt-1 and Xt) is zero from Equation (5) and the forecast

error variance (conditional on the same set) is s from Equation (6).

This forecast is an unbiased and minimum variance forecast
conditional on the data set consisting of lagged y and the x process.

However, the forecast is not unbiased with respect to the entire set of

observable data, i.e.,

E(ut Yt-1 , X,mt) = dmt 0, in general.
(9)
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An unbiased and minimum variance forecast conditional on all

observable data can be generated from a representation of the model in

terms of y, x, and m. Consider

(10) t = bxt + r(yt--bxt_) + dm + v

where (10) is derived by combining (1), (2), and (3). Taking expecta-

tions in Equation (10), with respect to observable data, and noting

Equation (4) and the independence of v and m, yields the prediction

equation

(11) E(tlYt_1,X,mt ) = bx t + r(Yt_l-bxt_) + dmt-

The forecast error of this new procedure will be identically v t . From

Equation (4) we know that the forecast is unbiased and from Equation (6)

we know that

(12) E(v2yt-1,X,mt) = s < st v-u

with equality only if d or s is zero. The forecast from Equation (11)m

is related very simply to the forecast from Equation (8), i.e.,

E(YtlYt_l,X,m t ) = E(ytly ,X) + dmt.

The forecasts of Equation (8) could be transformed to optimal forecasts

by the addition of dmt as a "constant adjustment" in each period. Our

proposal is basically to test the hypothesis that d = 0 in Equation (3),

and to make the appropriate "constant adjustment" when we reject the

null hypothesis.

Recognizing that in actual applications, the X process will

not be perfectly known, and that b, d, and r will be estimated with

I
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error does not affect our conclusion of smaller forecast error variance.

Furthermore, if mt is not orthogonal to xt, Equation (11) can still be

assembled, but in a slightly more complicated way. The analog of (11)

becomes

(12) E(YtlYt-1,X,mt) = bx t + r(Ytl-bxtl) + d(mt-cxt)

where c and d have been estimated from the regression equations

E(mtfX) = cx t

(13)

E(u t ly t _ 1, X, m t ) = d(mt-cxt)

using estimates of u t generated by the estimates of b and r.

Equation (1) is only one of a set of simultaneous equations.

The forecasts of the model are generated by solving the entire system

and no amount of reduction in the residual variance of individual

equations can guarantee that the forecast errors of the whole model will

be reduced. That model forecasts are usually improved by these tech-

niques might be inferred, however, from their widespread use.

During the empirical work with the MPS model, we encountered a

problem with the specification of the structural equation error processes

(Equation (2) in our example). Since it is likely that the problem is

shared by many other large macroeconometric models, we feel it deserves

a separate treatment here.

Serial Correlation Structure

In the simple example considered above, the error process {et}
was known to be first-order. However, in econometric models we do not

have certain prior knowledge of such characteristics. If the {e t } are

I



a higher-order process, e.g., if

(14) et = rlet_ 1 + r2et-2 + ut,

and r2 is nonzero, then the ut's estimated from the first-order struc-

ture as

(15) u = yt - bx - r(Yt_-bxt_ )
t t t t-1 t-1

will not be serially uncorrelated. Since the prediction of the "shifts"

of Equation (1) is essentially the prediction of the ut's in the future,

forecast could be improved potentially by incorporating the information

in the past ut's. The marginal contribution of the monthly data in our

example would be overstated if we predicted the future of the {u t }

process without considering the useful own-lagged values.

We test whether ut's derived from the MPS model are serially

correlated by fitting a fourth-order autoregression to the series and

testing the null hypothesis that the coefficients in that regression are

2/
zero.- For those equations for which we reject the null hypothesis, we

include lagged ut's in the subsequent regression on monthly data. We

then test the null hypothesis d = 0 in the equation

(16) u = A(L)u + dm + vt t-1 t t

where A(L) is a third-order polynomial in the lag operator L defined by

Lnz t = z t- n . In cases where we reject the null, Equation (16) is used

to predict the shift of Equation (1) in the full-model forecast.

