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ABSTRACT

Because firms invest heavily in R&D, software, brands, and other intangible assets—at a rate close
to that of tangible assets—changes in GDP, which does not include all intangible investments,
understate the actual changes in total output. If labor inputs are more precisely measured, then it
is possible to observe little change in measured total factor productivity (TFP) coincidentally with
large changes in hours and investment. The output mismeasurement leaves business cycle modelers
with large and unexplained labor wedges accounting for most of the fluctuations in aggregate data.
To address this issue, I incorporate intangible investments into a multi-sector general equilibrium
model and use data from an updated U.S. input and output table to parameterize income and cost
shares, with intangible investments reassigned from intermediate to final uses. I employ maximum-
likelihood methods and quarterly observations on sectoral gross outputs for the United States to
estimate processes for latent sectoral TFPs that have common and sector-specific components. I do
not use aggregate hours to estimate TFPs but find that the predicted hours series compares closely
with the actual series and accounts for roughly two-thirds of its standard deviation. I find that
sector-specific shocks and industry linkages play an important role in accounting for fluctuations
and comovements in aggregate and industry-level U.S. data, and I find that at business-cycle
frequencies, the model’s common component of TFP is not correlated with the standard measures
of aggregate TFP used in the macroeconomic literature. Adding financial frictions and stochastic
shocks to financing constraints has a negligible impact on the results.
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1. Introduction

This paper sheds light on a measurement issue that confounds analyses of key macrodata dur-

ing economic booms and busts. Because firms invest heavily in R&D, software, brands, and other

intangible assets, changes in GDP, which does not include all intangible investments, understate

the actual changes in total output. As a result, it is possible to observe large changes in hours

and investment coincidentally with little change in measured total factor productivity. In other

words, innovation by firms—which is fueled in large part by their intangible investments—may be

evident “everywhere but in the productivity statistics.”1 Here, I use theory and recently revised

U.S. national accounts to more accurately estimate U.S. total factor productivity (TFP) at both

the aggregate and industry levels.

I develop a dynamic multi-sector general equilibrium model and explicitly incorporate intan-

gible investment. Multiple sectors are needed to account for the vast heterogeneity in intangible

investment rates across industries. Firms in the model economy have access to two production

technologies: one for producing new tangible goods and services, and another for producing new

intangible capital goods and services. Tangible capital is assumed to be a rivalrous input, but

intangible capital is assumed to be a nonrivalrous input, since knowledge can be used simulta-

neously in producing consumer goods and services and in creating new ideas. I explicitly model

industry linkages that occur through purchases of intermediate inputs and through purchases of

new tangible or intangible investment goods.

Business-cycle fluctuations in the baseline model are assumed to be driven by shocks to in-

dustry and aggregate TFP, the impact of which depends on details of the industry input- and

capital-use linkages. In an extension, I also allow for stochastic financing shocks, as in Jermann

and Quadrini (2012), with firms facing a cost of adjusting dividends and using costly external

finance to fund new projects. Both versions of the model can potentially rationalize the large

labor wedges found by Chari, Kehoe, and McGrattan (2007) when applying their business cycle

accounting approach to U.S. data with their no-intangible, no-financial-friction prototype model.2

1 Robert Solow remarked that the computer age could be seen “everywhere but in the productivity statistics”
(“We’d Better Watch Out,” New York Times Book Review, July 12, 1987, p. 36).

2 Business-cycle accounting is a method to assess the promise of economic theories. There are two steps.
The first is to show that a large class of models is observationally equivalent to a prototype model with
time-varying wedges that look like time-varying productivity, labor income taxes, investments taxes, and
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To parameterize income and cost shares, I start with the 2007 benchmark input-output table

and take advantage of the fact that the Bureau of Economic Analysis (BEA) now includes expendi-

tures on intellectual-property products—software; R&D; mineral exploration; and entertainment,

literary, and artistic originals—as part of investment rather than as part of intermediate inputs.

Additionally, I reassign several categories of intermediate inputs that are under consideration for

future inclusion in the BEA fixed assets, including computer design services, architectural and

engineering services, management consulting services, advertising, and marketing research. In the

version of the model with financing frictions, I use industry-level data from Compustat to construct

time series for ratios of tangible capital to output and debt to output, both of which are needed

to derive estimates of the shocks to the enforcement constraints.

Because the model includes intangible capital stocks that cannot be accurately measured, it is

not possible to use observations on factor inputs and outputs to directly measure the TFP series, as

has been done in earlier work (see, for example, Horvath 2000). Instead, I use maximum-likelihood

methods to estimate stochastic processes for the latent TFPs, which are assumed to have both

sector-specific components and a common component. This is done using quarterly data on gross

outputs for major industries from the BEA and per capita hours for several intangible-intensive

industries from the Bureau of Labor Statistics (BLS). Using observations not used in the estimation,

I run external tests of the theory and derive model predictions for the latent TFP and intangible

investment series.

A key test of the theory is its predictive performance for fluctuations in aggregate U.S. hours

and sectoral comovements in hours for all major industries, data not used to estimate the model

parameters. For the baseline model, I find that the model’s predicted aggregate hours track

U.S. hours much better than the simplest one-sector model without intangible investments. The

model predicts three sizable booms over the 1985–2015 sample period and then a bust. Moreover,

the standard deviation of the model’s predicted-hours series is 65 percent of the actual series, as

compared to 9 percent in the one-sector version without intangible investments. This improvement

in the model’s prediction is primarily due to fluctuations in intangible investments, which show up

government consumption. The second is to use the prototype model’s data and equilibrium conditions to
measure the wedges and to feed them back into the model in order to assess separately and in combinations
the impact of each one.
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as a time-varying labor wedge for Chari et al (2007).3 I also find significant comovement of sectoral

hours because of the model’s input-output linkages. Computing principal components for sectoral

hours, I find that the variance that the first component accounts for is 56 percent in U.S. data and

69 percent in the model. For the extended model with financial frictions, I find that the implied

labor wedges are smaller and less volatile than the wedge in Jermann and Quadrini’s (2012) one-

sector model, and as a result, financial shocks have only a small impact on real activity. A key

difference here is the inclusion of intangible investments and the assumption that only tangible

capital is externally financed.

After verifying that the baseline model effectively predicts U.S. hours, I put it to use to derive

theoretically consistent summary statistics and time paths for latent TFP shocks and intangible

investments.4 I first decompose the variances of U.S. data used in the maximum likelihood esti-

mation (MLE) to determine the relative importance of idiosyncratic and common TFP shocks and

to assess the role of input-output linkages. I do this decomposition in two ways: by computing the

variance decomposition of the ergodic distribution, and by decomposing predicted growth rates

in the technology boom of the 1990s and the Great Recession. I find that sector-specific shocks

and industry linkages play an important role in accounting for fluctuations in the aggregate and

industry-level gross outputs. Then I construct model time series for investments and TFP pro-

cesses. I find that at business-cycle frequencies, the model’s common component of TFP is not

correlated with the standard measures of TFP used in the macroeconomic literature. In the case of

investment, I find different time-series properties for intangibles and tangibles: intangible invest-

ments vary less over the business cycle than tangible ones and lag the cycle by several quarters.

HERE

Previous theoretical work related to this paper has either abstracted from intangible capital

or been more limited in scope. Long and Plosser (1983) analyzed a relatively simple multi-sector

model, arguing that firm- and industry-level shocks could generate realistic aggregate fluctuations.

Horvath (1998, 2000) and Dupor (1999) extended Long and Plosser’s (1983) model and studied the

nature of industry linkages to determine if independent productivity shocks could in fact generate

3 This would be true even in a one-sector model. I use a multi-sector model because most of the U.S. intangible
investment is done by firms in just a few major sectors—namely, manufacturing, information, and professional
and business services.

4 Because the financial frictions add little, I could use either version for this inference.
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much variation in aggregate variables. Parameterizing the model to match the input-output and

capital-use tables for the 1977 BEA benchmark, Horvath (2000) found that the multi-sector model

that features only sectoral shocks is able to account for many patterns in U.S. data about as well as

a one-sector model driven by aggregate shocks. More recently, Foerster, Sarte, and Watson (2011)

did a full structural-factor analysis of the errors from the same multi-sector model and found

that significant variation in quarterly data is explained by sectoral shocks. However, they used

industrial-production data, which cover only about 20 percent of total production in the United

States. Atalay extended the analysis to the entire economy and allowed for more general functional

forms. None of these authors distinguished tangible and intangible investments. McGrattan and

Prescott (2010) did distinguish the different investments but focused only on aggregate data for a

specific episode—namely, the technology boom of the 1990s. Furthermore, they did their analysis

well before the BEA completed the comprehensive revision introducing the category of intellectual-

property products.

Previous empirical work has documented that intangible investments are large and vary with

tangible investments over the business cycle. For example, Corrado, Hulten, and Sichel (2009)

estimate that businesses’ intangible investments are about as large as their tangible investments.5

McGrattan and Prescott (2014) use firm-level data and show that intangible investments are highly

correlated with tangible investments such as plant and equipment.

