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The Linear Optimal Regulator Problem with Periodic Coefficients

Let Rs(t) be n x n symmetric negative semidefinite matrices

(Rs(t) < 0, for all index functions s(*) and for all t); Q (t) be mx m

s

symmetric negative definite matrices (Q (t) < 0, for all index functions

s
s(*) and for all t) with m < nj As(t) be n x n matrices; Bs(t) be n x
m matrices; Xg be n x 1 vectors; vy be m x 1 vectors; and let the
initial vector xto and an n x n symmetric negative semidefinite terminal
matrix Ptl be given. Finally, let gt be n x 1 vector white noiseslf
with E (Etgz) = ¥, where the ¥, are positive definite n x n matrices,

and let Et denote linear 1least squares projection onto information

available at time t. Then the problem of maximizing

A
(1 [0 b« s, x, ]
(1) J(x, ) = E x.R x. + v.Q v.} + x P, x
ty By - g , ts(t)t t%s(t) 't tt Tty
subject to a given xto and
(2) Xt41 = Ag(t)Xt t Bs(v)ve t Eg41o

over choices of the m x n matrices Fto, Ft0+l’ veey Ftl—l used to set Vi

according to

(3) Vi = =FiXeo



-

is known as the optimal linear regulator problem. A wide variety of

economic problems can be posed as linear optimal regulator problems.

Optimal linear regulator problems have been extensively stud-
ied and much is known about solving them [see, for example, Bertsekas or
Kwakernaak and Sivan]. Most frequently studied are the general time-
varying coefficients case, when s(t) = t, and the time-invariant case,
when s(t) = §, a constant. In the former case, the solution consists of
one sequence of formulas for calculating the matrices FtO, Fto+1, wiwin
Ft -1 as functions of the matrices Pt . Qt § Qt +15 *ces Qt 1 Rt 5

1 1 0 0 ] 0
Booars sovs Bpae Mo 8pade eess dg,oqs 904 Beoe Begtw enns Bpooy
and another sequence of formulas for calculating the maximized value of
the problem. These formulas also work in the time-invariant case, of
course, but the invariance of the coefficients in that case allows
answers to additional questions concerning the limiting behavior of the
system and its maximizing solution as ty > - «.

The purpose of this paper is to show that many of the ques-
tions that can be answered about the limiting behavior of time-invariant
systems can also be answered for time-varying systems with periodic
coefficients. These systems, where s(t) is a periodic sequence of
integer period p, or s(t+p) = s(t) for all t, include time-invariant
systems as a special case (p=1). Many limiting properties of time-
invariant systems can be generalized to the periodic case, where the
matrices F; which solve the problem, instead of settling down to a fixed
value, settle down to a periodic sequence of values (if they settle down

at all).
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The first section of the paper reviews the solution of the
time-varying linear optimal regulator problem and then shows that, when
its coefficients are periodic, the same solution is obtained by embed-
ding the time-varying problem in a higher dimensional time-invariant
problem. The second section makes use of the higher dimensional time-
invariant problem to establish certain limiting properties of the system

and its maximizing solution.

I. Converting the periodic-coefficient linear optimal regulator problem

to a time-invariant problem.

We first derive the solution to the finite-horizon problem
introduced in equations (1) - (3) of the introduction. As Bertsekas
(1976) shows, this problem can be solved by the recursive algorithm
known as dynamic programming (DP).

According to the DP algorithm, we begin at the tl-l stage,

where we seek a th—l = 'Ftl—lxtl-l to maximize
T 1k
(%) I(x ) =E [x R X +v Q v
t,-1 ty-1 e -1 s(tl-l) ty=1 Tt -1 s(tl-l) t -1
T
+ (A x + B v +&, )P (A X
s(ty-1) t -1 s(tl-l) t, -1 t 7 e s -1) e -1

+ B v + £ )],
s(tl-l) t,-1 t)



e

subject to a given xtl—l' Differentiating with respect to th-l gives gj

T
0=24Q v + 2B P. A X
s(tl—l) t,-1 s(tl-l) t) s(tl-l) t, -1
+ OBC P B v
s(tl-l) tl s(tl—l) tl-l
or
(h) V. = F X
t-1 ty-1 *tq-1°
where
_ T ~1,T
(5) Fe-1 = [Qg(e-1) * Bs(ty-1)Pe;Bs(ty-1)) " Bs(t;-1)Pe As(t1-1) "

Equations (4) and (5) show that the optimal value of the problem start-

ing at t;-1 with initial value xtl—l is

% ) T T T

= X R X + x F
1 -1 s(tl—l) -1 t,-1 -1

Q F %
s(tl—l) 6y =176, -1

T
* (As(tl—l)xtl—l - Bs(tl-l)Ftl-lxtl—l) Ptl[As(tl—l)xtl-l

n
Es T8
b 17t 0t

F ) + E 6

- B
s(tl—l) 1 b1

X
tl—l tl—l

or
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* Ui T
(6) J (x = X P X + E €i_ P &y
t1-1) T Fbq-l Teg-l Teg-1 T Pyl Sty Tty B4y
where
_ T
(7) P, 1 = [Rs(tl—l) + A (t,-1) {p, - P B_(t -1) [Qs(tl-l)
1 1 1
T =1 0
+ B_(t,-1) Ptl Bsftl—l)) B (t -1) Ptl} As(tl—l)].

The matrix Ptl_1 is also symmetric and negative semidefinite
[Bertsekas, p.T2], so the next step in the DP algorithm, which is to

find a V£1_2 = -Ftl‘g xt1_2 that maximizes

. T T
(8) Txe p) = By plxe, oRe(e,-2)%e 2 * Vi -2%(t,-2)"¢,-2

T
+ (Ag(t-2)% -2 * By(t,-2)Veq-2 * E4,-1) Py 1

i
(As(ey-2)% 2+ Bo(t-2)Veq2 * By * Bg o B

Pt15t1]=

has the same form as the tl—l maximization except for the additional
term E; 4 EE Py &; « ©Since this additional term does not involve
1 1 1 1
Vt1-2 in any way, it does not affect the choice of the maximizing
Ft1-2' Thus for the tl-2 stage and, by working backwards in the same
manner, for stages tl—3, tl-h, G to, we have that the optimizing
choices for Ft -k (and hence for Vi k) and the optimized wvalues of
1 1=