2/
-More powerful tests for whiteness are available. A spectral

test based on the cumulated periodogram of equation residuals would
permit finer discrimination. However, our purpose is mainly illustra-
tive and so we did not consider more complicated alternative tests.

r -~- -- I -LL~-, ---~",_-i~P-- ~ ~ -_- ~ * CT--~



To this point we have only considered the problem of forming

single-period forecasts. However, forecast simulations are made for

periods of several quarters. In the context of our single structural

equation, forecasts are usually made using Equation (8). For our case

of a known X process, a forecast of yt is really an exact function of a

forecast of et. We may think of the process as

(17) et =ret-

(18) y = bxt + e

where the *'s indicate forecasts as of time t-l. For the forecast

quarters beyond the first, the forecast is formed as

* k *
(19) e =+k r e

t+k t

(20) t+k t+k t+k"

The key thrust of our method is to replace e by a better forecast
t

(based on more information), i.e., to replace (17) by

(21) E(etle 1 ,mt) = re 1 + dm

and then to forecast using

(22) et+k = rkE(eetl ,mt)

and Equation (20).

However, in the case where the {et process has more than

first-order serial correlation, this scheme is not optimal. There is an

inconsistency in forming forecasts of future et+k s by simply discountingetk sml icutn

I- _



the initial forecast of e t when we know that the et's do not follow a

first-order process. To provide an indication of the possible fore-

casting gains to be gained by specifying a more complete error struc-

ture, we present among our sample simulations one example which uses

only lagged quarterly errors and no monthly data. In that example, a

fourth-order autoregression

(23) u =au + au + au + au + v
t t-1 2 t-2 3t-3 4 t-4 t

has been fit to the {ut} process. This autoregression is used to

project a sequence of future ut's using the chain rule of forecasting,

i.e.,

ut = alut-1 + a2ut-2 + a3ut-3 + a4ut-4

(24) ut+l = alut + a2ut_ 1 + a3ut- 2 + a4ut-3

ut+2 = alut+l + a2ut + a3ut-l + a4ut-2

and so on. The sequence of future et's is generated by

(25) et+k =ret+k-1 + Ut+k

rind the sequence of yt's is generated by equation « v* .

is much like the prescription of Granger and Newbold [41.

I

I
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Empirical Results

The hypothesis tests outlined above were performed on the

residuals from selected structural equations of the quarterly MIT-Penn-

SSRC (MPS) model for the period 1954.1-1973.4. For illustrative purposes,

four different schemes of generating "add-factors" (or in our preceding

notation, forecasts of ut) were used to produce one-, two-, three-, and

four-quarter-ahead ex forecasts for the seven-quarter span 1974.1-

1975.3. The mean-square errors (MSEs) for selected variables in those

forecasts and in mechanical model forecasts without any adjustments are

presented in Tables 1-4.

The experimental period presents a forecasting challenge for

any mechanical method, since it includes the period of the OPEC oil

embargo and the subsequent downturn sometimes linked to the embargo.

Though the test sample is necessarily small, all four add-factor methods

demonstrate general reductions in the MSEs of forecasts of real GNP,

the GNP deflator, and the unemployment rate, when compared with the

unadjusted MPS model. The results of the ex post simulations are

summarized in Tables 1-4. The first column of each table contains the

MSEs of the pure model forecasts. The second column contains the

results of simulations which used lagged residuals to calculate the

first-period error and then forecast future errors using the first-order

process assumed in the model as described in (21) and (22) above. The

fifth column, labeled "Chain Rule Adds" contains the errors generated

using the autoregressive structure in the sample-period residuals to

forecast all future errors as described in Equations (23)-(25) above.

The third and fourth columns of each table contain the errors from

I
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forecasting methods which used distributed lags in selected monthly

variables as well as lagged residuals to predict future errors. In

generating the forecast errors for Column three, labeled "A+BO," only

monthly data available at the beginning of the first forecast quarter

were used, i.e., no monthly data for the current quarter were included.

For Column four, labeled "A+B3," data for all three months of the first

forecast quarter were used in the ex post simulation.