This paper is also related to a burgeoning business-cycle literature in search of new sources of

shocks and new sources of propagation mechanisms following the Great Recession of 2008–2009.6

During the downturn, GDP and hours fell significantly, but TFP fell only modestly and quickly

recovered, rising in 2009 when real activity was still well below trend. These observations have

led many to conclude that the Great Recession was inherently different from other downturns and

5 For more details on measurement of intangible investments in the national accounts, see recent surveys in
the BEA’s Survey of Current Business (U.S. Department of Commerce, 1929–2016). For more details on
measurement of R&D investments, see National Science Foundation (1953–2016). For details on entertainment,
literary, and artistic originals, see Soloveichik and Wasshausen (2013).

6 For example, in the recent literature, business cycles are driven by shocks to capital quality (Gertler and
Kiyotaki (2010), Gourio (2012), Bigio (2015)), enforcement or collateral constraints (Jermann and Quadrini
(2012), Khan and Thomas (2013)), agents’ beliefs (Angeletos and La’O (2013)), news about future productivity
(Karnizova (2012), Chen and Song (2013)), and second moments (Azzimonti and Talbert (2014), Bachmann
and Bayer (2014), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018), Schaal (2017)). If cycles
are driven by productivity shocks, the source of propagation is different from that in standard real business
cycle models. See, for example, Boissay, Collard, and Smets (2016).
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certainly not consistent with the predictions of the real business cycle (RBC) theories developed

in the early 1980s. In RBC theories, resources are efficiently allocated and fluctuations are driven

by changes in TFP.7 My paper shows that a variant of those models—namely, one that takes into

consideration the intangible investments of firms and allows for sectoral shocks to TFP—can go a

long way in accounting for U.S. business cycles.

The model is described in Section 2. Estimation techniques and parameter estimates are

described in Section 3. Section 4 summarizes the results. Section 5 concludes.

2. Model

I start by describing the baseline model without financing constraints. For this version of the

model, the driving forces of business cycles are sectoral and aggregate TFP shocks. I then extend

the framework to include financing decisions and enforcement constraints. In the extension, the

driving forces are TFP shocks and financing shocks.

2.1. Baseline with Only TFP Shocks

A stand-in household supplies labor to competitive firms and, as the owner of the firms,

receives the dividends. A government has certain spending obligations that are financed by various

taxes on households and firms. Firms produce final goods for households and the government and

intermediate inputs for other businesses. In the baseline model, the only sources of fluctuations in

the economy are stochastic shocks to firm productivities.

The economy has J sectors. Firms in sector j maximize the present value of dividends Dj paid

to their shareholders. I assume that firms in each sector j produce both tangible goods and services,

Yj , and intangible investment goods and services, XIj . The technologies available in period t are

as follows:

Yjt =
(

K1
Tjt

)θj
(KIjt)

φj

(

∏

l

(

M1
ljt

)γlj) (

Z1
jtH

1
jt

)1−θj−φj−γj
(2.1)

XIjt =
(

K2
Tjt

)θj
(KIjt)

φj

(

∏

l

(

M2
ljt

)γlj) (

Z2
jtH

2
jt

)1−θj−φj−γj
, (2.2)

7 The main references, in addition to Long and Plosser (1983), are Kydland and Prescott (1982), Hansen (1985),
Prescott (1986), and Cooley (1995).
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which depend on inputs of tangible capital K1
Tj , K

2
Tj ; intangible capital KIj ; intermediate inputs

{M1
lj}, {M

2
lj}; and hours H1

j , H
2
j . These production technologies are hit in period t by stochastic

technology shocks, Z1
jt and Z

2
jt, that could have a common component and sector-specific compo-

nents. The specific choices for the stochastic processes are discussed below.

The maximization problem solved by firms in sector j on behalf of their owners (households)

who discount after-tax future earnings at the rate ̺t is given by

max E0

∞
∑

t=0

(1− τd) ̺tDjt,

subject to

Djt = PjtYjt +QjtXIjt −WjtHjt −
∑

l PltMljt −
∑

l PltXTljt −
∑

lQltXIljt

− τp{PjtYjt +QjtXIjt −WjtHjt − (δT + τk)PjtKTjt

−
∑

l

PltMljt −
∑

l

QltXIljt} − τkPjtKTjt (2.3)

KTjt+1 = (1− δT )KTjt +
∏

lX
ζlj
Tljt (2.4)

KIjt+1 = (1− δI)KIjt +
∏

lX
νlj
Iljt (2.5)

Mljt =M1
ljt +M2

ljt. (2.6)

Dividends are equal to gross output PjYj+QjXIj less wage payments to workersWjHj , purchased

intermediate goods
∑

l PlMlj , new tangible investments
∑

l PlXTlj , new intangible investments
∑

lQlXIlj , and taxes. New investment goods and services are purchased from other sectors and

used to update capital stocks, as in (2.4) and (2.5). Taxes are levied on accounting profits at rate

τp and on property at rate τk.

Households choose consumption Ct and leisure Lt to maximize expected utility

max E0

∞
∑

t=0

βt
{

[

(Ct/Nt) (Lt/Nt)
ψ
]1−α

− 1
}

/ (1− α)Nt (2.7)

with the population equal to Nt = N0(1 + gn)
t. The maximization is subject to the following

per-period budget constraint:

(1 + τc)
∑

j PjtCjt +
∑

j Vjt (Sjt+1 − Sjt)

≤ (1− τh)
∑

jWjtHjt + (1− τd)
∑

j DjtSjt +Ψt, (2.8)
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where Cj is consumption of goods made by firms in sector j, which are purchased at price Pj ; Hj

is labor supplied to sector j, which is paid Wj ; and Dj are dividends paid to the owners of firms in

sector j with Sj outstanding shares that sell at price Vj . Taxes are paid on consumption purchases

(τc), labor earnings (τh), and dividends (τd). Any revenues in excess of government purchases of

goods and services are lump-sum rebated to the household in the amount Ψ.

The composite consumption and leisure that enter the utility function are given by

Ct =
[

∑

j ωjC
σ−1

σ

jt

]

σ
σ−1

(2.9)

Lt = Nt −
∑

j Hjt. (2.10)

Here, notice that I use a constant elasticity of substitution function for consumption and a linear

function for hours. As owners of the firm, the household’s discount factor is the relevant measure

for ̺t in (2.3):

̺t = βtUct/ [Pt (1 + τc)] , (2.11)

where Pt is the aggregate price index given by Pt = [
∑

j ω
σ
j P

1−σ
jt ]1/(1−σ).

The resource constraints for tangible and intangible goods and services are given as follows:

Yjt = Cjt +
∑

lXTjlt +
∑

lMjlt +Gjt (2.12)

XIjt =
∑

lXIjlt, (2.13)

for i = 1, 2 and j = 1, . . . , J , where Yj and XIj are defined in (2.1) and (2.2), respectively. The

model economy is closed; therefore, there is no term for net exports.8

I assume that the logs of the sectoral TFP processes are equal to the sum of a sector-specific

component Z̃ijt and a common component Zt with factor loading λj ; that is,

logZijt = log Z̃ijt + λj logZt (2.14)

log Z̃ijt = ρij log Z̃
i
jt−1 + ηijt (2.15)

logZt = ρ logZt−1 + υt, (2.16)

8 In the empirical implementation, net exports will be included with intermediate and final domestic purchases.
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where Eηijt = 0, Eηijtη
i
jt−1 = 0, Eηijtη

k
lt = 0 if j 6= l, Eυt = 0, Eυtυt−1 = 0, and Eυtη

i
jt = 0. In

other words, the shocks to TFP are correlated within a sector but not across sectors, across time,

or with the common TFP component.9

An approximate equilibrium for the model economy can be found by applying a version of

Vaughan’s (1970) method to the log-linearized first-order conditions of the household and firm

maximization problems. The solution can be summarized as an equilibrium law of motion for the

logged and detrended state vector x; namely,

xt+1 = Axt + Bεt+1, Eεtε
′

t = I, (2.17)

where xt = [~kTt, ~kIt, ~z1t, ~z2t, zt, 1]
′ is a (4J+2)×1 state vector, ~kTt is the J×1 vector of logged

and detrended tangible-capital stocks, ~kIt is the J×1 vector of logged and detrended intangible-

capital stocks, ~z1t is the J×1 vector of logged and detrended sectoral TFPs for production of final

goods and services, ~z2t is the J×1 vector of logged and detrended sectoral TFPs for production

of new intangible investments, and zt is the logged and detrended common shock. The variables

are detrended by dividing first by the growth in population (1 + gn)
t and then by the growth in

technology, which is denoted by (1+ gz)
t. The last element of xt is a 1, which is used for constant

terms. The vector εt is a 2J +1 vector of normally distributed shocks. Elements of the vector Bεt

are the shocks ηijt and υt in (2.15)-(2.16). Thus, the only nonzero off-diagonal elements of B are

the parameters governing correlations between TFP shocks to tangible and intangible production

within the same sector.