J (xtl_k) SN given by, for k =1, 2) ses, tl - tOe



(9) v = -F X 4
ty-k ty-k Xtk
and
* T
(10) J (x ) = x P X
tl-k tl-k tl-k tl-k
k-1
T
+ E ) E P 3
o=k oo Tty -k+htl Tt —k+h+l Tt -k+h+l,
where
(11) P = [R + AL {p -pP B
Tk s(t.-k) s(t-k) t.=k+l T t.=-k+l “s(t.-k)
1 1 1 1 1
T <1 _T
(q + B P B J™" B P }
s(tl-k) s(tl-k) tl-k+1 s(tl-k) s(tl-k) tl-k+l
As(tl-k)]
and
T -1 _T
(12) F = {4 + B P B )™ B
t,-k s(tl-k) s(tl—k) t) —k+1 s(tl—k) s(tl-k)
P A. -
tl_k+1 s(tl-k)

The final term in equation (10) is derived from repeated application of
the law of iterated linear projections, which says that E (Et+le) =

Ete, for any random variable €. Equation (11) is known as the matrix


file:///-k-H

= s

Riccati equation. For a more complete derivation of (9) - (12) in the

general finite-horizon, time-varying coefficients case, the reader is
invited to check Bertsekas [1976, Chapters 2 and 3].

Equations (9) - (12) were derived without specifying the index
function s(t), so they solve the general time-varying coefficients prob-
lem and the special cases of time-invariant and periodic coefficients as
well. In particular, if we now specify s(t) to be periodic of integer
period p, so that s(t+p) = s(t) for all t, equations (9) - (12) solve
the finite-horizon, periodic-coefficients 1linear optimal regulator
problem.

Identical solutions to the periodic-coefficients problem can
be obtained by embedding it in the higher dimensional, essentially time-
invariant problem given by choosing Uy = -Ltyt to maximize

t, -1

1
. T T T

(13) Jy,)=8_ [} {yR, +uQu} +yK v |

e B =t gV F B, By

subject to

(14) Yisp = Mg + Bug + ®s(t+1) Eie10

where, in terms of the vectors and matrices previously defined and the

notation diag (ZO, Z1s sess Z ) for a diagonal (or block diagonal)

p-1

matrix with diagonal elements ZO, Zys wsesy Zp—l’
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(15) Q = diag [Qg(0)> Qg(1)s *+=» Q(p-1))>
a pm x pm symmetric negative definite matrix;
(16) R = diag [Rg(p)> Rg(1)> +++» Rg(p-1)l>

a pn X pn symmetric negative semidefinite matrix;
(aD) Ky = ateg (K, K, .o, 1,

with K%l = Ptl, for i=0, 1, 2, ..., p-1, so that Kt is a pn x pn sym—

metric negative semidefinite matrix;

0 0 0 0 ; é : Ag(p-1)
Ag(0) 0 0 0 : : & 0
0 Ag(1) 0 0 . . . 0
(18) A= 0 0 Ag(p) O . . . 0

0 0 0 . . i As(p-?) 0 J



a pn x pn matrix;

O 0 O 0 . . . Bs(p_l)
BS(O) 0 0 0 . . . 0
O BS(I) O 0 . . . O
(19) B = 0 0 Bs(p) O ; . . 0
0 0 0 . . . Bs(p_z) 0
L -

a pn x pm matrix;

2 oi, O Tl L - A og‘l]T
with Oi an n x n zero matrix in the Jth block of the pn x n matrix
es(t) > for j # i, and II:,T‘1 an n x n identity matrix in the ith block of
eg(y)s> where i=modp(t). (That is, i € (0,1,e4.,p-1) and t = &p+i for
some integer %2.) The structure of the pn x 1 vectors Vi and the pm x 1
vectors Uy will be explained in more detail below and can be ignored for
now. The n x 1 vector white noises &, are as previously defined.

Using formulas (9) - (12) to derive the solution to the prob-

lem posed in (13) - (1k4) gives



=1 | g TS

(21) T )=y K E f-lgT
y =y Ng +
-k tokTt, k7t -k ty=k o ty-k+htl
eT K e E
s(tl-k+h+1) tl—k+h+l s(tl-k+h+l) tl.k+h+1
and
(22) u = 5
tq-k ty-k ytl—k’
where
= T T =]
(23) K, o= [R+aK, o0 =K 4y BA+BE, . B)
1 i 1 1
T
Bk -k+1}A]
1
and
_ T -1 _T
(@) By = Q@ BE 4B B Ky e A

for k = 1, 2, eae, t; - ty, with Ktl given by (17).

To see how (21) - (24) can match up with (9) - (12), we need
to calculate more detailed expressions for Ltl—k and Kfl_k. Recalling
the structure of Ktl given by (17), we shall see that Ktl—l has a simi-

lar structure. We have from (23) that

(25) Ry 4= [R+AT{Kt K, B(Q+BTKt B)‘lBTI{t la].
1 1 1 1 1
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Note that
(26) 0
0
0
41,
B = .
Kt1
T
Bs(p-l)
0
0
0
T 0
B K
( s(p-1) tl)

=y I =

p-1
1.
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T o 2 S | T g2
(27) B KtlB = diag [(Bs(o)KtlBs(o))’ (Bs(l)KtlBs(l)}’

T 0
(8 (p—l)K .

" ey

(p-l))l’

and
T -1 . i 1 -1 T
(28) (Q+B KtlB) = dlag[[QS(0)+BS(O)Kt1BS(O)) » (9g(1)*Bg(1)
> -1 T 0 -1
KtlBs(l)] 2ot [Qs(p-1)+B (p —1}K g (p—l)J I

where the existence of these inverses is assured because of the negative

definiteness of Q and Qg(g)s Qg(1)se-+sQ(p-1)+ With (@ + BTk, B)~L

t
1
diagonal, we can obtain, through calculations wvery similar to those

above, that

(29) K, B(Q+B'K, B) "B'K, = diag{[KO B

! : " ¢, Bs(p-1) % (p-1)

5 0 -1.T

0 1
* Bap-1)%e Batp-1)) Bs(p-1)¥e, 1o K5 Bs(0)(%s(0)

1 -1_T 1 -1
* B(0)%s Pa(0)) " Be(o)¥e, I o rer (K5 B 0)(%g(po0)
T -1 -1_T -1
* Bg(p-2)t, Ps(p-2)) B p-e)Kp I

and thus that



I I

(30) K, .y = tteg {[Bypq) ¢ Ag<o){Kil+ KilBs<o>(Qs(o)
* Bz(o)KtlBs(O))-IBE(O)Kil}AS(O)]’ Fsqa) * AZ(I){Kfl
¥ KilBs(l)(Qs(l) * thl)KelBs(l))_1BT5(1)K§1}A5(1)]’
weoy [Rorpgy * Az(p—l){Kgl * Kngs(p-1>[Qs<p—1J
B o )18t 0

s(p-1)%, Ps(p-1) s(p-l)Ktl}As(p—l)]}'

Note that Ktl-l’ like Ktl, is a pn x pn symmetric negative
semidefinite matrix, since each of its diagonal blocks is an n x n sym-
metric negative semidefinite matrix (Bertsekas, p. 72). Furthermore, the
1% 4iagonal element of Kfl‘l’ where i=modp(t1-l), is the same as the
expression for Ptl_1 derived for the periodic-coefficients case (equation
(7) or (11), with s(t+p) = s(t), for all t).