In addition to MSEs of the three aggregate variables--GNP, the

deflator, and the unemployment rate, the tables list the MSEs for ten

endogenous variables divided into two groups labelled A and B. These

are the dependent variables from the ten structural equations whose

constants were adjusted in this experiment. Group A contains variables

from equations in which lagged monthly data helped explain current

residuals, but current monthly data did not help significantly; Group B

contains variables from equations in which both current and lagged

monthly data helped explain the residuals. For each equation, an attempt

was made to explain the residual by the use of, at most, two monthly

series thought to be closely related to "shifts" in the schedule that

equation represented. The monthly data were chosen from among the

commonly available monthly series on production, employment, prices, and

sales. (The details of the selection strategy and forecasting procedures

are included in the appendix.)

While no precise statistical tests were performed, the data

do seem to indicate a substantial improvement in forecasting accuracy

from the various adjustment methods. The "Lags Only" column indicates

that a large share of the forecast improvement is attributable to the

I
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Table 1

Mean Square Errors for
1 - Quarter Ahead Predictions

Real GNP

GNP Deflator

Unemployment

Rate

Group A

CON

KI

LMHT

LH

QPXB

Group B

ECD

YDV$

RTB

RDP

LF+LA

Model

116.7

10. 7

0.34

13.7

42.7

3.6

0.00004

0.00055

43.5

3.88

2.19

0.68

0.52

See notes at end of Table 4.

Lags
Only
Adds

189.0

3.8

0.30

13.3

48.8

1.3

0.00010

0.00017

38.4

3.25

4.49

0.44

0.21

A+BO

Adds

138.3

3.8

0.22

8.6

50.4

0.9

0.00008

0.00018

34.1

2.67

3.68

0.37

0.19

A+B 3

Adds

201.3

3.9

0.22

8.3

47.9

1.1

0.00007

0.00017

29.8

3.01

3.94

0.17

0.03

Chain
Rule
Adds

189.8

3.8

0.30

13.3

48.8

1.3

0.00010

0.00017

38.4

3.25

4.49

0.44

0.21
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Table 2

Mean Square Errors for
2 - Quarter Ahead Predictions

Real GNP

GNP Deflator

Unemployment
Rate

Group A

CON

KI

LMHT

LH

QPXB

Group B

ECD

YDV$

RTB

RDP

LF+LA

Model

678.7

38.1

0.77

47.6

89.1

6.2

0.00022

0.00161

81.2

10.37

5.53

1.68

1.16

See notes at end of Table 4.

I

Lags
Only
Adds

419.2

24.1

0.59

23.7

47.2

5.5

0.00016

0.00104

66.1

12.23

7.61

1.53

0.85

A+BO

Adds

300.9

24.3

0.56

21.8

36.4

7.0

0.00012

0.00105

53.9

10.28

4.45

1.02

0.82

A+B3

Adds

412.1

24.8

0.58

17.7

47.2

5.5

0.00016

0.00106

66.1

12.62

5.96

1.10

0.67

Chain
Rule
Adds

388.2

17.3

0.53

24.2

51.2

5.2

0.00015

0.00066

54.4

14.30

9.88

2.44

0.86

OF



Table 3

Mean Square Errors for
3 - Quarter Ahead Predictions

Lags A+BO
Only

Model Adds Adds

Real GNP 2423.5 1584.1 1340.0

GNP Deflator 77.6 60.8 61.6

Unemployment 2.27 1.16 1.01
Rate

Group A

CON

KI

LMHT

LH

QPXB

Group B

ECD

YDV$

RTB

RDP

LF+LA

139.4

158.7

7.4

0.00071

0.00288

163.1

12.34

11.42

2.62

1.32

76. 7

127.1

5.2

0.00046

0.00234

127.8

18.65

8.42

2.18

1.28

63.8

108.6

6.3

0.00041

0.00233

114.0

16.39

5.11

1.83

1.48

A+B3

Adds

1476.4

61.9

1.09

65.8

123.5

5.4

0.00046

0.00235

126.1

19.59

7.88

1.94

1.24

Chain
Rule
Adds

1729.1

45.7

1.18

78.1

136.4

4.6

0.00046

0.00171

114.6

25.38

17.05

3.19

1.25

See notes at end of Table 4.
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Table 4