2.2. Extension with Financial Shocks

The model extension I consider includes capital-market imperfections along the lines of Jer-

mann and Quadrini (2012). I assume, as they do, that firms finance investment using both debt

and equity, with debt preferred to equity because of its tax advantage. The main difference is that

here I work with a multi-sector version of the model, whereas they work with a representative firm.

9 One exception is the government sector, NAICS 92. I assume that shocks to production in NAICS 92 are
independent of all other shocks. If I assume otherwise, then the common shock parameter estimates depend
importantly on increases in gross output in this sector during the Great Recession, the source of which is
unlikely to be a boom in TFP.
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In this case, the definition of dividends in (2.3) must be modified to include a new term—

namely, Bjt+1/Rbjt − Bjt on the right-hand side, where Bjt is the debt of firms in sector j at

time t, Rbjt = 1 + rt(1 − τbj) is the effective gross interest rate for firms in sector j, rt is the net

interest rate paid to lending households, and τbj is the tax benefit. Additionally, firms in Jermann

and Quadrini (2012) raise funds to finance working capital, which can be easily diverted. Assume

that loans to firms in sector j and time t are denoted by ljt. With probability ξjt, the lender can

recover the loan, implying that the firms are subject to the following enforcement constraints:

ξjt

(

Pjt+1KTjt+1 −
Bjt+1

1 + rt

)

≥ ljt, (2.18)

where Pjt+1KTjt+1 is the value of the capital that can be partially liquidated in the case of default.

If I assume, as Jermann and Quadrini (2012) do, that the size of the loan is equal to current-period

output, then I replace ljt by PjtYjt + QjtXIjt. This then is an adaptation of the constraint in

Jermann and Quadrini (2012), who abstract from multiple sectors and intangible capital.

The enforcement constraint in (2.18) has almost no real impact without an additional feature

that Jermann and Quadrini (2012) introduce into their model—namely, a cost for paying dividends

over and beyond the payout itself. In other words, Djt in equation (2.3) is replaced by

ϕ (Djt) = Djt + κj
(

Djt − D̄j

)2
.

If κj = 0, shocks to ξjt can be offset by changes in dividend payouts. Firms would not choose to use

costly external finance and pay dividends. If κj > 0, dividend payouts are costly and adjustment

is slower, implying that shocks to ξjt can have a real impact on output, investment, and hours.

In this extension, I add a J × 1 vector of detrended debt levels and a J × 1 vector of financial

shocks to the state vector xt in (2.17).

3. Parameters

Next, I describe how to parameterize income and cost shares using the 2007 benchmark BEA

input-output use table and how to estimate processes for components of the sectoral TFPs—

namely, {Z1
jt} and {Z2

jt}—using data from the BEA and BLS. The remaining parameters, which

are also described below, are those related to preferences, growth rates, depreciation, tax rates,

and the financing constraints.
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3.1. Income and Cost Shares

The starting point for my analysis is the BEA input-output table, which records intermediate

purchases by commodity and industry, final purchases by commodity and final user, and payments

to factors by industry. For the analysis below, I use data for the 15 major industries: (1) agriculture,

forestry, fishing, and hunting (NAICS 11); (2) mining (NAICS 21); (3) utilities (NAICS 22);

(4) construction (NAICS 23); (5) manufacturing (NAICS 31–33); (6) wholesale trade (NAICS

42); (7) retail trade (NAICS 44–45); (8) transportation and warehousing (NAICS 48–49); (9)

information (NAICS 51); (10) finance, insurance, real estate, rental and leasing (NAICS 52–53);

(11) professional and business services (NAICS 54–56); (12) educational services, health care, and

social assistance (NAICS 61–62); (13) arts, entertainment, recreation, accommodation, and food

services (NAICS 71–72); (14) other services except government (81); and (15) public administration

(NAICS 92).

In the model, intermediate purchases are represented as a J × J matrix with element (l, j)

given by Pl(M
1
lj +M2

lj) for commodity l purchased by firms in industry j. As a share of gross

industry output PjYj+QjXIj in industry j, these intermediate purchases are used to parameterize

the intermediate shares, {γlj}, in (2.1) and (2.2).10 Before computing intermediate shares with

the BEA’s input-output data, I first recategorize intermediate expenses for several commodities

under professional and business services—commodities that national accountants are considering

for recategorization—to final uses. Specifically, I move expenses for computer design services,

architectural and engineering services, management consulting services, advertising, and market-

ing research out of the intermediate-inputs matrix and into the capital-use table for intangible

investments described below.

In the model, final purchases are computed as the sum of private and public consumption,

tangible investments, and intangible investments. In consumption, I include the nondurable goods

and services categories from the BEA’s personal-consumption expenditures and government con-

sumption. Expenditure shares for these goods and services are governed by the choice of {ωj}

10 When estimating the shares, taxes on imports and production are first subtracted from industry value added
and final uses to be consistent with the theory.
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in (2.9), which I set to align the theoretical and empirical shares.11 In investment, I include the

BEA’s government investment categories as well as the durable-goods component of personal con-

sumption expenditures, with an imputed service flow for durable and government capital added to

consumption services.

Like intermediate purchases, tangible and intangible investments are used by different indus-

tries. Tangible-investment purchases are represented as a J × J capital-use matrix with element

(l, j) given by PlXTlj for commodity l purchased by firms in industry j. Intangible-investment

purchases are also represented as a J × J capital-use matrix with element (l, j) given by QlXIlj

for commodity l purchased by firms in industry j. Detailed investment data from the BEA are

used to construct these matrices.12 I include fixed investment—both public and private—in equip-

ment and structures and changes in inventories with tangible investment, and I include the new

BEA category of intellectual-property products (IPP)—both public and private—with intangible

investment.13 As mentioned earlier, the IPP category includes expenditures on software; mineral

exploration; R&D; and entertainment, literary, and artistic originals. Some of this spending is

done in-house by firms (and is what the BEA calls own-account). For this spending, I reassign the

commodity source to the own industry, which is more in line with the theory. To the IPP spending,

I add the reallocated intermediate expenditures on professional and business services. In the case

of consumer durable equipment, I assume it is a manufactured commodity used by the real-estate

industry. In the case of consumer durable software and books, I assume these are information

commodities used by households. Once I have the capital-use matrices, I can set the parameters

ζlj and νlj using the spending shares for tangible and intangible investment, respectively.14

To compute factor shares, I use the value-added components in the BEA’s 2007 input-output

table. Three components of value added are reported for industry data: compensation, taxes

on production and imports, and gross operating surplus. The labor income share for industry j

11 Consumer spending on the public administration “commodity” is allocated in a pro rata way to spending of
all other commodities.

12 The BEA has not yet published an official capital-use table for the 2007 benchmark input-output accounts. I
was able to construct one using detailed investment data available for the BEA fixed-asset tables and the help
of David Wasshausen at the BEA.

13 This category of investment was added in the 2013 comprehensive revision of the accounts.
14 The economy is closed and does not have a rest-of-world sector. Thus, I reallocate net exports to the domestic

categories of intermediates, consumption, and investment. I do so in a pro rata way.
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is compensation WjHj divided by industry gross output less taxes on production and imports.

For the capital-income shares, I need to infer how much of the operating surplus results from

tangible investment and how much from intangible investment. I use total spending on tangible

and intangible investments to infer this split by iteratively solving the model and adjusting the

shares to ensure a match. When this process is complete, I have estimates for the capital income

shares {θj , φj}.

The results of the calculations are summarized in Table 1. Part A shows the capital income

shares, {θj , φj}, and consumption expenditure shares, {ωj}. Notice that in four industries—

manufacturing, wholesale trade, information, and professional and business services—the share

of intangible capital in production is larger than the share of tangible capital. Part B shows

the implied intermediate input shares, {γlj}. The first row and column headers indicate the

commodity and industry NAICS category, respectively, which in turn correspond to the 15 major

industries listed above. These shares provide one measure of the industry linkages. The capital-

use tables provide another. Part C shows the shares for the tangible capital-use table, {ζlj}, and

Part D shows the shares for the intangible capital-use table, {νlj}. Notice that many rows in

Part C have only zeros because the commodities produced are neither structures nor equipment.

Commodities categorized under construction (NAICS 23) and manufacturing (NAICS 31–33) are

the main sources of tangible investment goods. In the case of intangible investments, commodities

categorized under information (NAICS 51) and professional and business services (NAICS 54–56)

are most important. In the BEA data, scientific R&D is listed under NAICS 5417, but much

of this is specific to other commodities (e.g., chemical manufacturing) and has been reassigned

accordingly (see Appendix A for more details). For this reason, there are nonzero shares on the

diagonal of the matrix ν that would be zeros if I were to use the BEA commodity assignments.

The shares in Table 1 are held fixed when estimating TFP processes, which I turn to next.