To derive Ltl—l’ recall equations (24) and (28) and note that

(31) BTKtlA = di&g[Bg(o)KtlAs(o)’ Bz(l)KilAs(l)""’
B (p-1)%, As(p-1)

so that

(32) Ly = ateg [(ay) + Bz(o)KtlBs(o)J_lBg(o)Kilﬁs(o)'
(9g(q) * B§(1>K§13s<1>]_lBg(l)Kilﬂstl)""’ (9 (p-1)
* Bg(p-l)Kngs(p-l)J'lecp-l)KglAs(p-z)]'
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Again, for i = nwdp(tl-l), the i™M block on the diagonal of
Ltl_l is identical to the expressions derived for Ftl—l for the periodic-
coefficients case (equations (5) or (12), with s(t+p) = s(t), for all t).

From equation (23), the formla for is
1—2

_ i)
(33) K, »=[R+a{k 4 -k, 4Bl@+BK, _,B)TBK _ }A].
1 1 1 1
. 5 0 L p-1 i .th
If we let Ktl—l = dlag[Ktl-l’Ktl-l"‘"Ktl-ll’ where Ktl-l equals the i

block on the diagonal of the expression on the right side of equation
(30), then equation (33) has the same form as equation (25). By calcula-

tions analogous to those leading up to (30),

(34) Ky = dise U[Ry(g) + AE(O){Ktl-l * Kil—lBs(O)(Qs(O)
* By(0)Ks,1%(0)) Pa(0)%e, 1l As(o)] [Re(n) * Ao (e
* K 1B1)(%(1) * Ba(1)e aPs() Ba()e ()]
oo [Rypogy * Ag(p-l){KSl-l * f{21-1]3's(p-1)(Qs(p—l)
¥ Bg(p-l)Kgl—lBs(p—l)J-lBE(p—l)Kgl—l}As(p—l)]}’

and, working backward in the same manner for k = 1,2,...,t1—t0,



] B

3 T 1, 1
(35) Ktl-k " g {[RS(O)+As(0){Ktl—k+1+Kt1—k+lBs(0)[QS(O)
Y 1 -1.T 1 T 2
* Bs(0)%e, -ke1Bs(0)) Ba(0)Ks, -1t As(0) ] [Rs(l)+As(l){Ktl-k+1

+K2 T 2 -1.T 2

tl—k+lBs(1)(QS(1)+B5(1)Ktl-k+lBs(l)J Bs(l)Ktl—k+l}As(1)]’

i 0 0
i [Rs(p-1)+As(p—l){Ktl-k+l+Ktl~k+lBS{P“1)[QS(P_l)

+BT 0

¢ -1.T 0
s(p-1) "t k+1

S(P--l)J s(p—l)Ktl-k+1}As(P_1)]},

B

where the n x n matrices (which we will denote by K; for i=0,1,2,

-k
i
«es,p-1) on the diagonal of Ktl-k’ for k=1,2,...,t1-t;, are each symmet-
ric and negative definite.

The next important step in matching the solutions (21) - (2L4)

of the higher dimensional problem with the solutions (9) - (12) of the

periodic-coefficients problem is to show that, for i=modp(tl-k), the ith

block of Ktl—k in (35) is identical to the expression for Ptl—k derived
in equation (11) for the periodic-coefficients case. Because Ktl = diag

B3 P

SEEETLY Ptll, it was easy to show that, for i = modp(tl-l), the

tl’

.th . ; e
i block of Ktl—l was identical to Ptl—l’ Now, if 1-modp(tl-1) # 0,

then i-1=modp(tl-2) and we want to find P, _, in the i-1 block of K; _,.
1 1~

If i=mod_(t,-1)=0, then we want P to be in the p-1 block. Equation
1 tl-2



e
(34) shows that this is just what happens in the calculation of Ki _oe
1
Ptl-l’ which appeared as K%l_l in Ktl-l’ appears 1in the expression

for ©o°_ 4n K¢ (where we let i-1 = p-1 if i=0). This fact, along
tl -2 1‘2

with s(t;-2)=s(i-1), shows that Kiiiz = P - Similarly, Kil_k = Py s

where 1 = modP (tl—k} and Ki K denotes the ith block on the diagonal of
=

K -
t,-k
We can now easily calculate Ltl-k’ k;l,2,...,tl—to, and show

where Ftl-k is located on its diagonal. From equation (24) and the diag-

onal structure of Ktl—k+l’

. T o1 1.7 .1
(36) Ly = at2el(8(0)*B5(0)%s ka1®s(0)) T Ba(0)¥e, -xrs(0)
T 2 1T .2
(Qs(1)+Bs(1)Kt1-k+lBs(l)] Bs(l)Ktl-mAs(l)s
T 0 -1.T 0
[Qs(p—l)+Bs(p—l)Ktl-—k+lBS(P-l)] s(p—l)Ktl—kﬂAs(p-l}]‘

. i+l L . .
Since Ki ., = Ptl-k+1’ for 1+1-modp(t1—k+1), as discussed above, it
follows immediately from (36) and (12) that L =F (using i+1=0 if

bk Ttk
I=p=1)s

To summarize the results so far, we can say that equations (21)
- (24) solve the problem posed in (13) and (14), and that for k=1,2,...,
tl-to, Ktl—k and Ltl-k are diagonal matrices whose ith blocks along the

iagonal, for i=mo t.-k), are given by and , respectively.
ai 1, for i (t1-k) i Ptl"k Ftl_k '
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We now begin to complete the correspondence between the peri-
odic-coefficient problem and the higher dimensional, time-invariant prob-

lem by specifying the structure of yto, the given initial condition. Let

0\T , 1,T -1,7T

(37) yt = [(Yt) ,(Yt) ’ -o-(.‘flt) ) ] ]

0 0 0 0
where

. xto, if 1=modp(t0)
(38) & =

v an n x 1 matrix of zeros, otherwise.