Mean Square Error for

4 - Quarter Ahead Predictions

Real GNP

GNP Deflator

Unemployment
Rate

Group A

CON

KI

LMHT

LH

QPXB

Group B

ECD

YDV$

RTB

RDP

LF+LA

Model

5662.7

124.7

6.58

358.3

211.0

21.4

0.00163

0.00410

301.0

12.26

32.84

2.86

0.89

Lags
Only
Adds

4221.8

107.6

4.06

244.6

184.1

10.7

0.00127

0.00373

247.7

16.83

29.27

2.58

1.13

A+BO

Adds

3853.0

108.2

3.62

208.4

180.4

9.0

0.00122

0.00367

228.9

14,92

24.46

2.43

1.35

A+B 3

Adds

3795.9

109.0

3.44

216.3

167.8

8.7

0.00122

0.00372

232.3

16.27

26.63

2.36

1.23

Chain
Rule
Adds

4311.5

77.9

4.33

222.4

232.7

11.8

0.00126

0.00265

216.4

25.88

53.27

2.73

1.06

. .. _ . __:



V
Notes for Tables 1-4:

i) Group A variables denote the variables whose prediction equations
contain no contemporaneous quarter-monthly data.

ii) Group B variables denote the variables whose prediction equations
include contemporaneous quarter-monthly data.

iii) The "Model" column contains the MSEs for the control run of the
model without any additive adjustments.

iv) The "Lags Only" column contains the MSEs with the first quarter add
predicted from the equations containing only own lagged errors and
no monthly data, and future quarter adds are phased out as in
Equation 3.

v) The "A+BO" column contains the MSEs with the first quarter add
predicted from the equations containing monthly data, but assuming
that zero months of the contemporaneous quarter are available, and
future adds are phased out as in Equation 3.

vi) The "A+B3" column is like the "A+BO" column, but assumes that allthree months of the contemporaneous quarter are available. These
first quarter adds are generated by the equations shown in Table I.

vii) The "Lags Only Autoregressive" column contains the MSEs with adds
predicted from the "Lags Only" equations in an autoregressive way.
The future adds are actually predicted by the equations via the
chain rule rather than using the estimated autocorrelation coeffi-
cient to phase out the 1-quarter-ahead estimated add.

* ~H~LCP~I~ii
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lagged structural equation errors themselves. This also seems to be

evidence that the autocorrelation structure of the model is misspecified.

For forecast horizons beyond one-quarter, the lags only procedure produces

reductions in the forecast MSE ranging from 14 percent (deflator four-

quarters ahead) to 49 percent (unemployment rate three-quarters ahead).

The "A+BO" column shows that monthly data can indeed be help-

ful in improving the accuracy of quarterly model forecasts. While the

percentage reduction in the MSE of the deflator is essentially unchanged,

the forecast MSE of real GNP is reduced by a sizeable magnitude from the

own-lags experiments. The largest improvement beyond the one-quarter-

ahead forecast comes in the two-quarter-ahead forecast where the lags

only procedure produces a 38 percent reduction, while the lags together

with monthly data produces a 56 percent reduction in the real GNP fore-

cast MSE. The weakest gain in real GNP due to the addition of monthly

data is seven percentage points in the four-quarter-ahead forecast.

Interestingly, using data for all three months of the contem-

poraneous quarter (the A+B3 adds) produces generally larger forecast

MSEs than when none of the current-quarter monthly data is used (the

A+BO adds). The four-quarter-ahead forecast might be considered an

exception, but even there the difference is quite small.

We are puzzled by the performance of the B3 adds. The results

seem to imply that forecasters using an econometric model like the FMP

model need not spend a lot of time closely monitoring current monthly

data. But this conclusion must be modified by at least two major quali-

fications. The first is that our study relates only to the specific

variables described above. Perhaps extending the list of model variables

I.



to encompass a greater degree of correlation across structural equations

would give greater significance to current-quarter monthly data.