3.2. Shock Processes

Estimates of the parameters governing the shock processes are found by applying maximum

likelihood to the following state space system:

xt+1 = Axt +Bεt+1 (3.1)
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yt = Cxt, (3.2)

where the elements of xt are defined above (see [(2.17)]) and assumed to be unobserved, and yt are

quarterly U.S. observations for the period 1985:1–2014:4.15

In the baseline model without financial shocks, I assume that there are shocks to TFP in the

production of all tangible goods and services and in the production of a subset of intangible goods

and services. That is, I assume that Z2
jt is constant for all j except in the cases of manufacturing,

information, and professional and business services, where production of intangible goods and

services is concentrated. To identify the sectoral TFP shocks to tangible production, Z1
jt, and

factor loadings on the common shock, λj , I use data on gross outputs for private industries and

aggregate gross output.16 I use gross outputs, rather than data on value added, because there

are no issues with the classification of spending as intermediate or final, which has changed over

the postwar period.17 Because the standard deviation of the common TFP shock and the factor

loadings are not separately identifiable, I normalize the standard deviation of the common TFP

shock and set it equal to 0.01.

For the intangible-intensive sectors, I use additional data to identify the processes for TFP in

the production of new intangible investment goods. Specifically, I use hours of work for the following

three subsectors: computer and electronic products, broadcasting and telecommunications, and

advertising—which are three-digit industries under manufacturing, information, and professional

and business and services, respectively.18 Because the hours in these industries account for only

10 percent, I can use the model’s prediction for aggregate hours as an external check on the model.

Given the standard one-sector model without intangibles’ failure to account for large fluctuations

in hours, a comparison of hours is a particularly important test of the new theory.

The model has a quarterly time period, but time series on gross outputs by industry are only

available annually before 2005. Therefore, before estimating parameters for the shock processes,

15 See Harvey (1989) for details.
16 Both data and model series are deflated before shocks are estimated. I do not estimate TFP shocks for the

public-administration sector (NAICS 92) because stimulus spending during the Great Recession shows up as
positive TFP shocks.

17 As a robustness check, I also worked with IRS business receipts, which are an important source of information
for constructing gross outputs and are available from the 1920s onward for many major and minor industries.

18 Another possible data source is gross outputs for the subsectors. However, measurement issues arise because
significant intangible investment may be done in-house and is thus not included in gross output.
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I use a Kalman filter to compute forecasts of quarterly gross outputs.19 The idea is to use other

available quarterly data by industry and construct quarterly forecasts for the series of interest—

namely, gross outputs. Specifically, I use quarterly estimates of the BEA’s national income by

industry, quarterly estimates of the BLS’s employment by industry, and annual estimates of the

BEA’s gross outputs. Both the national-income and gross-output data are divided by the GDP

deflator.20 Doing this yields 15 series of quarterly gross outputs for 14 private industries and

aggregate gross output. Adding data on hours for the intangible-intensive subsectors implies that

the vector yt in (3.2) has 18 elements, which are used to estimate the 18 TFP processes.

One final step before the TFP processes can be estimated is to set the initial state x0 in (3.1).

Here, I do not use the steady-state values because there are differing growth trends in U.S. industry

data. For example, relative to an economy-wide trend, manufacturing has been slowing, and

information has been growing. Thus, I choose x0 in such a way that initial investments do not

jump. This is easy to do in two steps. I start by setting x0 equal to the steady state and then

use the model’s prediction for the first period state, x̂1, as the new initial condition. Given the

observable series, yt, and initial conditions for the initial state, x0, I again apply the methods in

Harvey (1989) to estimate the parameters of the stochastic TFP processes, which appear in the

coefficients A and B in (3.1).

The results of the estimation are shown in Table 2. The four sets of estimates are the factor

loadings λj ; serial correlation coefficients ρij ; standard deviations of shocks ηijt; and correlations

between tangible shocks η1jt and intangible shocks η2jt in the intangible-intensive industries. The

factor loadings vary significantly across industries, with a loading of −2.9 for utilities and a loading

of 2.2 for finance, insurance, and real estate. Serial correlation coefficients are all high and, in some

cases, fixed during estimation at the upper bound of 0.995. Standard deviations of sectoral shocks

are all significantly different from zero and, in many cases, are much larger than the standard

deviation of the common shocks (which is normalized at 0.01). Finally, the correlations between

shocks to tangible production and shocks to intangible production are significantly different from

19 See Harvey (1989) for more information on the Kalman filter and Appendix B for details of my application.
20 To do the forecasting, I first remove trends by applying the filter in Hodrick and Prescott (1997) (with a

smoothing parameter of 1600 for the quarterly series and 100 for the annual series). Once I have quarterly
estimates, I add the low-frequency Hodrick-Prescott trend back to the forecasted time series.
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zero in two of the three cases, with a positive correlation in information and a negative correlation

in professional and business services.

3.3. Other parameters

The remaining parameters for the baseline model are those related to preferences, growth in

population and technology, depreciation, and taxes.

For preferences, I set α = 1, σ = 1, ψ = 1.2, and β = 0.995. Annual growth in population (gn)

and technology (gz) are 1 and 2 percent, respectively. Annual depreciation is set at 3.2 percent

and assumed to be the same for all types of capital.21 Tax rates are based on IRS and national

account data and are as follows: τc = 0.065, τd = 0.144, τh = .382, τp = 0.33, and τk = 0.003. For

the results below, these rates are held constant.

3.4. Extension with Financial Shocks

For the extension with financial constraints and shocks, several additional parameters are

needed. For all industries j, I set κj = 0.146 and τbj = 0.35 to be consistent with Jermann

and Quadrini’s (2012) parameterization. To estimate financial shocks, I need firm-level data from

Compustat for tangible investments, debt, and output. I aggregate these data by industry.22

Tangible capital stocks are computed using the perpetual inventory method with the Compustat

investment data. As in Jermann and Quadrini (2012), I assume the enforcement constraints bind

and use equation (2.18) and the Compustat data to derive time paths for the financial shocks ξjt.
23

I find that the time paths of ξjt are positive over the sample for only four of the major industries:

mining, manufacturing, transportation and warehousing, and leisure and hospitality. These series

21 One issue that arises in models with intangible capital is the lack of identification of all parameters. For
example, there are insufficient data to estimate both capital shares and depreciation rates, even in the case of
R&D assets that are now included in both the BEA’s national income and product accounts (NIPA) and the
fixed asset tables. The BEA uses estimates of intangible depreciation rates to calculate the return to R&D
investments and the capital service costs, which are used in capitalizing R&D investments for their fixed-asset
tables. Unfortunately, as the survey of Li (2012) makes clear, “Measuring R&D depreciation rates directly is
extremely difficult because both the price and output of R&D capital are generally unobservable.” Li discusses
different approaches that have been used to estimate industry-specific R&D depreciation rates, finding a wide
range of estimates even within narrow categories. She concludes that “the differences in their results cannot
be easily reconciled” (see Li 2012, Table 2). I conduct sensitivity analysis to ensure that the main results are
not affected by the choice.

22 I updated the data used in Larrain and Yogo (2008). See Appendix A for details.
23 The assumption that the constraints are always binding can be verified.
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are added to the vector of observables yt in (3.2). Thus, I assume that firms in four industries

borrow to finance new investment, whereas all others use retained earnings.

4. Results

In this section, I present the main empirical findings. First, I find that the model driven by only

productivity shocks is successful in generating large fluctuations in aggregate hours and significant

comovement of sectoral hours. Second, I find that sector-specific productivity shocks account for a

significant fraction of the observed time series and that industry linkages play an important role in

generating business cycles. Third, I characterize the cyclical properties of the latent TFP processes

and intangible investments and find important differences between the model’s predictions and

measures of TFP and investment typically used in the macroeconomic literature. Finally, in an

extension of the model that includes financing constraints and financial shocks, I find that the

quantitative results are not significantly changed.24

4.1. Predictions for Hours of Work

An important test of any business-cycle model is its ability to generate aggregate fluctuations in

hours of work in line with observations. The simplest one-sector real business cycle model without

any intangible investment—which is the benchmark model used in the literature—spectacularly

fails this test when compared with U.S. data. Here, I find that the multi-sector real business-cycle

model with intangible investments does much better in generating aggregate hours that are variable

and sectoral hours that comove.

For the benchmark, I set J = 1 and φj = 0. This version of the model generates results similar

to the model of Prescott (1986). In this case, I use the Solow residual as an estimate of the model’s

one TFP series. The Solow residual is real GDP divided by real fixed assets raised to a power (in

this case, one-third) times aggregate hours raised to a power (in this case, two-thirds).25 I assume

the logarithm of the Solow residual is a first-order autoregressive process that can be estimated

24 See Appendix A for data sources used. Materials for replication of all results are available at https://users.econ.
umn.edu/∼erm. Users can edit the codes to run their own cases.

25 The NIPA data do include some intangible investments, and the fixed assets do include some intangible capital.
Stripping them out does not affect the main results for the one-sector benchmark model.
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using ordinary least squares. Given the estimates and an initial condition for the process, I can

simulate a path for TFP and feed it into the model’s equilibrium decision functions.

The result for the hours decision is plotted in Figure 1A, along with actual U.S. per capita

hours. As the figure shows, the predicted series does not track the U.S. series and varies much

less over the business cycle, barely rising during the technology boom and barely falling during the

Great Recession. The standard deviation of the predicted series relative to the actual series is 9

percent. Why does it vary so little? The answer is that measured TFP—which in this case is the

Solow residual—does not fluctuate very much over the cycle in my sample period.