~ ¥

Then J (yt ), as given by equation (21), is the same as J*(xto), as

given by equation (10), for

T S | =
(39) es(tl-k+h+1JKt et s (6 ethtl) T Ktl—k+h+l = Ptl—k+h+l,

1

where j=modp(tl-k+h+1), and

T T i
(Lo) v, K, y. =x,_ K = %
Yo% % Yttt %%%

where i=modp(t0). That is, the two problems have the same maximized
value.

The optimal controls, Vi and ug, for t=t0,t0+l,...,t1-1, also
match up, as do the state vectors Xy and yi. Recall that yto is pn x 1,

with p-1 nx1 blocks of zeros and the n x 1 block Xg occupying the ith
0
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position, where i=mod (to). From this fact and the fact that L%O = Fto,

p
we get
0 T i-1 ] | i+l
(k1) u, = <L, ¥, = [0 ceey O (-F. % )" 0
t E] L) H ] E] L]
0 tO to 1xm” 1xm 1xm % %o 1xm
p=-11T
""lem]
[OO l l.., VT Op_l]T,

1xm® “1xm® to’ YTt Tlxm

where the 1 x m zero vectors Oixm occupy all blocks but the ith Tmat TR
uto is a pm x 1 vector partitioned into p mx1l blocks, all of which are

zero except the ith

, Which equals vto, where i=modp(to).

With xto occupying the 1% piock of yto and vto occupying the
i¥h piock of uto, the other blocks being zero, for i=modp(t0), we can
show that xt0+1 and vt0+1 occupy the i+l blocks of yt0+1 and ut0+l’ re-

spectively, where we let i+l1=0 when i=p-1l. To see this, note that



(42)

and

(43)

Ayt =

But=

-
0 0
As(o) ©
0 As(l)
0 0
0 0
Bs(O) 0
0 Bg(q)
0 0

. As(p*—l)

- 0

- 0
As(p-2) © |

+ Bg(p-1)

i 0

- 0
Bp-2) © |

' = ]
As(p-l)yf,

0
As(O)yt

As(1)t

| ®s(p-2)"
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Equations (L42) and (43), the structures of ytO and uto described above,

and equation (20) thus imply that

(4h) y = Ay, +Bu, +e 3
t0+1 to to s(t0+1) t0+1
(0 ] [0 ] [ 0 ] 0
Onxl 0mxl Onxn Et0+1 0 nxl
Il i=1
Onxl Omxl :
i i
Mo Vg Onxn Stqy+1 Onx1
_ i+l i+l _
=410 * OB % ¥ Tnxn Sep+1| = As(i)xtO+Bs(i)Vt0+£
i+2 & i+2
* * Onxn t0+l 0nxl
p-1 p-1 p-1 & p=1
_Onxl _Omx; __Onxn tofﬁ 2 anl

100 T i T T (,i+2\T p-1 T T
=[(0 1) «en, [Onx1] ? (xt0+1) K [Onxl) >ttt (OnX1) 1%

If i:modp(to) # p-1, this shows that xt0+1 does occupy the i+l block of

Yt +1> With the other blocks zero. If i=mod (t0)=p—1, a similar demon-
0

P

t 1
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stration can be made (letting i+1=0 in this case). With xt0+l in the
i+l block of yt0+1, the rest of yt0+1 being zero, and with Ft0+1 occup-

ying the i+l block along the diagonal of Lto we have immediately that

+1°
vto+1 occupies the i+l block of ut0+1, the other blocks being zero.

By similar reasoning, we can show that xtl-k lies in the
modp(tl-k) block of ytl—k’ the rest of ytl—k being zero, and that vtl-k
occupies the nmdp(tl—k) block of utl-k’ the rest of utl-k being zero.
We have already shown that Ptl-k occupies the modp(tl-k) block along the
diagonal of Ktl-k’ that Ftl-k lies in the modp(tl—k) block along the di-

agonal of Ltl—k’ and that E(yt ) = J(xt )« Thus, for the finite-hori-

0 0
zon, periodic-ccoefficient linear optimal regulator problem, all of the
information in the solution equations (9) - (12) can also be obtained

from the solution equations (21) - (24) of the higher dimensional, time-

invariant problem posed by equations (13) - (1k4).
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II. ©Sufficient conditions for convergence of the linear optimal reg-

ulator with periodic coefficients.

In a sense, this section of the paper is superfluous. Having
already shown how to convert periodic-coefficient linear optimal regu-
lator problems into time-invariant problems, we could simply refer to
standard references on time-invariant problems [for example, Bertsekas
or Kwakernaak and Sivan] to discover sufficient conditions for non-
explosive behavior of the state vector and convergence of the value of
the problem and the feedback rules as the horizon goes to infinity.
However, it should be both convenient and interesting to review some of
the main theorems here and investigate the special forms they take for
problems of the form described in equations (13) - (20). We will review
the main convergence theorems and concepts of controllability, control-
lability canonical form, reconstructability, detectability, stability,
and stabilizability. By specializing these concepts and convergence
theorems to the case of the problem posed in equations (13) - (20), we
are actually generalizing them to the class of periodic-coefficient

linear optimal regulator problems.

A. Review of Standard Convergence Results

Consider the linear system x(t+1) = Ax(t)+Bv(t), where x(t) is
an n x 1 state vector, v(t) is an m x 1 control vector (mﬁp), A is an n

x n matrix of constants, and B is an n x m matrix of constants. This
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system is said to be completely controllable (or just controllable, for

our purposes) if the system can be moved from zero at any initial time
ty to any terminal state x; € R® within finite time (tl-to). It turns
out that the system is controllable if and only if it can be transferred
from any initial state x; € R" at any initial time ty to any terminal
state x; € R" within a finite time t,-t; [Kwakernaak and Sivan, p.54].
To check for controllability, we make use of the Cayley-
n-1

Hamilton theorem [Noble, p.372], which implies that A" = ) &
J=0
h

IAJ, for

i=n,n+l1,n+2,.... That is, the n* and higher integer powers of an n x n
square matrix are linear combinations of the matrices [I,A,..., AP™1],

