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1. THE NEOCLASSICAL GROWTH MODEL

One of the most striking facts of economic life is the diversity of
levels and growth rates of per capita income across countries. Our geal is to
develop models capable of explaining this diversity. We choose to begin less
ambitiously, however, with the neoclassical growth model, whose deficiencies

we document below.

The one-sector neoclassical growth model is characterized by prefer-

ences

(1.1) fge'ptu(ct)dt, u' > 0, u" < 0,

and technology

(1.2) Vg = O + &t = B flky), £' >0, £ < 0.

On occasion we will also need the Inada conditions,

lim u'(e) = =, limu'(c) = 0,
c-+0 c+xm
lim £'(k) = =, lim £'(k) = 0.
k+0 k-;cn

We have for simplieity ignored inputs other than capital, although one can
think of f as depending also on a constant quantity of labor. The important
elements for our purposes are the diminishing marginal returns to the repro-
ducible input, capital, and the dynamic behavior of the produetivity factor,
Ay, which we have yet to specify. We will characterize a competitive equilib-
rium in this model by deriving an optimal plan for consumption. A method for

doing so is outlined in the next section.



i _on Optimal Control

Consider the dynamic control problem

@ -.Dt_',
(2.1) mﬁx foe f(xt,ut)dt
t
subject to
{2.2) X, = g(xt,ut)

and given x45. We refer to x as the ygtaté variable and u as the gontrolj x,

will be referred to as the initial conditioh.

We characterize the solution using variational methods the maximum

principle). Define the current-value Hamiltoniah

H(xp,up,ye) = £(x,u) + ye 8(xe,ue),

where y is the Béstate variable associated with x. Then necessary conditions

for an interior optimum are

BH/aut =0
(2.3) Y = oy, - 3H/3x,
X, = g(xt,ut)

ot

(2.4) ti: e Ty X, = 0.

If in addition H*(x,y) = max H(x,u,y) is concave in x, given y, then any plan
u

satisfying (2.3) and (2.4) is optimal.



Consider finally a useful special case. For some problems equations

(2.3) have a unique stationary point (x*,y*) defined by X = § = 0. Given
3

concavity of H , any solution to (2.3) that converges to this point must be

optimal since the transversality condition is automatically satisfied.
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We are now in a position to derive the empirical implications of the
neoclassical growth model. The first step is to characterize the optimal plan
using the maximum principle. Using the connection between Pareto optima and
competitive equilibria in these models, we can interpret the result as an
equilibrium in the competitive economy.

We proceed with the optimal plan. Equations (1.1) and (1.2) de-
scribe a control problem with k as the state variable and ¢ as the control.

The current-value Hamiltonian is

H(kt,ct,k £) = u(ct) + A [Atf(kt)-ct},

t!

where A is the costate. In some sense A is also a state variable, but since
its evolution through time is exogenous we indicate its time-dependence simply
by introducing t into the list of arguments for H. Necessary conditions for

an optimum include
(3.1a) u‘(ct) = Ay

(3.1b) A

[o-8, ' (k)] A,

{3.1c) Kk

¢ &tf{kt) - C.
The solution of these equations, together with the transversality condition
and the initial value ko, completely determine the optimal plan.

The properties of the plan depend on the rate of technical pro-
gress. We consider first the case in which A is constant, which allows us to

describe the qualitative features of the solution with the use of a two-

dimensional diagram. Equations (3.1) define a dynamic system in XA and k with



tendencies for motion illustrated in figure 1.1. The set of points for which
A = 0 is a vertical line in (k,\)-space defined by Rf'(k*) = p. (The Inada
conditions guarantee that the solution A = 0 is infeasible.) To the right of
this line A is increasing, to the left decreasing. Similarly, the condition
k = 0 defines a downward-sloping line, with k increasing to the right, de-
creasing to the left. These directions of motion are indicated by arrows in
the diagram. The 1Inada conditions guarantee that the two curves,
A =0 and k = 0, cross at nonnegative values k' and y*. These values clearly
define a stationary point of the system, so any path satisfying the initial
condition that converges to this point is a solution. Since the dynamic
equations are continuous, we can postulate a unique curve, labeled SS in
figure 1.1, in which the dynamics of ) and k combine to lead exactly to
(k*,k*). Any point on this curve therefore satisfies the necessary conditions
for an optimum. By choosing the point on this curve where k = kj, we satisfy
the initial condition as well and obtain the unique solution to the control
problem.

The model has a number of implications that can be compared with
data from actual economies. In the steady state it implies:

1. Growth rates of output and the capital stock are zero. In particu-
lar, the growth rate does not depend on p, A, or any other parameters
governing preferences or technology.

2. Higher values of A, and lower values of p, imply higher levels of y
and k.

The point is that without technical change there is no sustained growth.