In the multi-sector model, predictions of the model’s state xt and all decision variables—which

are functions of the state—are found by applying a Kalman smoother that conditions on all of the

observations, {yt}; that is, x̂t = E[xt|y1, . . . , yT ]. Here, the variables of interest are sectoral and

aggregate hours, which are not included in the vector yt when estimating the TFP shocks but are

observable. In Figure 1B, I plot the multi-sector model’s predicted per capita hours, along with

actual U.S. hours. The figure shows that the predicted hours track actual hours much better than

the simplest one-sector model. The model predicts three sizable booms and then a bust, and the

standard deviation of the model series is 65 percent of the actual series.

The success of the model can be demonstrated also by applying the business-cycle accounting

approach of Chari et al. (2007) to model simulations of aggregate data on hours, consumption, and

output. Chari et al. (2007) find that large labor wedges are needed to account for fluctuations in

U.S. aggregate data. The labor wedge in the prototype model is the ratio of the marginal rate of

substitution between consumption and leisure, ψCt/Lt, and labor productivity measured as GDP

per hour. This wedge is predicted to be a constant in many models but is large and time varying

for U.S. data. It is also large and time varying in my model simulations. The reason is that in

equilibrium, the marginal rate of substitution is equal to the real wage rate, Wjt/Pt, for all j,

which in turn is equal to the ratio of total output in sector j—including output in new intangible

investments—to total hours of work in sector j. Even if there were only one sector, this measure

of labor productivity is not equal to GDP per hour. Fluctuations in intangible investments over

the cycle would imply much more variability in labor productivity and would look to Chari et

al. (2007) as if there were time variation in labor income taxes.
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In Table 3, I report results for predicted hours by sector, which in the case of the model is the

sum of hours in tangible and intangible production. The first column compares the correlations of

predicted and actual logged hours after applying a Hodrick-Prescott filter to remove low frequencies.

With three exceptions, I find positive correlations between the predicted and actual series. If I

take a weighted average using industry shares of hours as weights, I find the average is over 50

percent, which is high. In information and professional business and services, the correlations are

over 90 percent.26

Next, I investigate the model’s predictions for the comovement of hours across sectors, which

are known to comove positively in U.S. data. As Hornstein and Praschnik (1997) have shown,

including input-output linkages can improve the performance of business-cycle models in predicting

positive comovements of sectoral labor inputs. The measure of comovement that I use is based

on a principal components analysis (PCA). The idea is to transform the data by constructing

uncorrelated “components” that are linear combinations of the data, with the first component

accounting for the maximal variance. The first component should account for a large fraction of

the overall variance if the series positively comove. The coefficients in the linear mapping from

data to components are the factor loadings and are bounded between −1 and 1.

Table 3 reports the main findings of the analysis. Specifically, I report the factor loadings

for the model hours and the U.S. hours by industry along with the percentage of the variance

attributed to the first principal component. Not surprisingly, the predicted and actual factor

loadings are similar for sectors with a high correlation between the predicted and actual hours.

What is more surprising is the fact that the model’s first component accounts for close to 70 percent

of the variance in the model time series, which is even higher than the 56 percent estimate for the

U.S. data.

This comovement could be the result of the input-output linkages, or it could be the case that

the common component of TFP accounts for most of the variance in the data used to estimate

the shock processes. I next turn to a variance decomposition of the observed time series to further

investigate the role of the input-output linkages across sectors.

26 The high estimates for the intangible-intensive sectors are not a result of including hours in the observer
equation, because I include hours of subsectors within these major industries only when estimating the shock
processes.
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4.2. Variance Decompositions

I compute two conceptually different variance decompositions. First, I decompose the variances

of the observed time series yt in (3.2) using the ergodic distribution of the model based on the

updated input-output table and the estimated shock processes. Second, I decompose aggregate

gross output during the technology boom of the 1990s and the Great Recession of 2008–2009. For

both, I find that sectoral shocks and input-output linkages are quantitatively important features

of the model.

In Table 4, I report the variance decomposition for the model’s ergodic distribution. The rows

correspond to the gross outputs for the major private industries and hours for three subsectors

of the intangible-intensive industries.27 The columns in Table 4 correspond to the shocks. The

first column is the total variance that is due to sectoral shocks. This variance is split between

own-sector shocks (due to either Z1
jt or Z

2
jt for industry j) and other-industry shocks. The last

column is the variance that is due to the common TFP shock. Notice first that sectoral shocks

are quantitatively important for every industry. In all cases, the variance due to sectoral shocks is

at least as high as 60 percent. The industries most affected by the common shock are retail trade

and many of the services. Another noteworthy feature of the results is the contribution of other-

industry shocks. For many sectors, the contribution is sizable, indicating that input-output linkages

are playing an important role in propagating shocks. In fact, in six industries the contribution of

other-industry shocks is greater than that of own-industry shocks, and in 10 industries it is greater

than the common shock. Only in the case of mining is the variance in gross output nearly all due

to own-industry shocks.28

One issue with the variance decomposition in Table 4 is the fact that the 1985–2015 sample

exhibits significant trends, which will bias these estimates. Most likely, the trends imply more

weight on sectoral shocks and less weight on common shocks. Thus, as an alternative summary

of the variance decomposition, I decompose the growth rates of gross output in the two episodes

mentioned above: the 1990s technology boom and the Great Recession.

The results are shown in Table 5. Here, the rows correspond to the source of shocks. The

27 The government sector is not listed, since I imposed restrictions on the shocks in this sector.
28 Foerster, Sarte, and Watson (2011) decompose industrial production data, which cover mining, manufacturing,

and some utilities. They find that half of the variation in these data is due to sector-specific shocks.
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columns report the change in aggregate gross output growth attributable to shocks from each

source. There are two periods and therefore two estimates for each period. The table shows that

the common TFP shock accounts for roughly 60 percent of the increase in total gross output over

the period 1991:4 to 2000:3 and 40 percent of the decline over the period 2007:4 to 2009:3. As

expected, these estimates are higher than the contributions for the ergodic distribution but still

imply a large role for sectoral shocks and industry linkages. Which sectors play an important role

depends on the episode. In the technology boom, shocks to TFP in information; finance, insurance,

and real estate; and professional and business services are important for the business cycle. In the

Great Recession, shocks to manufacturing TFP are important.

The variance decompositions of the observed data indicate a clear rejection of the one-sector

real business-cycle benchmark model in favor of the new multi-sector model. Next, I investigate

the properties of the key latent factors: intangible investments and total factor productivities that

are central to this new benchmark model.

4.3. Properties of Latent Variables

I apply a Kalman smoother to the model in order to construct predictions for the state xt

in (3.1), as well as prices and decisions that are functions of the state. In this section, I discuss

the properties of the total factor productivities {Zt, Z
i
jt} and the intangible investments XIjt. I

consider the full sample and then look more closely at these time series during the Great Recession.

In Table 6, I report the cyclical properties for the latent variables over the full 1985:1–2014:4

sample after logging and detrending them with the filter of Hodrick and Prescott (1997). The

first column reports the standard deviation relative to gross output. The first row shows that

the common TFP in the model has a standard deviation that is 80 percent of total output. The

sectoral TFPs, which are listed next, vary at least as much over the business cycle as the common

TFP. For some industries such as mining and utilities, the variation in sectoral TFP is much larger.

Recall from Table 4 that these industries are barely affected by the common shock. The standard

deviations relative to gross output for the intangible investments are listed in the last three rows

of Table 6 for the intangible-intensive industries. The ratios are in the range of 1.5 to 1.8, which
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is about half as variable as the predictions for tangible investment in the standard real business

cycle model without intangible investments.29

Correlations with gross outputs at leads and lags are reported in the last five columns of Table

6. The common TFP and most of the sectoral TFPs are procyclical, with the highest correlation

occurring contemporaneously. There are some notable exceptions. TFPs in information and other

services are close to acyclical, and TFP in education, health, and social services is countercyclical.

Intangible investments are all procyclical, but they lag the cycle by one or two quarters.

A closer examination of the time series during the Great Recession provides further insight

into the properties of the latent variables. In Figure 2, I compare the time series of the model’s

predicted common-TFP shock with two standard aggregate TFP measures used in the literature.

The series are logged and linearly detrended, but other low frequencies are not filtered out. I

standardize the series by first subtracting the 2007:4 value and then dividing by the standard

deviation of the series over the full sample.

The first widely used measure of TFP, which is plotted in panel A of Figure 2, is the Solow

residual—the same series used to generate the hours prediction in Figure 1A. As the figure shows,

the Solow residual falls quickly at the start of the recession and rapidly returns to the long-run

trend by mid-2009, exactly when the Great Recession was declared over by the National Bureau

of Economic Research. Over the remaining years, there is slower growth, and TFP falls gradually

relative to the long-run trend. In contrast, the model predicts that growth in the common TFP

slows at the start of the recession and TFP remains on a lower long-run trend.