This in turn implies

Theorem 1: The n-dimensional linear time-invariant system
x(t+1) = Ax(t)+Bv(t) is completely controllable if and only if the con-

trollability matrix P = (B,AB,AB,...,A""1B) is of full row rank n; that

is, only if the column vectors of P span R® [Kwakernaak and Sivan,

pp.h59—601. We also say that the matrices A and B are a controllable

pair if (B,AB,A%B,...,AP"1B) is of full row rank.
Many systems that arise naturally from economic models are not
completely controllable. For that reason, we introduce the concept of

the controllable subspace of the linear time-invariant system x(t+l1) =

Ax(t)+Bv(t), which is the linear subspace consisting of the states that
can be reached from the zero state in finite time. It follows easily

from the proof of Theorem 1 that [Kwakernaak and Sivan, p.58]
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Theorem 2: The controllable subspace of the n-dimensional linear
time-invariant system x(t+1) = Ax(t)+Bv(t) is the linear subspace

spanned by the column vectors of the controllability matrix P =

[B,AB,A®B,...,AR"1R],

We shall now transform the n-dimensional system x(t+l1) = Ax(t)
+Bv(t) to a more revealing form. Let the dimension of the controllable
subspace = rank of the controllability matrix = r, where r < n. Choose
a basis for the controllability subspace consisting of the n x 1 vectors
fl’fE""’fr’ and choose n x 1 vectors fr+l’fr+2""’fn so that
f1sfpseee,f, is a basis for R". Form the nonsingular transformation
f

matrix T = (Ty,T,), where T; = (f;,fp,ees,f.) and T, = (f

r) r+l° “r+2°
eeasf)e Let X(t) = T1x(t), so that TX(t) = x(t). The system can thus

; _ i 1l _
be written Tz(t+1) = ATE(t) + Bv(y), or, premltiplying by T7", X(g41) =
E;(t)+§V(t), where X = T~1AT and ® = T 1B. Partitioning T L as T™1

u

= Ul , where U; is r x n and U, is (n-r) x n, it can be shown
2

[Kwakernaak and Sivan, pp.461-62] that

Theorem 3: The transformed system described above has the form

% (£41) 5, .| [xm®] [

(45) = # v(t),

Xp(t+1) 0 122J h'ig(t)_ | 9
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where the pair (Kll,ﬁl) is controllable, and 111 = U;ATq, 112 = U;AT,,
122 = UpAT,, ﬁl = U;B, El(t) is an r x 1 vector, and §2(t} is an (n-r) x
1 vector.

Expression (45) is called the controllability canonical form

of the system x(t+1) = Ax(t)+Bv(t). The controllability matrix of this

system takes the form

~ ~ e ~ -]
B e [R5, B0 B Ak A1 B

= E] E ] L]

0 0 0
so that, in effect, any point in its controllable subspace can be

reached by the completely controllable system X, (t+l) =

x'
Kliﬁl(t)+§1v(t). In fact, given any n x 1 vector x' = [x}], and any r x
2

1 vector x";, the system (45) can be moved from the initial state

x"

;(t0)=xr to the terminal state x(tl) =yl [xﬁ]’ a— x"2
2

t, -t

=4, = xbis (n-r) x 1, within finite time t;-tg.

=

Since the matrix 322 alone determines the movement of the ele-
ments of the state vector corresponding to the noncontrollable subspace,

its properties are very important to the limiting behavior of the sys-

tem. We say that an n x n matrix A and the homogeneocus linear system

x(t+1)=Ax(t) are stable if for amy x(ty) in R, lim x(t +j) = 0. The
jw

following theorem is well-known [Kwakernaak and Sivan, p.28]:
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Theorem 4: The matrix A and the homogeneous linear system x(t+l) =
Ax(t) are stable if and only if the eigenvalues of A are strictly less

than unity in modulus.

We now combine the notions of controllability and stability by

calling the pair (A,B) and the system x(t+1) = Ax(t)+Bv(t) stabilizable

if the matrix K22 in the controllability canonical form of the system is

stahle.ﬂj éf If we consider a stabilizable system in controllability

canonical form (e.g., equations (45) with 122 stable), then, for any
x'

initial state vector [x%] at time t; and any r x 1 vector x";, the
2

"

system can be driven to [xi]' where x"2 is an (n-r) x 1 vector, within
2

finite time t1-ty, and the system can be driven arbitrarily close
xli
43
to [0 ] as tq,
The concepts of reconstructability and detectability are nor-
mally introduced when the controller of the system cannot directly ob-
serve the state matrix x(t). We are not considering such problems here,

but we will need these concepts. It will be sufficient for our purposes

to say that the pair (A,B) is reconstructable if the pair (AT,BT) is

controllable, and that the pair (A,B) is detectable if the pair (AT,BT)
is stabilizable.
We now present theorems on the convergence of feedback rules

and maximized values for linear optimal regulator problems. First con-
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sider the finite-horizon nonstochastic linear optimal regulator problem

whose law of motion is written in controllability canonical form as

xq (t+1) A1 A x1(t) By

xo(t+1) 0 Asy xo(t) 0

where (A;1,B;) is controllable and Ay, is a stable matrix, and whose

criterion function

£ -1 T
1 x, (t) R R x, (t)
7)) L 12 PO e vit) Tav(t)
%zto { xp(t) o1 Rop| [Ro(8)] T T

x) () ' Py (1) Ppo (g ))fx (2)) |
+
(6| [Poy (89) Ppp(ty) x, (%)
is maximized over choices of
xl(t)
(48) v(t) = -[F (t) Fy(t)] x,(t)

where x;(t) is r x 1, x5(t) is (n-r) x 1, v(t) is m x 1, r is the dime-

sion of the controllable subspace, and all other matrices are of con-

formable dimensions. For convenient reference let's also refer to this

problem as one of maximizing
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I [x(0) Rx(e)+v(6) Tav()] + x(6)"P(t)x(s,)

subject to

x(t+1) = Ax(t)+Bv(t)

over choices of v(t) = -F(t)x(t), where x(t), P(t;),A,B, and F(t) denote
the corresponding vectors and matrices in equations (L6) - (48). If we
assume that R and P(tl) are symmetric and negative semidefinite and that
Q is symmetric and negative definite, then for a given x(t;), the so-
lution to the problem is given by equations (9) - (12) (with s(t) = §, a
constant).