The second qualification involves the fact that our experiments

are conditional on knowing the actual exogenous variables of the model.

Thus it may be possible that the most important role for monthly data in

a forecasting context is to establish values for the exogenous variables.

However, we have serious reservations about the practicality of using

current-quarter monthly data to help predict the exogenous variables of

models like the MPS model. Our casual review of the 136 exogenous

variables indicates that not many are likely to be related to monthly

data in a simple way. In the absence of a detailed monthly model,

autocorrelations are likely to be the best predictors of exogenous

variables.

The "Chain Rule" experiment, which uses the "new" serial

correlation structure of the disturbances to form all future constant

adjustments, improves the price forecasts of the "Lags Only" method but

demonstrates little or no improvement in the forecasts of the other

variables. This is not an unimportant contribution, however, since

prices are typically among the variables with the largest prediction

errors. Further experiments which incorporate monthly data as well as

higher-order error processes seem to hold considerable promise for

increasing forecasting accuracy.

Conclusion

We have presented a method for improving econometric forecasts

using subperiod data. We have tested whether a certain body of monthly

data helps in forecasting the structural equation residuals from a version
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of the MPS model. In our example, the monthly data helped and we were

able to realize a substantial reduction in system prediction error by

using them. We see no reason why similar forecast improvement could not

be realized with other econometric models.

Our experience with the MPS model suggests another recommenda-

tion that we cautiously generalize. Our tests indicate that in many

structural equations there is a higher degree of serial correlation of

errors than was assumed in estimation. We found prediction was improved

greatly by simply projecting current residuals on past residuals.

Therefore, it appears that the MPS model should be reestimated using

higher-order error processes. It is likely that such a step would

decrease the need for frequent constant adjustments. In the context of

this revised model, more powerful tests of the contribution of monthly

(and weekly) data could be performed.

I
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r Appendix

Selection Strategy for Equations and Variables

Because of the large number of behavioral equations in the FMP

model, and because our purpose is descriptive, we will not attempt to

deal with all of them. Our primary criterion for selection is that

relevant monthly data exist and that at least one month of the quarter

is published before the publication of the National Income Accounts

data. This criterion is augmented by observation of the residuals of

each equation to see which residuals appear large or systematically

different from zero. Exhibit A shows the variables from the MPS model

examined in this study along with the 1974.1 value of each variable,

which indicates the units of measurement. Since the experiments were

run before the 1976 revisions in the National Income accounts, the real

variables are on the 1958 base. Exhibit B shows the monthly variables

examined in this study.

Our hypothesis may be stated as a linear regression of the

generic form

u t = f(ut-l, mt )

where u t is the observed residual, ut_1 represents lags of the residuals,

and mt represents all relevant monthly data including distributed lags.

For us, a satisfactory equation is one with statistically significant

coefficients. The standard R 2 criterion is only a curiosity because a

significant constant term is as important as a significant slope coeffi-

cient. Note that this form of regression permits an indirect test that

the residuals obey the assumed serial correlation structure of the

model.

I
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F' For each residual there are four regressions representing the
number of months of data that are available when the forecast is made.

Because of the enormous number of tests suggested by this basic hypothesis,
we, a priori, set down the following strategy to establish the data

period and the final form of the regression hypothesis:

A. Chow test: Because of the accumulating evidence that few
macroeconometric structural equations are able to pass a test for
structural change, we were interested in subjecting our residual equations
to a Chow test. In order to have both some post-sample model residuals
in the residuals sample that was used to estimate our hypothesis, and
also to have a few post-sample data points to test prediction accuracy,

we made 1973.4 the common endpoint of all the primary data sets. This
meant that we had post-sample observations for all variables except the
labor compensation variable (PL). But we were also constrained by
degrees of freedom in all the labor market variables because of our
desire to use certain monthly data from the household survey which began
only in 1963. Thus, we did not do Chow tests for the labor market
variables.

When an equation failed the Chow test, it was estimated over
the period 1964.1-1973.4.