A second widely used measure of TFP is plotted in Figure 2B, along with the model pre-

diction. Here, I plot the utilization-adjusted TFP series of Fernald (2012), which is based on the

methodology of Basu, Fernald, and Kimball (2006) that uses observed-hours growth to adjust TFP

for unobserved variation in labor effort and the workweek of capital. A comparison of the two pan-

els shows that the timing of Fernald’s (2012) series and the Solow residual is completely different

in 2008 and 2009. The Solow residual falls dramatically below trend and then recovers, whereas

Fernald’s (2012) series falls modestly and then rises above the long-run trend. After 2010, both

29 For example, Kydland and Prescott (1982) estimate a ratio of 3.6.
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gradually fall relative to the long-run trend, but neither resemble the model’s prediction over the

sample.

Although neither of the two widely used TFP measures behaves like the model’s prediction

during the Great Recession, over the full sample, they are more correlated at low frequencies. For

example, the correlation between the model’s common TFP and the Solow residual is 73 percent

over the period 1985 to 2015. The correlation between the model’s common TFP and Fernald’s

(2012) TFP is 40 percent over the same period. If I apply instead the filter of Hodrick and Prescott

(1997) to all of the series, I find a correlation of 9 percent between the model TFP and the Solow

residual and a correlation of 31 percent between the model TFP and Fernald’s (2012) TFP.

Figure 3 shows results for tangible and intangible investment during the Great Recession. In

both panels, I plot U.S. tangible investment, which is real gross private domestic investment less

investment in intellectual-property products divided by population and geometric growth in tech-

nology. This series is not used to estimate the TFP shock processes and therefore provides another

external check of the model’s predictive capabilities. In panel A, I plot the model’s theoretical

analogue for the U.S. tangible investment series and in panel B, I plot the model’s prediction for

intangible investment. To make the data and model series comparable, I set all equal to 100 in

2007:4 (although the model series are similar in magnitude).

Figure 3A shows that the model does surprisingly well in predicting the sharp reduction in

tangible investment during the Great Recession and a slow recovery. The model predicts a more

delayed fall in 2008 but by 2008 is roughly 40 percent below trend, which is what was observed in

U.S. data. Furthermore, although investment recovers more quickly in the U.S. data, both series

are still well below trend by 2015. In contrast, intangible investment shown in Figure 3B falls

more gradually and by only 20 percent by 2015. The pattern of decline for intangible investment

is similar to the pattern of decline in the common TFP shown in Figure 2.

4.4. Extension with financial shocks

The results thus far assume that resources are efficiently allocated and fluctuations are driven

by changes in total factor productivities. Next, I introduce financial shocks and rerun all results

23



from Sections 4.1 to 4.3. The main finding is that there is almost no difference in the results shown

in Tables 3–6 and Figures 1–3.

To understand why, it helps to look at the implied labor wedges, which in this model are

equal to the multipliers on (2.18) times the derivatives of the full dividend payment ϕ′(Dj) for

all industries j with external financing.30 The impact on real activity depends on how tightly the

enforcement constraint in (2.18) binds over the cycle, which is measured by fluctuations in the

constraint’s multiplier. From the perspective of firms maximizing dividends, this multiplier puts

a wedge between the wages paid to workers and their marginal product, because the wages must

be financed through borrowing. In equilibrium, this wedge has the same effect as a time-varying

tax on labor—that is, time variation in τh in (2.8). A tightening of the constraint in recessions

is isomorphic to increasing the tax rate. In the spirit of business-cycle accounting, the financial

friction manifests itself as a time-varying labor wedge (see Chari et al. 2007). A time-varying labor

wedge that comoves with the business cycle is needed to help reconcile the difference between

predicted and actual hours shown in Figure 1A.

Table 7 reports labor wedges for the extended model and Jermann and Quadrini’s (2012) one-

sector model. Five statistics are reported: mean, minimum, maximum, standard deviation, and

correlation with total output.31 What is most relevant is the variability of the series, which can

be measured by comparing the minimum and maximum of the range or the standard deviation.

Significant wedge volatility is needed to account for the high variability of U.S. hours of work.

Furthermore, the correlation with output needs to be negative to generate procyclical predictions

for hours.

Table 7 shows that in the case of the extended multi-sector model, the industry labor wedges

are not simultaneously large, volatile, and countercyclical in any sector, while the implied labor

wedge derived from Jermann and Quadrini’s (2012) one-sector model is. One possible reason for

the difference in properties is the parameterizations used for each model. Jermann and Quadrini

(2012) use a high capital share, higher than that implied by the capital-output ratios in the data

30 Most of the variation in the wedges is due to changes in the multiplier, not changes in the dividend payments.
31 In deriving time series for shocks in the one-sector model of Jermann and Quadrini (2012), I follow their

procedure of removing linear trends from the capital-to-output and debt-to-output ratios, and I am able to
replicate all of their results. In the multi-sector model, I do not remove trends from these ratios, which are
assumed to be stationary.
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they use. Higher capital shares imply lower values for the financial shocks in (2.18), which in turn

implies that the constraints are looser. To test this idea, I recompute the Jermann and Quadrini

model with a lower capital share and a higher mean for the financial shock, which are chosen to be

consistent with the data they use. More specifically, I set the capital share equal to 0.22—down

from 0.36 in the original parameterization—and I set the mean of the financial shock to 0.41—up

from 0.16 in the original parameterization. For this alternative parameterization, the labor wedge

is significantly smaller, less volatile, and less correlated with output. In this alternative case, the

standard deviation of predicted hours is 24 percent of the standard deviation of U.S. hours, which

is significantly lower than the estimate of 47 percent for their original parameterization and closer

to the estimate of 9 percent for the one-sector real business-cycle model shown in Figure 1A.

In summary, the time-varying labor wedges arising from a tightening of firms’ financing con-

ditions do not vary sufficiently in the extended model to have much of an impact on real activity,

and therefore the results are quantitatively similar to the frictionless baseline.

5. Conclusion

In the recent comprehensive revision of the national accounts, the BEA has greatly expanded

its coverage of intellectual-property products. In this paper, I expand the coverage further and

use a multi-sector general equilibrium model to quantify the impact of including these products,

which I refer to as intangible investments, in both the theory and the measures of TFP. I find

that updating both the theory and the data is quantitatively important for analyzing fluctuations

in aggregate and industry-level U.S. data and provides a new benchmark model for business-cycle

research.
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A. Data Appendix

In this appendix, I report all data sources for this project. Original data and replication files

are available at my website: users.econ.umn.edu/∼erm/data/sr545.

• Input-output shares

◦ The main source of data for the shares is the BEA. I start with the detailed BEA input-

output use table before redefinitions at producer value for the 2007 benchmark, which

tracks transactions for 389 commodities. The BEA table has not yet published a capital-

use table for this benchmark, so I construct two capital-use tables—one for structures

and equipment and another for intellectual-property products—using detailed data un-

derlying the fixed asset tables, which are available by industry and by investment type.

I assign all custom and own-software and R&D to the investing industry (rather than to

information and professional and business services, as the BEA does). I add intermediate

purchases of computer systems design services; architectural, engineering, and related

services; specialized design services; management consulting services; environmental and

other technical consulting services; advertising, public relations, and related services; and

marketing research to the capital-use table for intellectual-property products. I add con-

sumer durables and inventories to the capital-use tables. I include public spending with

appropriate categories of private spending. I allocate in a pro rata way net exports to

domestic categories. (The code setupio.m replicates construction of the shares.)

• Time series for maximum likelihood estimation

◦ Gross outputs, all major industries: data for nominal gross outputs are available from

the BEA annually for all years of my sample and quarterly after 2005. Series are divided

by population and by the GDP deflator, and quarterly forecasts are computed with the

procedure outlined in Appendix B for years before 2005. The auxiliary quarterly data

used for the forecasting are national incomes by major industry from the BEA’s national

income and product accounts and employment by major industry from the BLS’s Current

Employment Survey (CES). Both the national income and gross output data are divided

by the GDP deflator.

◦ Hours per capita, three minor industries: series are constructed with employment data

from the CES and hours-per-employee data from the BLS’s labor productivity and cost

(LPC) database, which provides data for 817 industries. Per capita hours are total em-

ployees times hours per employee divided by the noninstitutional population ages 16 to

64.

• Time series for external validation

◦ Sectoral hours per capita, major industries: series are constructed in the same way as the

minor industries noted above.

◦ Aggregate hours per capita: the series for the aggregate economy is computed using the

same procedure in Cociuba, Prescott, and Ueberfeldt (2009), who start with total civilian

hours from the BLS’s Current Population Survey, add estimates for military hours, and

divide by the noninstitutional population ages 16 to 64.
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◦ Tangible investment: the series is gross private domestic investment less investment in

intellectual-property products, deflated by the GDP deflator, and divided by the nonin-

stitutional population ages 16 to 64.

• Total factor productivity series

◦ Solow residual: the series is the BEA’s real GDP measure divided by the BEA’s total

fixed assets raised to the power 1/3 and total hours defined above raised to the power 2/3.