Now consider the problem as we let the horizon, t1-tg, g0 to
infinity by driving t; to -~. As Sargent [pp. V-9, V-10] notes (using
slightly different notation), "We would find the following two charac-
teristics desirable. First, as we drive ty>—, we would like PtO [P(tg)
in our notation] to converge to a constant matrix P which is independent

of the given terminal matrix P, [i.e., P(t;)]. This is a desirable

1
feature because it implies ... that the sequence of optimal control laws
{Fto} also converges to a constant as ty*—~. This has the practical
implication that the feedback law {F.} that solves the infinite horizon

problem is time invariant, so that F, = F for all t, and that the re-

sulting closed loop system

Xgp1 = (A-BF)xy oun
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is time invariant. Our second desideratum is, given that the closed
loop system is time invariant, that it be stable. This requires that
the matrix (A-BF) be stable, that is, have eigenvalues with moduli less
than unity."

A number of theorems on the convergence of P(t) and the sta-
bility of the closed loop system are available for this problem; the

antecedents of the following theorem are fairly weak:

Theorem 5: In the optimal linear regulator problem described in equa-
tion's (46) - (L48), assume that (A,B) is stabilizable and that Py1(tq)
and Rll are negative semidefinite. Express Rll. as Rll = -GTG, and
assume that (All,G) is detectable. The matrices Ryp, Roys P12(tl) and

Pos(t1) are unrestricted; let Ryy = Ryp and Ppy(tq) = Pi5(t1). Then
(a) Iterations on the matrix Riccati equation (11) converge to a
unique matrix P¥ which is  independent of  P(t,),

*
and P, = lim P ,(ty) is negative semidefinite.

11 o

(b) The optimal feedback rule F(ty) converges to the stationary

*

rule F* as ty>*—~, where F, = lim Fl(to) is independent of R;,
t -
0
*
and Ry vhile F, = iif Fg(to) is independent of Ro,.
0

(c) The optimal stationary closed loop system matrix (A-BF¥) is

stable.



ws

Proof: See Sargent (pp. V-29, V-30).

For stochastic systems, a similar result holds [Sargent, pp. V-30, V-

31].

Theorem 6: With the matrices R,Q,A,B,P(t;),x(t), and v(t) as described
in equations (46) - (L48) and £(t) an n x 1 vector white noise with
EE(t)E(t)T = ¥(t), a positive semidefinite matrix, assume that Ry; and
P(t;) are negative semidefinite; Q is negative definite; (A,B) is
stabilizable; and (All’G) is detectable, where Rll = —GTG. Then, for

the problem of maximizing

Lim  (+5) B { ] [x(6)TRx(t)+v(t) Tav(t)]
t

+ x(tl)P(tl)x(tlJ}

subject to x(t+1) = Ax(t)+Bv(t)+E(t+1) over choices of v(t) = -F(t)x(t),
(a) TIterations on the matrix Riccati equation (11) converge to a
unique matrix P* which is independent of P(tq).

(b) The optimal feedback rule F(t;) converges to the stationary
rule F¥ as tr-=,

(¢c) If ¥(t) =Y for all t, the maximal value of the criterion func-
tion is tr|[P¥], where tr[+] denotes the trace of a matrix.
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B. Convergence Results for Periodic-Coefficient Problems.

Now we shall elaborate some of the special forms the condi-
tions and theorems just reviewed take for the system described in equa-
tions (13) - (20). It should suffice to merely illustrate these special
forms for the case p=l4; that is, for a quarterly cycle in the coeffi-

cient matrices. Then we have

0 0 0 Ag
(49) A= | A 0 0 0
0 A 0 0

0 0 0 By
(50) B= | B 0 0 0
0 B, 0 0

| o 0 B, o |

n

(51) Q diag [Q03Q1 :QngB]

)
RO
g
B
I

= diag [RO,Rl,Rg,R3]
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The controllability matrix P has the form
(54) P = [B,AB,A%B, ..., An-lp],

a 4n x 16nm matrix, where

- . —
(55) for mod,(q)=0, 0 0 0 S By
*
Ay B, 0 0 0
a = s
A%B 0 AT B, 0 0
._q*
0 0 A3 B, 0
(56) for mod),(q)=1, 0 0 A3 A3B2 0
_.q*
0 0 0 Ay AqB,
ap = 22"
A%B Al A B, 0 0 0
_q*
0 Ay AB 0 0
= =
- 7a"
(57) for mod)(q)=2, 0 Ay AMAB 0 0
—q*
0 0 Ay AAB, O
ap = 2t
A9B 0 0 0 A AAB,
._.q*
B AA B, 0 0 0 J
= ey
(58) for mod),(q)=3, A AAAB, O 0 0
—q*
0 Ay AjAAB O 0
ap = 29*
A9B 0 0 A AAAB, 0
—q.*
0 0 0 AE%H%%J

with q* = [(q-mod)(q))/4] and
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(59) o = Aghziohy
(60) Ky = AjAghsA,
(61) Ky = AphAiAgAq
(62) K3 = AjAoA1A .

The controllability of the pair (A,B), via Theorem 1, depends on the
rank of P in (54). From Theorem 2, the controllable subspace of the
system, which we denote by C, is the linear subspace spanned by the
column vectors of P.

We will now construct a controllability canonical form by
choosing from a particular class of transformations. To identify this
class of transformations, first note that the space R}'m is the direct
sum of four orthogonal linear subspaces, Rhn = 518 S50 830 Sp, Where 83
is spanned by the column vectors of [I, O, O, 0,]T, SO is spanned by the
column vectors of [0, I, O, O,IT, Sl is spanned by the column vectors of
[0, 0, I, 0]T, and S, is spanned by the column vectors of [0, O, O, 11T
where O is an n x n matrix of zeros and I is an n x n identity matrix.
Then the controllability subspace can be decomposed in similar fashion
as C = C18® C,® C3® Cy, where C; = C/M 8, Cp, = CM\ Sy, Cy = Cf’\S3, and
CO = Ci’\SO. This decomposition of C is useful because of the nature of
P, where each column has all zeros in at least three out of the four
subspaces SO, Sl’ 82, 83. That is, for any column vector Wi of P such

that for some k € {0,1,2,3} the projection of w; on S, is not zero, and
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any column vector v of P such that for some & e {0,1,2,3}, &#*k, the
projection of wj on SR. is not zero, then Wy # W3 and Wy and wj are
orthogonal (wfwj =0).
Because of this structure, we can identify separate control-
lability matrices for 81,82,83, and S,. Let
(63) Py = [B3, AB,, AJASB., AAA B, AB., AAB,, AAARB.,
Iy B i, 2 lap , 2% A
3By meney Ay Bas By By Ay R8s
2l aa B ];
3 A3 Bols