Changes in parameters and government policies are merely level effects.

Outside the steady state the model predicts:



3. Monotonic adjustment of capital and output to their steady state

levels.

This involves temporary nonzero rates of growth, but not the sustained growth

we have observed in the Western world over the last two hundred years.

Exercises to 1.3%

i

For the neoclassical growth model verify that H*(k,l,t) is concave in k
and therefore that the solution to the first-order conditions is a maxi-
mum.

Starting from an initial capital stock below the long-run equilibrium
path, describe the dynamic behavior of the real interest rate (marginal
product of capital) and the share of investment in NNP (k/y).

For the growth model with u(c) = log c and f(k) = k®, 0 < a ¢ 1, find an
analytic solution for the path of the capital stock when A = 1.

Consider the growth model with u(c) = log ¢ and y = f(k) = k%, o > 1.
Derive the optimal path and compare it to the neoclassical growth model.
Comment on any problems that might arise in supporting the optimum as a
competitive equilibrium.

Describe the effect of a tax which takes a constant fraction, t, of output
and throws it away on (a) the steady state values of y and k and (b) their

rates of growth.



The absence of growth in the previous section drives us to contem-
plate models with productivity growth of some sort. In the neoclassical
tradition by far the simplest theoretical device is to postulate exogenous
increases in the productivity parameter, A. We do exactly that in a special-
ized version of the model. We would like the model to permit paths in which
output, capital, and consumption grow at the same constant exzponential rate,
so we introduce a number of special features. We assume technical change and

utility take the form
(4.1) Ay = Bgedt
(4.2) u(e) = [eY-117(1-y).

The homothetic preferences inherent in (4.2) are necessary for constant growth
rates of consumption to coexist with a constant real interest rate. We also

assume Cobb-Douglas technology:
(4.3) y, = & k%, 1o

where n, is labor inputs. As before we will set ng = 1.

The first-order conditions for the optimal plan then include

(4.4a) R

(4.4b) A

a-1
(p-Atakt )At

A k% -c

(4.4¢) kt X .



We derive the optimal plan by guessing the existence of a "balanced
growth path" in which y, k, and ¢ grow at the same constant expenential rate,
g, verifying that this path satisfies the first-order conditions for an opti-
mum, and proving convergence to this path from any initial capital stock. We

start with the production function, which implies
i/y = a + ak/K.

If both y and k grow at rate g, then
g = a/(1-a).

We leave it to the reader to verify that there exist initial values Kg» AD,
¢g» and iy such that k and ¢ grow at rate g = a/(1-a), A at rate a, and A at
rate -ag, and such that the laws of motion (4.4) are satisfied. We have thus
extended the first two predictions of the neoclassical growth model:

1'. Growth rates of capital and output are equal in the steady state and

proportional to the rate of technical progress,

2'. This rate of growth does not depend on preferences or on the level of
the productivity parameter, A.
Once more we see that p, vy, and A, are level effects: changes have no influ-
ence on the steady state growth rate.
We now derive the complete dynamics of an optimal path starting from

any initial capital stock. Define the variables

#*
. a-Bt
kt = e kt
* "
A, = e Y8y

t t



and note that equations (4.4) can be expressed as

t -y %
(ct) = A,
i o Ak oy
g = p+ag-a 0%t )Lt
Ak - e - gk
= Aoy T G T B

This can be analyzed using the methods of the previous section, with a similar
outcome:
3'. The capital stock and output approach the balanced growth path mono-

tonically, as illustrated in figure 1.3.

-

to il

1. Write down the transversality condition for the problem of this section.
Under what conditions is it satisfied?
2. Verify that the share of output going to capital, f'k/f, is constant with

Cobb-Douglas technology even with productivity growth.
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So how well does the model fit what we observe? To answer this
question we need some idea of what the world looks like. The following are a
collection of "stylized facts," which means that they seem to be good approxi-
mations in most cases. We need to keep in mind, however, that data for long
time periods have a substantial amount of measurement error, as a quick look
through Kuznets (1971) or Denison (196?) makes clear. This is especially true
for underdeveloped countries, so many of these "facts" are based on developed

economies. Still, they give us a general idea of what to look for in a model.
Five general facts about long-term development are:

o The capital stock and output grow at roughly the same rate, with the
ratio k/y approximately equal to 3.
2. The wage rate has grown at approximately the same rate, but

3. Labor's share has been almost constant.
One implication of 2 and 3 is that the production function is Cobb-Douglas.

4. There is no tendency for either levels or growth rates of per capita
income in different countries to converge, although convergence may

be a property of the most advanced countries.

