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Introduction

The problems that arise in a wide variety of markets characterized
by the presence of private information have received a great deal of attention
in recent literature. This paper focuses specifically on a widely considered
class of adverse selection and signalling environments. While these environ-
ments have been mch studied, no study to dabe has atbempted to incorporate
(or even formally to recognize) what Rothschild and Stiglitz (1976, p. 6u46)
term "the peculiar provision of many insurance contracts, that the effective
premium is not determined until the end of a period. . . " 1In fact, there
exists a wide variety of mitual forms of organization (mutual insurance com-
panies and mutual banking institutions are examples) in which participants not
only pay premiums and receive insurance payments, but in which they periodi-
cally receive dividends contingent on the aggregate experiences of the organi-
zation. Similar examples arise in organizations that are not explicitly
mutual in nature, e.g., profit sharing plans in labor markets, etc. Hence
models of insurance and labor markets should attempt to incorporate (and
explain) such forms of organization.

This paper represents an attempt to do so. In particular, we con-
sider two kinds of settings. The first is one in which the types of organiza-
tions that exist are not given exogenously, but in which agents are free to
cooperate and form arbitrary coalitions. Here we consider a solution concept
which is a straightforward translation of standard core concepts. The second
is one in which there exists a set of firms (whose existence is taken as a
datum of the economy) that compete in a noncooperative manner. Here we employ
a standard Nash equilibrium concept. What we show is that, in each case,

there is a simple rule that an organizabtion can employ such that

(a) an equilibrium (in pure strategies) exists, and
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(b) this equilibrium results in a Pareto optimal allocation of resources.

Moreover, in each case, we are able to show the existence of a unique equilib-
rium. Finally, the core allocation coincides with the Nash equilibrium of our
noncooperative game.

The simple rule that organizations use in each case is one that
takes exactly the form that rules specifying allocations take in mtual forms
of organization. In particular, these rules specify the allocation received
by each agent as a function of the population experience of the organization,
and as a function of events specific to himself. Hence we show that once
organizations are allowed to take on a "mtual aspect," existence problems
that arise in adverse selection settings, and to a certain extent problems of
multiplicity of equilibria in signalling environments, can be resolved in a
straightforward manner with an obvious economic interpretation. Also, this
demonstrates that a commonly held view of the mtual form of organization,
that it is an anomaly, is false in settings with private information.

Having roughly described the nature of our approach and the results
obtained, it is probably useful to describe in some detail the economic en-
vironments to which our approach applies and to provide some perspective on
why these are of special interest. Moreover, the modeling strategy employed
here is related to several different strands of literature. Hence, it is
appropriate to relate our approach to its antecedents. The remainder of this
section is addressed to this task.

The discussion in the paper is concerned primarily with the adverse
selection insurance environment introduced by Rothschild and Stiglitz (1976)
and Wilson (1977). While the discussion is phrased in terms of this specific
context, it should be clear that it also applies to the labor market contexts

of Miyazaki (1977) and Smith (1984)., We will also briefly show that a version
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of the Spence (1973) signalling environment [with our particular version being
due to Prescott and Townsend (1984)] can be analyzed via the same methods,
and, therefore, that the same results apply.

While the Rothschild-Stiglitz and the Spence settings are formally
quite similar [as has been pointed out previously; see, e.g., Riley (1979)],
models of Lthe two setbtings have encountered somewhat JdifTareal problems. TIn
particular, when standard Nash or competitive equilibrium concepts are applied
to the Rothschild-Stiglitz environment, equilibria often fail to exist. When
similar concepts are applied to the Spence environment, on the other hand, a
large miltiplicity of equilibria typically arises. A virtue of our approach
(in either a cooperative or a noncooperative context) is that it always pro-
ditces an equilibrium in the Rothschild-Stiglitz case, and at the same Lime
results in a unique equilibrium in the Spence case.