(64) Py = [BO, AgBs AGAB,, AAA B, ABy, AABy, AAAB,,

= —n-1 -—n-1 -n-1
BofofslaPis wwws By “Bygs By ApBas By RoAlBs,

—n-1
By Aph3hBy s

(65) Py = [Bl, ABys AJAGBL, AJAAB,, EiBl, EiAlBO, KiAlADBB,
AjAAgAB, s wee, EﬁhlBl’ E?_lAlBo’ ETll_lAlAOBE»*
Eg-lAleAsBe 5

(66) P, = [Bg, ABis AA By, AAAGB,, KéBQ, EéAQBl, KéAEAlBO,
BoAo AoBas eees 32-132’ 32_1A231’ K-IelnlAzAlBo’
1 aa

> AsAABs],
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where PO, Pl, Pe, and P3 are each n x Ynm. Then 03 is the linear sub-
space spanned by the column vectors of [PT, 05 0 5 O]T; CO is the lin-
ear subspace spanned by the column vectors of [0 Pg ,0 ,o0 T,
Cl is the linear subspace spanned by the column vectors of [0, O, PE,
0]T; and C, is the linear subspace spanned by the column vectors [0, O,

Qs Pg]T, where the zero matrices here have dimensions Lnm x n.

We now exploit the decomposition of C in choosing a transfor-

mation for the system. Suppose Ci has dimension r., for i=0,1,2,3, so

i
that rank P; = r;. For i=0,1,2,3, choose vectors f;, fi, P f; that
i
span the space spanned by the columns of Pi and let T% = | fé, fi, neey
- i i - - . -
f;i]. Choose vectors f +1, f_ +2, ..., f; so that fé,fl, i fé
i i
span R?, and let Tz = [£t e 5% s f;]. Then for i = 0,1,2,3,

r.+1° r +2°
1 3:

Ti is n x r; and Tg is n x (n-ri). Now form

- -
0 0
70 O 0 T5 0O 0 0
- 1 1 =
(67) T = 0T] 0 0 0 T3 0 0| = [Tq,T5],
2 2
0o T 0O 0 0 T50

3 3
00 o0 T o o0 0 T3

where T, = diag (T°,T7,T°,T3) and T, = diag (T

0.,.1,.2 3)
1 R W K ! '

22T TosT5
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The rank of T is bn, so it has an inverse .

we have that

- .
6t 0 0 0
1
0 up o 0
, _
0 0 e 0 Uy
(68) U= o o o u| =
0
u3 0 0 0 Uy
. L
o w0 0
2
0 0 US 0
3
K 0 0 03
o 0.1 .2 3 _w0.1.8 3
vhere U, = diag [Ul,Ul,Ul,Ul] and U, = [U2,U2,U2,U2],
[0m0 0m0
e D 0 o urd o
W | Lol
o ulrl o 0 o T
2m2
0 o udr? o 0 0
(69) Tlr=ur=| 0 o o U3 o o
070 00
wdr o 0 o wrd o
ek i |
o urt o 0 o ubT
22
0 0o Uusté o 0 0
T
0 0 o w3 o 0

Letting U =
so that,

0 0 |

0 0
uirs o

0o U3

0 0

0 0
USTS O

o uir3
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P . _ imi = sprkmi = piimi = piqpi
This implies that Iri = 03Ty, I(n-ri) = U5T5, 0' = U5Ty, and 0" = U3T5,
for i=0,1,2,3, where Ij denotes the j x j identity matrix and O' and O"

are zero matrices of dimensions (n-ri)xri

and r;x(n-r;), respectively.
The tranformation matrix T and its inverse U allow us to

transform the problem to controllability canonical form. Recall that

the state vector is y(t) = [(yo(t))T,[yl(t))T,[ye(t)]T,[yB(t)]T1T, where

xi(t) o 3F i=modh(t)

yi(e) = Let J(t) = Tly(t) and

an nxl matrix of zeros, otherwise e

rewrite the problem as one of maximizing over choices of u(t) = L(t)y(t)

the criterion

(70) J[;(to)) g

I
b
&
~—
ct ~1
<
ct
&
ct
+
=
ok
e
=
ct
o
——
R
<
ct
'—I
T
d
<
=

subject to

(71)  F(t+1) = & F(t)+Bu(t)+r™L (£+1),

s(t+1)"

where
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A3T

o N

U

0

A2T

0

0

U

3
1

0
14T

U

0

AlT

)

0

0
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<L e
o Q
Q o ~ o o o L o
1=z T
L QJ
o o o o o oN - o
1<g Tt
& L
1 i
b m L
T3 T3
o o o & = &
OAl .A2
= o
o QJ Tl
£} =)
O (o] o [aV] o o & o
= <<
™Mo s O
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Tl Tl
o o < o - o g o
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= =
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ﬁ?l 0 0 o K, o
0 §11 0 0 0 ﬁie
0 0 ﬁfl 0 0 0
0 0 0 ﬁgl 0 0

(74) ® = T7RT = §gl 0 0 0 Ege 0
0 Eél 0 0 0 ﬁée
0 0 ﬁgl 0 0 0
0 0 0o 0 0

4 21

where Egk = (TE]TRiT;, for j,k = 1,2 and 1 = 0,1,2,3,
o
R with
| %oy




=0T

TSTRDT?L 0 0 0 ﬁgl o 0 0

0 TiTRlTi 0 0 0 ﬁil 0o o0

R, = 0 0 TfTReTi 0 = 0o 0 ﬁfl 0
0 0 0 TiTRBTi ! o 0 o0 “éil_
-TgTROTg 0 0 0 1 _ﬁgg o o0 o |

0 T;TRITé 0 0 0 ’15%2 o o

R,, = 0 0 TSTRQTS 0 = o o %’22 0
o 0 0 TgTR3Tg— ] o 0 o 'ﬁge_

TgTROTg 0 0 0 'ﬁgg 0 0 0

0 TiTRlTé 0 0 o K, 0 o0

Bys = 0 0 TfTR 2T§ 0 = o o ﬁig 0
o 0 0 TfTRBTg_ o o o ﬁfE_

T T T

B ey (EO” EL D 1 s w3
and R,, = diag [312, Rigo Fyos 12,] = diag [R21, Repe Bovs 321].