Total fixed assets are annually available and are log-linearly interpolated to construct a

quarterly time series for TFP.

◦ Fernald’s (2012) utilization-adjusted TFP: frequently updated by Fernald and available

at his website at the Federal Reserve Bank of San Francisco.

• Compustat data for extension with financial shocks

◦ Debt-to-output ratio: firm-level data for debt are aggregated to the industry level and

divided by industry sales. I follow Larrain and Yogo’s (2008) procedure to compute total

debt, which is the sum of long-term debt, current liabilities, other liabilities, minority

interest, and deferred and investment tax credit. The market value of long-term debt is

found by imputing a market structure of bonds for each firm and then a price for each

maturity based on the Moody’s Baa corporate-bond yield.

◦ Capital-to-output ratio: capital is computed using the perpetual inventory method, with

gross investment equal to capital expenditures plus acquisitions less sales of property,

plant, and equipment, and an annual depreciation rate of 3.2 percent. The series is

aggregated to the industry level and divided by industry sales.
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B. Quarterly Forecasts

In this appendix, I describe the procedure used to construct quarterly forecasts for time series

that are only available annually for part of my sample.

Let Zt be the variable of interest, which is available annually. Let Xt be variables that are

available quarterly and are used to make quarterly forecasts of Zt, which I will call Ẑt. The first

step in deriving a forecast is to estimate A and B of the following state space system via maximum

likelihood:

xt+1 = Axt + Bǫt+1

yt = Ctxt,

where xt = [Xt, Ẑt,Xt−1, Ẑt−1, . . . ,Xt−n, Ẑt−n]
′ for some choice n ≥ 4, yt = [Xt, Zt]

′, and ǫt are

normally distributed shocks. The coefficients in this case are given by

A =













a1 a2 . . . aj
I 0 . . . 0
0 I . . . 0
...

...
...

...
0 0 . . . 0













, B =













b
0
0
...
0













Ct =















[

I 0 0 0 . . . 0 0 0 . . .
0 1/4 0 1/4 . . . 0 1/4 0 . . .

]

if t is 4th quarter

[ I 0 0 0 . . . 0 0 0 . . . ] otherwise.

Once I have parameter estimates, (Â,B̂), I construct forecasts in all quarters given the full sam-

ple of data—namely, Ẑt = E[Zt|y1, ..., yT ]—by first applying the Kalman filter and then applying

the Kalman smoother. (See Harvey 1989 for more details on the Kalman filter and smoother.)
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Table 1. Input-Output Table Shares by Major Industrya

A. Capital and Consumption Shares

Capital Sharesb
Consumption

Tangible Intangible Shares
Industry (NAICS) (θj) (φj) (ωj)

Agriculture (11) .301 .006 .006

Mining (21) .546 .024 .000

Utilities (22) .379 .042 .025

Construction (23) .167 .082 .000

Manufacturing (31–33) .162 .196 .146

Wholesale Trade (42) .126 .149 .048

Retail Trade (44–45) .130 .078 .110

Transportation & Warehousing (48–49) .147 .024 .027

Information (51) .200 .238 .041

Finance, Insurance & Real Estate (52–53) .412 .036 .250

Professional & Business Services (54–56) .063 .174 .022

Education, Health & Social Services (61–62) .076 .032 .201

Leisure & Hospitality (71–72) .138 .065 .084

Other Services (81) .132 .053 .039

Public Administration (92) .137 .048 .001

See notes at the end of the table.
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Table 1. Input-Output Table Shares by Major Industrya (cont.)

B. Intermediate Goods and Services (γlj)

From: \ To: 11 21 22 23 31–33 42 44–45 48–49 51 52–53 54–56 61–62 71–72 81 92

11 .205 .000 .000 .001 .033 .001 .001 .000 .000 .000 .000 .000 .007 .000 .001

21 .003 .069 .107 .005 .037 .000 .000 .003 .000 .001 .000 .000 .001 .001 .004

22 .015 .011 .014 .003 .013 .006 .014 .008 .003 .018 .005 .011 .018 .008 .009

23 .007 .017 .019 .000 .002 .001 .003 .005 .002 .025 .001 .001 .003 .006 .019

31–33 .178 .073 .071 .243 .264 .030 .033 .154 .050 .011 .042 .076 .118 .079 .094

42 .071 .015 .016 .044 .047 .029 .017 .030 .012 .003 .008 .021 .022 .016 .014

44–45 .001 .000 .001 .058 .002 .001 .004 .005 .000 .002 .001 .001 .007 .008 .000

48–49 .033 .023 .067 .018 .022 .047 .053 .123 .015 .007 .015 .010 .014 .009 .018

51 .001 .002 .006 .003 .004 .012 .013 .007 .141 .016 .023 .016 .011 .017 .026

52–53 .045 .032 .052 .023 .015 .086 .126 .093 .050 .212 .088 .136 .097 .159 .040

54–56 .010 .040 .045 .011 .042 .085 .059 .046 .040 .068 .088 .068 .082 .039 .038

61–62 .001 .000 .000 .000 .000 .000 .002 .000 .000 .000 .000 .012 .002 .003 .005

71–72 .001 .002 .010 .002 .003 .005 .003 .004 .021 .010 .018 .011 .025 .006 .009

81 .004 .003 .005 .005 .008 .017 .011 .024 .016 .013 .014 .013 .015 .015 .015

92 .000 .000 .002 .000 .001 .011 .006 .022 .003 .002 .003 .003 .007 .003 .003

See notes at the end of the table.
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Table 1. Input-Output Table Shares by Major Industrya (cont.)

C. Tangible Capital Flow Sharesb (ζlj)

From: \ To: 11 21 22 23 31–33 42 44–45 48–49 51 52–53 54–56 61–62 71–72 81 92

11 .084 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 .002 .763 .003 .003 .002 .001 .001 .020 .001 .000 .002 .001 .001 .001 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 .154 .054 .431 .058 .165 .228 .477 .261 .320 .329 .205 .430 .574 .496 .699

31–33 .510 .123 .379 .629 .593 .468 .350 .470 .454 .558 .531 .381 .285 .337 .247

42 .129 .031 .096 .160 .124 .191 .089 .119 .115 .016 .135 .097 .072 .086 .040

44–45 .037 .009 .027 .045 .035 .034 .025 .034 .033 .007 .038 .027 .020 .024 0

48–49 .029 .007 .022 .036 .028 .027 .020 .045 .026 .004 .030 .022 .016 .019 .006

51 .008 .002 .006 .009 .007 .007 .005 .007 .008 .001 .008 .006 .004 .005 0

52–53 0 0 0 0 0 0 0 0 0 .066 0 0 0 0 0

54–56 .049 .012 .036 .060 .047 .045 .033 .045 .043 .020 .051 .036 .027 .032 .008

61–62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

71–72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

See notes at the end of the table.
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Table 1. Input-Output Table Shares by Major Industrya (cont.)

D. Intangible Capital Flow Sharesb (νlj)

From: \ To: 11 21 22 23 31-33 42 44-45 48-49 51 52-53 54-56 61-62 71-72 81 92

11 .029 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 .191 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 .118 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 .028 0 0 0 0 0 0 0 0 0 0 0

31-33 0 0 0 0 .731 0 0 0 0 0 0 0 0 0 0

42 0 0 0 0 0 .224 0 0 0 0 0 0 0 0 .005

44-45 0 0 0 0 0 0 .093 0 0 0 0 0 0 0 0

48-49 0 0 0 0 0 0 0 .091 0 0 0 0 0 0 .000

51 .112 .148 .107 .024 .027 .047 .086 .094 .621 .192 .044 .047 .197 .065 .030

52-53 0 0 0 0 0 0 0 0 0 .568 0 0 0 0 0

54-56 .859 .661 .778 .948 .247 .734 .824 .817 .386 .240 .956 .613 .793 .669 .794

61-62 0 0 0 0 0 0 0 0 0 0 0 .340 0 0 0

71-72 0 0 0 0 0 0 0 0 0 0 0 0 .011 0 0

81 0 0 0 0 0 0 0 0 0 0 0 0 0 .266 0

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .170

a The underlying data for the shares in the table are the BEA benchmark input-output table for 2007.

b Tangible investments are structures and equipment. Intangible investments are intellectual-property products, as defined by the BEA, and intermediate inputs that
are reassigned to final uses. See Appendix B for a list of reassigned categories.
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Table 2. MLE Parameter Estimates, 1985:1–2014:4a

Parameter Standard
Statistic Estimate Error

Factor Loadings:b

Agriculture −1.303 0.0025

Mining −1.197 0.0005

Utilities −2.874 0.0087

Construction 1.427 0.0147

Manufacturing 0.942 0.0054

Wholesale Trade 0.712 0.0063

Retail Trade 0.761 0.0071

Transportation & Warehousing 1.168 0.0093

Information 1.547 0.0105

Finance, Insurance & Real Estate 2.202 0.0164

Professional & Business Services 0.703 0.0091

Education, Health & Social Services 0.192 0.0123

Leisure & Hospitality 0.542 0.0067

Other Services 0.611 0.0093

Serial Correlation Coefficients:c

Utilities 0.974 0.0124

Retail Trade 0.984 0.0136

Information, Tangible 0.995 0.0020

Information, Intangible 0.989 0.0003

Finance, Insurance & Real Estate 0.987 0.0030

Professional & Business Services 0.995 0.0035

Education, Health & Social Services 0.976 0.0061

Leisure & Hospitality 0.963 0.0163

Other Services 0.957 0.0125

See notes at the end of the table.
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Table 2. MLE Parameter Estimates, 1985:1–2014:4 (cont.)