More generally, this paper is one of a number of papers that at-
tempts to produce mechanisms which result in (i) existence of an equilibrium,
(ii) optimality of equilibrium, and (iii) uniqueness of equilibrium. In
spirit our approach is similar to that of Prescott and Townsend (1984%), who
examine the properties of competitive mechanisms. What they show is that the
compebitive mechanism successfully produces objectives (i) and (ii) above when
applied to economies where agents engage in trade prior Lo obtaining their
private information. However, when agents are aware of their type (i.e.,
possessed of private information) prior to engaging in trade, an equilibrium
may fail to exist (in the adverse selection setting). Moreover, they consider
the following possible extension of the competitive mechanism. Since the
presence of private information introduces externalities into the economy, one
could attempt to use the devise of augmenting bthe commodiby space which is

employed in standard competitive settings with externalities [e.g., Starrett
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(1972)] . However, this approach is unsuccessful in the private information
setting. Finally, it should be noted that when a competitive approach is
applied to the Spence economy, multiple equilibria still arise.

In light of the failure of both competitive equilibria and the Nash
equilibrium (in pure strategies) considered by Rothschild and Stiglitz to
exist, a large literature has considered '"reactive" equilibrium concepts.
Wilson (1977) was able to produce a general existence result for the adverse
selection insurance setting using this approach, and a modification of the
Wilson equilibrium concept by Miyazaki (1977) and Spence (1978) results in
equilibria also being Pareto optimal. In addition, Dasgupta and Maskin (1982)
have proved a general existence result regarding Nash equilibria in mixed
strategies for these economies [see also Rosenthal and Weiss (1984)] when the
set of "insurance firms" is fixed exogenously (and is finite). However, these
equilibria are not typically optimal (as is clear from the discussion in
Rosenthal and Weiss). In the signalling context, on the other hand, there
have been attempts to reduce the set of equilibria by invoking the concept of
stable sets of equilibria [Kreps (198L4)]. However, while this approach does
reduce the set of (presumably economically) relevant equilibria, it does not
result in a unique equilibrium (again, see Kreps).

While these approaches partially resolve the problems that motivate
us, there are some well-known problems with them which motivate us to employ a
different approach. With respect to reactive equilibrium concepts, the short-
comings (and arbitrariness) of the approach are well articulated by Riley
(1979) and Rothschild and Stiglitz (1976, p. 64T7) who refer to it as "a pecu-
liar halfway house; firms respond to competitive entry by dropping policies,
but not by adding new policies." Moreover, since Riley (1979) discusses the

arbitrariness of the notion of reaction employed, this need not be done
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here. With respect to the mixed strategy approach, Rosenthal and Weiss (1984)
point out that the equilibrium they construct (which they conjecture is
unique) leaves rent opportunities for new entrants. Hence, one might wish to
construct an equilibrium concept for which this was not the case.

In light of these remarks we adopt two different, yet related, ap-
proaches to modeling these environments. As indicated above, one is to avoid
the notion that firms are an exogenous part of the economic environment, and
instead to employ a cooperative approach with a standard notion of blocking
and the core. However, as is widely pointed out elsewhere, the presence of
privately informed agents gives rise to "informational externalities." Hence,
we face a problem quite similar to one faced in the literature on cores of
economies with externalities or public goods: what is feasible for any coali-
tion may depend on the make-up and actions of its complement. In the earlier
literature on the cores of such economies, it was recognized that how members
of one coalition reacted to the formation of a potential blocking coalition
could crucially affect the set of core allocations. We face a similar problem
and resolve it by in effect unifying the earlier approaches. In particular,

we consider what we call "core allocation rules."