The initial hypothesis for all equations was that the residual
was a linear function of trend, four own lags, and two monthly variables,
each of which had two-quarter (6 months) lags. As sketched above, our
view of the structural equation is that all months of the current quarter

are important; therefore, the Chow tests were performed only on the
regressions which contained all three months' data of the contemporaneous
quarter. Thus, the Chow test equations contained 24 variables.

I-- _
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B. Lag structure: Once the sample period was determined via

the Chow test or data limitations, the following tests were used to

determine which lags were included in the final form of the residual

prediction equation. For these tests, the equation with zero months of

the contemporaneous quarter was used on the assumption that if lags are

not useful without contemporaneous monthly data, they would be even less

useful when current monthly data is available. There is also the prac-

tical consideration that the irregular flow of monthly data means that

the equation containing three months of contemporaneous data will rarely

be used, while the zero months equation will almost always be used (by

those who make forecasts at least once a month).

Our initial hypothesis about the form of the lag structure may

be represented by an equation of the form

u = g (constant, t, L, Ml M1  M2  M2

t t-l' t-2' t-1' t-2

where L represents u lagged from one through four quarters, and Mi

t-j
represents all three months of monthly variable i in the t-j quarter.

There are fourteen subsets of this set of seven explanatory variables

which can be formed by observing the constraints that (1) all subsets

contain the constant and t terms and (2) Mi  cannot be in the subset
t-2

i
without MtI. By performing F-tests between appropriate combinations of

these fourteen regressions, we established the lag structure for the

final form of the residual prediction equation.

As an example of the computed F-statistics, the following

table shows the results for the test of u = g (constant, t, L) versus
t

I
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ut = h (constant, t):t:

Variable

KI

LH

QPXB

YDV$

RDP

CON

LMHT

ECD

RTB

LF+LA

PL

Degrees
of

Freedom

4,34

4,32

4,58

4,58

4,34

4,58

4,32

4,34

4,34

4,34

4,32

Computed
F

10.75

141.20

5.40

4.61

4.39

0.60

0.52

0.72

0.53

0.61

0.27

C. Contemporaneous monthlies: In order to test for the

significance of current-quarter monthly data, we used the three-month

version of all regressions. Taking the lag structure as determined

above as given, there are four possible subsets of explanatory variables

that can be formed with the lag structure as a group and the two poten-

tial monthly variables. By performing F-tests between the relevant

combinations of these four regressions, we established the contempora-

neous monthly variables which remained in the final form of the residual

prediction equation.

Exhibit C shows the three-month version of the final form of

the residual prediction equations produced by this testing strategy. In

these equations, the notation for the MPS model variables is used to

represent the corresponding residual rather than the variable itself.
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Since the sample period for all equations ends with the fourth quarter

of 1973, the actual sample period is easily inferred from the number of

observations. There is no equation shown for variable PL because none

of the tests produced a statistically significant variable--just as one

would expect from a properly specified structural equation. Similarly,

the monthly variables listed in Exhibit B which do not appear in Exhibit

C failed all of our significance tests.

Because of the many combinations of forecast comparisons that

could be generated with the ten forecast equations, we were forced to

combine the variables in an ad hoc way. Group A variables do not contain

contemporaneous quarter-monthly data, and therefore, the residual predic-

tions derived from these equations will not change during a given quarter.

Group B variables contain contemporaneous quarter-monthly data, and

therefore, the predictions derived from these equations will depend on

the month of the quarter in which the forecast is made. Again, to

restrict the number of simulations, we constructed only Group B adds

with zero month's data (call these BO) and three month's data (B3).

Using the adds generated by these equations and setting the path accord-

ing to the autocorrelation scheme described above in equation (22), we

generated new forecast paths with the MPS model. The exception to this

rule is the "Chain Rule" adds where the future "u's" are predicted

directly from the own-lags equations using the chain rule procedure of

repeated substitution for difference equations. These results are given

in Tables 1-4.

I
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Exhibit A

MPS Quarterly Model Variables

CON: real consumption of goods and services according to the flow
of services concept (1974.1 = 538.4).