Parameter Standard
Statistic Estimate Error

Standard Deviations of Shocks:

Agriculture 0.138 0.0157

Mining 0.330 0.0386

Utilities 0.326 0.0272

Construction 0.038 0.0046

Manufacturing, Tangible 0.072 0.0129

Manufacturing, Intangible 0.080 0.0044

Wholesale Trade 0.036 0.0042

Retail Trade 0.027 0.0037

Transportation & Warehousing 0.027 0.0038

Information, Tangible 0.055 0.0028

Information, Intangible 0.051 0.0039

Finance, Insurance & Real Estate 0.039 0.0056

Professional & Business Services, Tangible 0.023 0.0009

Professional & Business Services, Intangible 0.015 0.0009

Education, Health & Social Services 0.011 0.0015

Leisure & Hospitality 0.028 0.0020

Other Services 0.037 0.0013

Shock Correlations:

Manufacturing −0.138 0.1508

Information 0.154 0.0601

Professional & Business Services −0.302 0.0941

a The table reports estimates of factor loadings λj , serial correlation coefficients ρij , standard deviations of ηi
j
,

and correlations between η1
jt

and η2
jt
. In manufacturing, information, and professional and business services,

parameters related to η1
jt

and η2
jt

are referenced as “tangible” and “intangible,” respectively.

b In order to identify the factor loadings λj , the standard deviation of the common shock υt was fixed at 0.01.

c An upper bound of 0.995 was imposed on serial correlation coefficients for the common TFP process and for
TFP processes in industries not listed.
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Table 3. Cyclical Properties of Predicted and Actual Sectoral Hoursa

Correlation, PCA First Factor Loadings

Predicted and
Major Industry Actual Predicted Actual

Agriculture 25 31 10

Mining 65 24 23

Utilities −8 30 7

Construction 76 9 33

Manufacturing 89 31 33

Wholesale Trade 48 29 33

Retail Trade 55 24 32

Transportation & Warehousing 65 30 33

Information 96 17 24

Finance, Insurance & Real Estate 27 −10 24

Professional & Business Services 95 27 33

Education, Health & Social Services −4 −30 9

Leisure & Hospitality −52 −24 31

Other Services 52 27 25

Summary Statisticsb 51 69 56

a For both the model and data, hours series are logged and detrended using the filter of Hodrick and Prescott

(1997) and then scaled by their standard deviations. PCA stands for principal component analysis.

b The summary statistic in the first column is the weighted average correlation for all industries, with weights

equal to shares of sector hours in total hours. The second and third columns are the percentage variances of

the first principal component in the model and the data, respectively.
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Table 4. Variance Decomposition of Ergodic Distribution, 1985:1–2014:4a

Sector-Specific

Own Other Common
Observable Total Industry Industry Shock

Gross Outputs:

Agriculture 96.4 61.8 34.6 3.6

Mining 99.9 98.8 1.2 0.1

Utilities 98.8 61.9 37.0 1.2

Construction 77.9 39.2 38.7 22.1

Manufacturing 91.5 75.7 15.8 8.5

Wholesale Trade 81.5 32.5 16.8 18.6

Retail Trade 60.0 27.5 32.5 40.0

Transportation & Warehousing 70.6 29.7 40.9 29.4

Information 74.1 49.4 24.7 25.9

Finance, Insurance & Real Estate 64.7 9.0 55.7 35.3

Professional & Business Services 73.5 57.8 15.7 26.5

Education, Health & Social Services 67.4 8.6 58.9 32.6

Leisure & Hospitality 65.1 10.2 54.9 34.9

Other Services 62.5 20.4 42.2 37.5

Hours:

Computer & Electronic Products 90.9 80.3 10.6 9.1

Broadcasting & Telecommunications 78.5 49.8 28.8 21.5

Advertising 63.8 42.0 21.8 36.2

a These results are based on the estimated state space system in (3.1)-(3.2).
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Table 5. Decomposition of Changes in Gross Output in the
Technology Boom and the Great Recessiona

Technology Great
TFP Shocks Boom Recession

Common 7.1 −6.9

Sectoral:

Agriculture −0.8 0.0

Mining (21) 0.2 −1.2

Utilities 0.4 −1.0

Construction 0.2 −1.0

Manufacturing −3.8 −5.9

Wholesale Trade −0.5 −0.5

Retail Trade −0.3 −0.4

Transportation & Warehousing −0.5 −0.2

Information 1.6 −0.2

Finance, Insurance & Real Estate 3.6 −0.8

Professional & Business Services 4.2 0.9

Education, Health & Social Services 0.1 0.4

Leisure & Hospitality 0.2 −0.1

Other Services 0.0 0.0

Total Change (%) 11.5 −16.8

a Percent changes are computed over the periods 1991:4–2000:3 and 2007:4–2009:3, respectively.
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Table 6. Cyclical Properties of Latent TFPs and Intangible Investmentsa

Std. Deviation Cross-Correlation with Gross Output at Lag
Relative to

Variable Gross Output −2 −1 0 1 2

Common TFP 0.8 0.76 0.84 0.86 0.76 0.59

Sectoral TFPs

Agriculture 8.8 0.09 0.15 0.15 0.10 0.02

Mining 23.8 0.27 0.54 0.69 0.69 0.55

Utilities 16.9 0.16 0.36 0.51 0.57 0.53

Construction 2.1 0.47 0.46 0.44 0.38 0.24

Manufacturing 4.9 0.72 0.86 0.87 0.71 0.45

Computer & Electronic Products 3.2 −0.04 0.04 0.17 0.34 0.49

Wholesale Trade 1.6 0.25 0.42 0.51 0.47 0.33

Retail Trade 1.5 0.48 0.37 0.18 −0.08 −0.32

Transportation & Warehousing 1.5 0.22 0.42 0.60 0.72 0.68

Information 2.1 −0.05 −0.02 −0.00 0.01 0.03

Broadcasting & Telecomm. 2.6 0.25 0.47 0.62 0.64 0.55

Finance, Insurance & Real Estate 2.1 0.68 0.65 0.53 0.38 0.27

Professional & Business Services 1.2 0.00 0.08 0.17 0.26 0.33

Advertising 0.8 −0.04 0.05 0.18 0.38 0.54

Education, Health & Social Services 0.8 −0.59 −0.65 −0.65 −0.62 −0.56

Leisure & Hospitality 0.9 0.16 0.21 0.28 0.33 0.31

Other Services 1.2 −0.29 −0.23 −0.14 −0.05 0.00

Intangible investments:

Manufacturing 1.8 0.32 0.53 0.70 0.81 0.83

Information 1.5 0.32 0.53 0.70 0.75 0.72

Professional & Business 1.7 0.51 0.67 0.79 0.85 0.83

a Series are first logged and detrended using the filter of Hodrick and Prescott (1997). For cross-correlations,

the variable at date t is correlated with gross output at date t− k, where k is given in the column heading.
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Table 7. Properties of Implied Labor Wedges in Models with Financial Shocks

Standard Correlation
Mean Minimum Maximum Deviation with Output

Extended Modela

Mining 0.021 0.008 0.033 0.006 −0.100

Manufacturing 0.006 0.003 0.007 0.001 0.489

Transportation & Warehousing 0.006 −0.002 0.010 0.002 −0.075

Leisure & Hospitality 0.008 0.000 0.016 0.003 0.040

Jermann and Quadrini (2012)

Original Parameterization 0.039 0.013 0.074 0.013 −0.389

Alternative Parameterizationb 0.015 0.008 0.023 0.003 −0.292

a The model is described in Section 2.2. The labor wedge is the shadow price of the enforcement constraint

times the derivative of the dividend payout.

b In the alternative parameterization, the capital share is lower (0.22 versus 0.36) and the mean of the financial

shock is higher (0.41 versus 0.16) than in Jermann and Quadrini (2012). These parameters are chosen so that

the average capital-output ratio and the average financial shock in the Jermann and Quadrini (2012) model is

consistent with the data that they use to construct the financial shocks.

42



Figure 1. Per Capita Hours, 1985:1{2014:4

A. One-Sector Model without Intangibles
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Figure 2. Aggregate TFP, 2007:4{2014:4

A. Model Prediction vs. Solow Residual
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B. Model Prediction vs. Fernald’s (2012) TFP
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Figure 3. Tangible and Intangible Investment, 2007:4{2014:4

A. U.S. Tangible Investment vs. Model Prediction
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B. U.S. Tangible vs. Model Intangible Investment
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