X(t,) = TTK(tl)T has a structure analogous to R. Note that if R is
symmetric and negative definite, then so is B INoble, p.393], and simi-

larly for K(t;) and K(tl). We know that the pair (A..,B.) is controll-

13.2 l
able.
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The stabilizability of the system depends on the stability of
Xy5. The stabilizability of K,, can be checked directly, but we can
also develop sufficient conditions which may be more convenient to

compute. To this end, note that

Theorem T7: The matrix 322 is stable provided at least one of the ma-
< — _ (w3 a2 ~1 ~0 == el) el R . == ] )

trices Ay = (Ay, Ayp Aop Apy)s By = (Agp Aop Apy Bnp)s Ay = (A5, Agy

X3, K5,), and A, = (RS, X, &, &

20 2 o0 Aop Bop Apy) 1s stable.

Proof: Let A be any eigenvalue of l22 and partition its eigenvector x

into 4 nx1 blocks Xgs X1, Xp, X3, a8 X = (xg, XT, xg, xng. Then
ngx = Ax, Or
B 1 [ 7 [ 7] ]
~3 =3
0 0 0 A22 X0 A22x3 lxo
~0 ~
A22 0 0 0 X1 A22xo Axl
] _ vl _
0 A22 0 0 XQ = A22x1 = lxe
0 0 EE 0 X A= % AX
g 22 1 L 3 | 22 EJ 73

By definition x # 0, so that either Xq £ 0, X1 £ 0, X5 # 0, or X3 £ 0.

Since the nonzero eigenvalues of A determine its stability, assume X #

22
0'

Now suppose X3 = 0. Then 332X3 =0 = kxo, SO Xy = 0. This in

turn implies KO x,. =0 = Axl, SO X

50%g = 0, which in turn implies Xo = 0.

1
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Thus X3 = 0 implies x = 0, which cannot be, so X3 # 0. By similar rea-

soning, xg # 0, x; # 0, x5, # O.

~ ) . g
Note that (A22) = diag (AB,A » Ay, Ag). Also note that

2h x = ME. Pe =150 Py =33"

! X
o X =X x, so that A

22

is an eigenvalue of (K22)h, still with eigenvector x. Hence,

Kéxo khxo
(322)hx = bel = Ahxl
Kixg Khxz
_XQ XB“ _Ahx3J .

This implies that if A is a nonzero eigenvalue of A,5, then a¥ 1s an

eigenvalue of A : AO’

stable, then ’ll < 1 and K22 is stable. In other words, stability of

Ei, and Eé. If any of these four matrices is

either AB’ AO, Al, or Ké is sufficient for the stability of K22‘

We have now shown a convenient controllability canonical form
for the linear optimal regulator problem described in equations (13) -
(20) and discussed ways of checking if the system is stabilizable.
Then, provided K;;(t;) and K;; are negative semidefinite, the system
converges as described in theorems 5 and 6 provided only that (Kll’ %)
is detectable, where ﬁll = OT%. The detectability of (Kll,ﬁ) can be
checked by determining, by the methods described above, if (KllT,ﬁT) is

stabilizable.
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If the sufficient conditions for convergence are satisfied, we
know that the value of the problem (for a given initial vector) and the
matrix ﬁ(to) converge as ty*-<. In addition, the feedback matrix L(ty)
converges to L, the steady-state feedback matrix. From the first half
of this chapter we know that L is of the form diag (LO,Ll,LE,L3), where
, with Li defined according to equation (36). The ith

to+-m 0 0
block along the diagonal of L is itself a steady-state feedback rule, a
rule which is used (i.e., multiplies the nonzero components of y(t)) in
every fourth period when mody(t) = i (more generally, every p periods
when modp(t) = i).

If we regard the periodicity of the coefficients in the system
defined by equations (1) - (3) with s(t+p) = s(t) as arising from a sea-
sonal variation in technology, then each of the steady-state feedback
matrices Li on the diagonal of L can be thought of as a season-specific
decision rule. That is, the fact that the four m x n feedback rules
19,11,12,13 on the diagonal of L need not be identical means that, in
the steady state of the original n-dimensional, periodic-coefficients,
linear optimal regulator problem (1) - (3), a given value of the state
vector x(t) may require (in order to maximize the value function) dif-
ferent responses (i.e., settings of the control vector) in different
seasons.

The feedback matrices, or decision rules, LO,Ll,L2, and L3 may

differ not only in their "intercepts" but also in any of the "slope"
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coefficients. This means that one common method for accounting for sea-
sonality in econometrically estimated decision rules--allowing only the
intercept term to vary with the seasons--is an overly restrictive speci-
fication in many cases. A more general approach is to allow all the
coefficients of each decision rule to vary with the seasons, but subject
to cross-equation restrictions derived from the optimization problem.
Such ecross-equations restrictions are satisfied by feedback matrices
calculated as above, but the iterative technique used to calculate them
is not a convenient means of actually deriving the restrictions. A
technique for deriving these and other cross-equations restrictions on
coefficients in decision rules for a certain class of linear-quadratic

maximization problems has been presented by Todd.



Footnotes
lehat is,

EE =0, for all %,

%
E & gT =0, for t # s
tS_, -]
E £ £T =Y with ¥,> O
£k T D £ 3
and E x ET =0, for t < s
2y T0 >

nghe second-order conditions for maximization are satisfied
because Qs(tl—l) is negative semidefinite and Rs(tl—l) is negative defi-

nite.

3/he key is to notice that BL diag [Zgs Zys wees ZP-l] B =

T T T
4ieg [B;(0)%185(0)* Bs(1) ZPs(1)® **"* Balp-1)%0Ps(p-1)]>

but that

see 2 ] BT

B diag [ZD’ Zl, el

z

s(p-1) Zp-1 Ps(p-1)° B

Zz. B

= dlag {B 3(0) 0 S(O)’ sew

B

.

s(p-2) Zp-2 Bs(p-2)

The miltiplications with A and AT are analogous.
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E/This definition is normally stated as a theorem, following a
definition of stabilizability that states that the unstable subspace of
the system is contained in its controllable subspace, but these concepts
are not needed here. They are presented and used in Kwakernaak and

Sivan, however [pp. 62-63].

éfThe stabilizability of (A,B) is independent of the choice of
transformation matrix T, for it can be shown that the controllable sub-
space of the system and the eigenvalues ng do not depend on the
choice of the columns fy, f5, «e., £, of T [Sargent, p. 15].
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