ECD: real consumer expenditures on durable goods (1974.1 = 105.2).

KI: real stock of nonfarm business inventories, multiplied by 4,
at end of period (1974.1 = 781.7).

LF+LA: labor force including armed forces (1974.1 = 92.7).

LH: total hours at annual rate, per employed person in the nonfarm
private domestic business and household sector (1974.1 = 1.933).

LMHT: hours of all persons in the private domestic nonfarm business
sector including proprietors and unpaid family workers (1974.1 =
142.6).

PL: employee compensation rate in the nonfarm private domestic
business sector (1974.1 = 516.6).

QPXB: log of price deflator for nonfarm business product net of
federal indirect business taxes less log of PL (1974.1 =
-1.245).

RDP: dividend-price ratio for common stocks (1974.1 = 3.7).

RTB: treasury bill rate (1974.1 = 7.6).

YDV$S: corporate dividends (1974.1 = 31.6).

I
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Exhibit B

Monthly Variables

AH: average weekly hours in total private nonfarm sector.

AHE: average hourly earnings 
of production workers on private

nonagricultural payrolls.

CPI: consumer price index (in 
log form in QPXB equation).

DP: dividend-price ratio for (Standard and Poor's) common stocks.

DRS: retail sales of durable goods 
deflated by the CPI.

H: index of aggregate weekly hours 
of production workers on

private nonagricultural payrolls.

IP: industrial production index.

LF: labor force including armed forces.

MD: demand deposit component of the money supply.

MFI: inventories of manufacturing sector 
deflated by industrial

component of WPI.

PI: personal income (deflated in ECD equation 
by the CPI).

RS: retail sales deflated by the CPI.

WPI: wholesale price index (in log form in 
QPXB equation).

YDV: dividend component of PI.

I
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Exhibit C

Estimated Prediction Equations

= -0.193 - 0.00004t - 0.066QPXBt_ + 0.062 QPXBt_2 -0.277QPXB

(-4.4) (-0.7) (-0.5) (0.5) (-2.7)

- 0.093QPXBt- 4 - 0.204CPI3t + 0.316CPI3t_4 - 0.142CPI3t 5

(-0.7) (-2.0) (2.1) (-1.5)

- 0.094WPI3t-3 + 0.205WPI3t - 0.039WPI3t 5

(-0.7) (1.1) (-0.4)

R 0.53 D-W = 2.2 SE - 0.00147 Obs. = 64

= 9.168 + 0.071t - 0.617RS + 1.170RS
3t-3 3t-4

(2.2) (1.6) (-1.1) (1.6)

2 = 0.11 D-W = 2.3 SE 1.399R = 0.11 D-W = 2.3 SE = 1.399

- 1.035RS3t_
5

(-1.9)

Obs. = 64

-5.175 + 0.130t +

(-1.8) (2.0)

- 0.380KI
t-4

(-1.8)

-2
R = 0.58 D-W

0.757KI1 +
t-4.1)

(4.1)

= 1.9 SE

0.072 KIt- 2 + 0.049KIt-2 t-3

(0.3) (0.2)

= 3.268 Obs. = 40

*See notes at end of table.

QPXBt

KI
t

CONt
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LH = 0.019 - 0.00045t - 0.580LH - 0.304LH - 0.327LHt t-1 t-2 t-3

(5.0) (-5.2) (-3.8) (-2.0) (-2.1)

+ 0.040LHt 4

(0.3)

-2
R = 0.65 DW = 2.2 SE = 0.00200

LMHT = -0.860 + 0.023t

(-2.1) (2.9)

2 = 0.16R = 0.16 DW = 1.6 SE = 0.536 Obs. = 38

= -0.799 + 0.00034t + 0.210RDPt-1 - 0.137RDP - 0.179RDPt-1 t-2 t-3
(-1.8) (1.3) (0.9) (-0.9) (-1.3)

+ 0.041RDPt- 4 + 0.119DP3t + 0.349DP3t-1 + 0.146DP3t-2

(0.1) (0.7) (1.7) (0.4)