These muist specify not only
the allocations agents receive, but what allocations they will receive if any
potential blocking coalition forms. Hence, coalitions can react to the forma-
tion of a blocking coalition, but mst specify in advance the form their
reaction will take. These allocation rules then make resulting arrangements
look a great deal like mutual forms of organizations. In particular, they
specify allocations as a function of group membership and performance (and

also of the membership and actions of other groups). We show that, for the

environments we consider, a unique core allocation rule exists.
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It will be noted that in the cooperative context the notion of
reaction arises naturally. Of course, the notion of firm reactions has bheen
employed to produce existence of equilibrium when one proceeds from the as-
sumption of an exogenously given set of firms. What we would like to do is
give these firms Lhe opportunity to specify in advance how they will react to
any attempt to draw off any s2L HF theile castomers. Thus again, we consider a
set of incumbent firms who specify in advance a rule by which the allocations
their customers receive is determined. This rule takes the same form as the
rule discussed above: each agent's allocation depends on the make-up and
experience of his firm's clientele, as well as the actions of any potential
entrants who attempt to attract a portion of the incumbents' customers. When
the space of strategies for the incumbents is the space of such il {ao=-
propriataly restricted), this allows all firms to adopt a single (fixed)
strategy, which nonetheless specifies how they will react to the introduction
of new "contracts" by potential entrants. Hence a noncooperative, nonreactive
(Nash) equilibrium concept can be considered which, as in the case of our
cooperative concept, unifies the Nash approach of Rothschild-Stiglitz (1976)
with later reactive approaches. Hence a consideration of a rich enough set of
potential arrangements, which has the plausible interpretation of a mutual
form of organizahiol, allows us to produce a result regarding the general
existence of a Nash equilibrium. Moreover, the allocation associated with
this equilibrium is the same as that specified by the unique core allocation

rule.

Our focus in this paper is on the insurance environment discussed by
Rothschild and Stiglitz (1976), Wilson (1977), and Spence (1978). Below we
will point o1k that a version of the signalling =avironment discussed by

Spence (1973, 197h)£/ can be dealt with by the same methods we now discuss.
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In the insurance environment considered here, there are a continuum
of agents who can be divided into a finite number of "types." We let there be
n such types, with type indexed by i = 1, ..., n. Each agent, regardless of
type, is faced with the possibility of either of two states occurring. Let s
index the set of states which any individual might face; s = 1, 2. Then there
is a single consumption good, and an agent in state s finds himself with an
endowment eg of the good. We let e1 > ep, SO that s = 1 is what is commonly
referred to in this context as the "no-loss" state, and s = 2 is the '"loss"
state. Realizations of s are independent across agents, with a type i agent
facing probability p; of the "no-loss" state occurring. The p; obey 0 < p; <
Po < ess < p,o Hence, agents with larger indices are "lower risk" than agents
with lower indices.

Let c¢;4 denote the consumption of a type i agent who finds himself
in state s. All agents have a common utility function defined on R, denoted
U(c), with U'(c) > 0, U"(c) < 0 ¥ ¢ € Ry Finally, let u = (4, eee, W) €
RE+ be a vector consisting of the measure of each type of agent, with Eui = 1.

It remains to describe the nature of information in this economy.
It is assumed that each agent knows his own type prior to realization of the
state, and also that this 1is private information ex ante. Moreover, all
"trades" are assumed to be observable. Hence this is a standard adverse
selection setting.

We now wish to consider what kinds of insurance arrangements will be
made by agents in this economy. We begin by considering a cooperative equi-
librium concept in which groups of agents coalesce for the purpose of creating
insurance opportunities. Notice that they do so in an environment in which

there is no aggregate uncertainty.