In other words, growth rates themselves are quite persistent, and
countries with low (high) rates of growth often continue to have low (high)
rates of growth for long periods of time. A fifth fact, suggested by close
examination of growth rates in advanced countries and casual comparisons
between current growth rates and the standard of living in, say, Roman times

is:
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B¢ [Grouth rates are Increasing

The neoclassical growth model with exogenous technical change bears
up fairly well with facts 1 to 3 (as indeed it was designed to do). Consider
as a first approximation the predictions of the model for isolated economies--
that is, economies with completely immobile factors, including capital, and no
trade. Then each economy will behave as outlined in the last section. Along
a balanced growth path the capital-ocutput ratio is constant, as required by
the data, and with Cobb-Douglas technology the share of labor in total output
is constant.

The final two facts are more of a problem. If all countries have
the same technology, then we expect convergence of levels and growth rates of
per capita output. Clearly this is not the case, so we might postulate dif-
ferent technologies. This fits the facts, but in a trivial way. Fact five is
similar: we can "explain" it only by assuming that the rate of technical
progress is accelerating.

We can inject additional realism into the model by allowing some
factor mobility. We will see that this reinforces any differences between
countries due to technology differences. Assume first that capital is per-
fectly mobile across countries, but labor is not. Then capital will be allo-
cated to equate marginal products across countries. If one country has a
greater rate of technical progress, then its capital stock will be increasing
at a greater rate as well. This makes the differences in their per capita
growth rates larger, since the unproductive country is also capital poor.
With labor mobility the situation is even more extreme: no one will work in

the less productive country so its national product is zero.
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Esicas i i

1. Read Denison (1967, chs. 17 and 20, or 1974, pp. ?1-83) and discuss the
problems of distinguishing empirically between increasing returns to scale
and "advances in knowledge." What additional evidence might you bring to
bear on the issue?

2. Consider a world of two countries with identical preferences,

bE o f;e'Dt log c; gt. 1=1, .2,

but different rates of technical change:

i 8%t i.a
v, = Ae " (k)% 1=1,2,

with A1 < ﬁa and ay > aj. Compute the optimum of the social planner's problem

max AU' + (1-2)0°
e' %}
subject to

1 2 . 1 2
ct - ct + kt < yt + yt,

the two technologies, the world capital constraint,

and nonnegativity constraints on k! and k2.

What are the dynamics of output in each country with (a) no trade or
factor mobility, (b) mobility of capital, (c) mobility of both capital and

labor?
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We have seen that the neoclassical growth model can be made to fit
the gross features of growth in real economies, but only by postulating exoge-
nous rates of productivity growth that vary across countries. In principle we
would like our theory to explain productivity as well. Some zttempts to do

just that are described in the next chapter.
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147 WeuTde t6 the Literarure

The neoclassical growth model is a product of the 1950s and is
usually associated with Solow (1956), although similar models were published
by Tobin and Swan around the same time., The theory of optimal growth dates
from Ransey (1928); the modern treatment stems from Cas (3965) and Koopmans
(1966). Lucas, Prescott, and Stokey (1986) discuss the interpretation of the
optimal plan as a competitive equilibrium; the theory dates back to Debreu
(1954) .

Evidence on growth rates and other features of national economies
over long periods of time is available in numerous books and articles by
Kuznets and Denison. A useful up-to-date source is the World Bank's annual

World Development Reporls. Some of the stylized facts on growth are summarized

by Kaldor (1957) and Solow (1970).
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2. ENGINES OF GROWTH

2:d  Growth with

We have seen that the neoclassical growth model cannot explain

persistent differences in levels and growth rates in per capita income across
countries without resorting to exogenous differences in levels and rates of
change of productivity. We devote most of this chapter to theories that
attempt to explain these productivity differences of a deeper level, but it is
useful to attack the preoblem indirectly by considering a seemingly minor
variation of the neoclassical growth model. This variation will give us an
idea of how to build growth rate effects into models, even if it does so in a
purely mechanical fashion.

Most of the predictions of the neoclassical growth model stem from a
single assumption: that the marginal product of capital is declining. To
illustrate the importance of this assumption, and also the possibilities that

open up once it is discarded, consider the growth model with preferences
@ -pt

(1.1) foe log c_ dt

and Iinear technology

(1.2) Ve = Ak, =

t ct + kt.

The technology is the key since capital is no longer subject to diminishing
returns.
We solve the problem by optimal control. The current value

Hamiltonian is

H(e,k,A) = log ¢ + A[Ak-c],
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which yields the first-order conditions
(1.32) ¢! =1

(p=A)A

(1.3b) X

(1.3¢) k = Ak-c.

The optimal sclution involves (see exercise 1)

_ (A-p)t
(1.4) kt = e k0

so the capital stock and output grew exponentially at rate A - p.