- 0.020DP3t-3- 0.450DP3t-4- 0.142DP 5 + 0.223DP3t 63t3(-0.1) (-8) (-0.4) (0.5)3t-
(-0.1) (-1.8) (-0.4) (0.5)

- 0.177DP3t-7 + 0.288DP3t8 -

(-0.5) (1.8)

- 0.136CPI 3 t5 + 0.113CPI3t-6

(-0.9) (0.6)

-2
R = 0.82

0.038CPI3t_3 + 0.138CPI3

(-0.6) (1.6)

- 0.006CPI3t_ - 0.074CPI3t-8

(-0.1) (-0.6)

Obs. = 40

RDP
t

C

DW = 2.2 SE = 0.071



YDV$t = -0.500 - 0.016t + 0.475YDVS$ + 0.202YDV$

(-1.3) (-1.2) (4.6) (2.4)

+ 0.094YDV$t-3 + 0.072YDV$t-4 + 0.319YDV3t +

(1.1) (0.8) (5.3)

+ 0.212YDV3t2 0.437YDV3t3 - 0.282YDV3t-2 - 3t-33t-4

(0.8) (-6.0) (-1.1)

- 0.014PI3t - 0.005PI31 + 0.018PI3t-

(-1.4) (-0.3) (1.4)3t-2

(-1.4) (-0.3) (1.4)

2 =0.77R =0.77 D-W = 1.4 SE = 0.206

= -9.042 + 0.005t + 0.001DRS3t + 0.004DRS3t-1

(-0.9) (0.1) (1.0) (2.6)

0.165YDV3t-
1

(0.7)

+ 0.084YDV
3 t-5

(0.4)

Obs. = 64

- 0.003DRS3t-2

(-2.0)

- 0 .0 00 14 PI3 t

(-1.7)

- 0.00005PI3t 1 +

(-0.4)

+ 0.00039PI - 0.00021PI
3t-4 3-S(-1.9)

(2.9) (-1.9)

0.00005PI
3 t-2 - 0.00007PI3t-3

(0.4) (-0.9)

- 0.00004PI3t-6 + 0.00006PI

(-0.5) (0.3)

+ 0.0 00 00 3PI3t-8

(0.1)

2 = 0.
R = 0.46 SE = 1.357 Obs. = 40

ECD
t

_~___ _T ___
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-9.409 - 0.041t + 0.00009LF 3 t + 0.00039LF3t-1 + 0.00024LF3 t- 2

(1.1) (3.8) (3.1)

- 0.00022LF3t-3 - 0.00021LF3t-4 - 0.00014LF3t-5 + 0.0201P3t3t33t-4 3t-5 + .2I3t

(-1.9) (-2.0) (-2.2) (0.6)

- 0.0581P3t-1 + 0.O11IP3t-2 + 0.0391P3t-3 - 0.0351P3t_4
3t-l 3t-2 3t-3 3t-4

(-1.7) (0.3) (0.7) (-0.9)

+ 0 .0 0 6 1IP
3t-)

(0.3)

-2 = 0.85
R = 0.85 D-W = 2.1 SE = 0.082

= -0.425 - 0.023t + 0.610MD3 t - 0.653MD3 t_1 + 0.050MD3t_ 2

(-0.3) (-0.5)

R2 = 0.29

(3.7)

D-W = 1.6

(-2.3)

SE = 0.552

Notes: i) The subscript "t" denotes the tth quarter so that for

monthly data the time subscript 3t denotes the third month

of the t th quarter, and so on. Thus, quarterly data are

referenced by a subscript "t," and monthly data are

referenced by a subscript "3t."

-2
ii) The t-statistics are in parentheses, R is the coefficient

of multiple correlation adjusted for degress of freedom,

D-W is the Durbin-Watson statistic, SE is the standard

error of the regression whose magnitude may be evaluated

relative to the levels given in Exhibit A and Obs. is the

number of observations in the regression.

LF+LAtt

RTBt

Obs. = 40

(0.3)

Obs. = 40

~---

'- J J

(-1.8) (-1.2)