A Cooperative Equilibrium Concept

While a number of cooperative equilibrium concepts have been put
forward for application to private information settings of this type,.g/ we
consider the imposition of a fairly standard cooperative equilibrium concept
on this environment. As will be clear shortly, our concept most closely
resembles traditional core concepts applied to economies with public
goods/externalities.-:i-/

To begin, a coalition is a set of indices KC {1,...,n} and an
associated vector of measures (Bkl' ] ekn) € Ri. For technical reasons
that will be elaborated on below, it is convenient to adopt the view that
initially all agents are members of the grand coalition. The grand coalition
is required to specify an allocation, and also to specify the allocations its
members will receive in the event of defection by any subset of its members.

llence, the grand coalition announces an allocabtion rule, which specifies the

allocation received by each of its members in the event of the defection of
any coalition. Without loss of generality, we may consider the case where
only one coalition may defect at any point in time. Let k denote the comple-
mentary coalition to the one announcing an allocation rule, which we hence-
forth term the incumbent. Then k has associated with it a vector of measures
(81> eees B, )e The incumbent coalition, then, mist select a rule specifying
the allocations its members receive as a function of (i) its membership, (ii)
the membership of k, and (iii) the allocation received by members of k. Let
Crig denote the allocation received by type 1 agents in state s who belong to
k. (1f O3 = 0, by convention set cp;4 = 03 s = 1, 2), let Gy = (ckil,
crip)s and let cp = (cyqs eesy op) € an. Also, let A" denote the set of
vectors y € RE such that );_q y; € 1. Then 8 = (B1s woes akn) e AN'. There-
fore, the allocation rule of the incumbent is a mapping cjg4* A" x AT x R_:‘:n

+ Ry specifying the consumption of a type i agent in state s, which may depend
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on the actions of the complementary coalition. We will often denote the
allocation rule by cis(a;sk,ck), where the absence of a subscript related to
coalitions indicates the incumbent coalition.

The reason for requiring the incumbent (grand) coalition to announce

an allocation rule rather than an allocation can best be exposited after

developing our results. We begin our analysis by stating the requirements we

impose on allocation rules. First, consider an arbitrary coalition r with

vector of members (erl’ R ern) = Br. An allocation is resource feasible
for © &f

n
(1) L85 [py (e 1 )4(1p; Mep= 50)] > 0.

An allocation rule is resource feasible if the allocations specified by
ciS(B;Bk,ck) satisfy (1) for all (G,GK) € A2n, for all ¢y € REn. Second,
since agents' types are not directly observable, then the allocations Cpig 8re

incentive feasible if two conditions are satisfied. In particular, if 0.; > O

and erj > 0, type i and j agents within r must prefer the allocation meant for
them to that they could obtain by claiming to be of a different type. Hence

the allocation wvector Cp is incentive feasible only if

(2.a) p.U(e

i ril) + (l-pi)U(c

riz) > P3Ule 4y + (1-p, JU(e s0)

¥ 1, j such that 8 > 0. Moreover, we also impose the following incentive

rierj
compatibility condition. If there are two coalitions, r and t, type i agents

in coalition r cannot wish to join coalition t and claim to be of type j.

Then the allocation vector c.. is incentive feasible if (2.a) holds and if

r

(2.b) piU(cril) + (1-p,)u(c,,) > piU(ctjl) + (l-pi)U(ctJE)

¥ r, t, r #4%t, ¥ i, j such that eriatj > 0, where our convention is that tjs

=0 if Btj = 0. Also, as before, an allocation rule is incentive feasible if
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ci5(050,,c)) satisfies (2.a) and (2.v) # (0,8,) € AR ey € R* with Cx
incentive feasible. Finally, an allocation vector is feasible iff it is
resource and incentive feasible, and similarly for an allocation rule.

It remains to say something about how coalition membership is deter-
mined in our setting. This requires comment, since with private information,
membership in a coalition cannot be based on privately observed character-
istics. Thus if a coalition wishes either to include or exclude certain
individuals, it mst create appropriate incentives to produce this result.