The point is that we now have a model capable of generating persis-
tent, nonzero rates of growth without resorting to exogenous technological
change (although to be fair, our theory is still pretty artificial). We can
also generate differences in levels of output from different initial capital
stocks. This model, unlike the neoclassical growth model, shows no tendency
toward convergence of levels of output,

Qur task in the remaining sections is to explore various means of
escaping from diminishing returns in some reproductive factor and thus build
in some of the features of linear technology. Our reference earlier to '"tech-
nological change" suggests that we get better at producing things, so most of
our effort will be invested in theories of learning and knowledge transmission
that formalize this process. There are plausible arguments that learning
technologies are not subject to diminishing returns in the aggregate, so we
will arrive at models with some formal similarities to the one we have just
studied. A subsidiary theme involves decentralization of decision-making when

production exhibits increasing returns to scale. Suppose, for example, that



= P

the linear technology (1.2) included a second factor, n say, whose quantity is

constant:

[+ ]
Ye = hktnt.

The optimal solution can be computed as before, with An® taking the place of
A, but with increasing returns this may not be supportable as a competitive
equilibrium. In most of the models we study we get around this difficulty by
postulating an external effect, so that the increasing returns apparent in the
aggregate are not available to individual decision-makers. In some cases the
competitive equilibrium differs from the optimal plan, but the former often

retains many of the features of the latter,.

1. Use (1.3a,b) to express the costate as

_ (p-A)t
lt = e 10

and capital accumulation as

(ﬁ-p)t/JL -

k = Ak -e 0

Verify that
_ -pt_ At
k, = {k0+[e 1]/nko}e

is a solution to (k) satisfying the initial condition k, = k5 at t = 0.

Now apply the transversality condition

; -pt B
lim e Atkt = 0

trm

to obtain (1.4).
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Draw a phase diagram for the optimal growth problem with linear technology
and compare it to the neoclassical growth model.
Derive the optimal plan with linear technology [eq(1.2)] and utility

function
= .-.ot
foe u(ct)

where u(c) = c"*/(1-y). Describe the impact of the preference parameter
on the solution. Does a solution exist for any values of p, A4, and y?

Derive the optimal plan for the linear-technology economy when the govern-
ment takes a fraction of the total output and throws it away. Compare

your answer to that of question 5, section 1.3.
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One of the most promising theories of productivity growth is learn-
ing-by-doing. We know that people get better at things as they accumulate
experience, and the management science literature is filled with references to
"the experience curve." Arrow (3962) notes that in practice such learning
exhibits "sharply diminishing returns,”" so we will want to consider learning

curves of the form

A, = 2(e), &' >0, " <O,

where e is a measure of "experience" and A is our usual productivity param-
eter.

The question is how experience is measured. A particularly simple
formulation specifies experience as cumulative output, so if output from, say,

one unit of labor is

Ve z(et)

then

(0

¢~ Y
Since %' is decreasing and bounded from below by zero we know &' approaches
some constant:
lim 2'(e) = 2! 20
e+
50

y/y = 2'(e) » 2.
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The rate of growth of output is therefore determined completely by the func-
tion 2. We could make this more realistic by introducing additional inputs in
production, but the idea would be essentially the same.

Two problems with this approach as a theory of growth are the fol-
lowing. First, when 1' is positive we have a fairly simplistic theory. We
have simply replaced exogenous technical change with an exogenous learning
curve. This is an important, since we can base & on studies of microbehavior,
but a small one. Second, the evidence suggests that learning curves have the
property 1! = 0, in which case the model predicts no sustained growth. Arrow
(3962), for example, cites a study of airplane manufacturing that approximates

learning by the curve

t(e) « eM3

where e here is the number of airplanes produced. Ghemawat 0985) reports
that "literally thousands of studies have shown that production costs usually
decline by 10-30 percent with each doubling of cumulated output,” which im-
plies a similar learning curve.

The trick is to embody learning in a good that can increase without
bound, just as we think intuitively that knowledge has no bound. Arrow em-
bodies learning in capital goods. A slightly more tractable formulation is
due to Lucas (3985). Production now uses both capital and labor, and labor's

usefulness is determined by an ability variable, h:

_ L0 1-a
Yy = klheng

We think of h as human capital, or knowledge. The driving force in the model

is the behavior of h over time. Lucas uses
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ht = Gntht

so that hard work now (large n) makes us more productive later.

Exercises £o 2.2

§.

Derive the cost function underlying Ghemawat's statement that costs de-
cline by (say) 20 percent for every doubling of cumulated output. What
does the growth rate converge to in an economy with this learning tech-
nology?

Write down an experience curve that produces k% growth asymptotically.

Put distortion in Lucas's LBD model.

Describe a version of Lucas's LBD model with leisure.