Therefore, for a coalition Xk,

kil

for all other coalitions m. Also

(3.b) 8 4= O if piU(ckil) + (l—pi)U(ckie) < pUle .q) + (1-p,)ulc .,)

mil
for some coalition m # k. Conditions (3.a) and (3.b) are fairly obvious,
stating that all (no) type i agents are members of coalition k if no (some)
coalition offers them a strictly preferred allocation. However, there is
considerable arbitrariness in specifying the values 6 ; if type i1 agents are
indifferent regarding coalition membership. Recall that we begin with an
incumbent coalition which is the grand coalition, so initially 8; = u; (the
incumbent coalition has no subscript). Suppose that some coalition k forms

and defects from the grand coalition. One possibility, then would be to allow

(3.c) eki 3 [O,ui] if piU(ckil) + (l_pi)U(ckiQ) & piU(cil) + (l-pi)U(cig).

(3.c) effectively allows the defecting coalition to select any value of eki it
desires, so long as type 1 agents are indifferent regarding coalition member

ship. A second possible assumption is

(3.4) 6, € {0,u }ir p,Ule

- ) + (l_pi)U(ckiE) = p.U(cil) + (l-pi)U(C'Q)’

kil
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(3.d4) simply says that a defecting coalition must either attract all members
of a given type or none of them. We will alternately employ (3.c) and (3.d)
below 4/

Having described the conditions required for type i agents to become
members of any coalition, we now impose one additional condition on the an-

nounced allocation rule of the incumbent coalition. In order to do this, we

offer the following

Definition. Consider the incumbent coalition with associated vector of mea-
sures 9, and possibly another coalition k with wvector of measures Gk. Then an

allocation c¢; (0; Bk is Pareto optimal for (B,Gk) iff there does not exist

another feasible allocation ey (0; Bk such that
p,Ule,;(0;8)] + (1-p, JUlc, (056, )] > p,Ule,,(056,)]
+ (1-p; )Ule, 5(056,)]

with strict inequality for some i, where the allocations Cyxig have been taken

as parametric.

The condition we impose on announced allocation rules is that any
allocation rule announced by the incumbent coalition must specify an alloca-
tion which is Pareto optimal for (0,6,) % (0,8,) € A®® such that 6 = p -6.

Formally, let C¥* denote the set of admissible allocation rules., Then

cis(e;ek,ck) € C¥ iff cis(—) is feasible and specifies an allocation which is
Pareto optiml w (6,8}{). The reason for requiring the announced allocation
rule to be Pareto optimal for (6,6,) is as follows. Suppose (6,8,) repre-
sented the actual vectors of measures of agents belonging to the incumbent

coalition and coalition k respectively. Then the requirement that announced
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allocation rules be Pareto optimal for the remaining members of the incumbent
coalition prevents that coalition from specifying allocations in certain
contingencies which would be unanimously rejected by its membership if that
contingency arose. In other words, this requirement rules out "threats" by
the incumbent coalition which it would not actually wish to carry out if the
relevant event occurred.

We are now prepared to present our notion of blocking and our defin-

ition of the core of this economy. First, we say an allocation rule c;, € C*

is blocked if there exists a coalition k (with associated vector of measures

Bk) and an allocation cpjg with the following properties:
n
(5) If 84 > 0,
+ (l-Pl )U[ciz(u-ek;ekgck)])

(6) while if . =0,

p;Ule;, (u-858 ,c, )] + (1-p, JU[c; 5(u-8,358 ,c, )]

> pyUle, 1) + (1-p; MU(ey 5).

(1) p;Ule, ) + (1-p;)U0(cy ) 2 piU(ckjl) e (1"P1)U(°k32)
¥ i, J such that BkinJ > 0.
(8.a) p;Ule,yq) + (1-p,)0(ey, ) > piUchl(u—Gk;Gk,ck)l

+ (l-pi)U[cje(u-&k;ek,ck)I

¥ i, J such that B (u-8;) > O.
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(8.v) piU[cil(u-ek;ek,ck)I + (1-pi)UIc.12(u-Bk;Bk,ck)] > pUle, )

kjl

+ (1-pi (e )

kj2

¥ i, j such that (p'aki)ekj > 0.
(9) p Ule, 1) + (1-p )u(c, ) > anIcnl(u)l + (l-pn)U[cng(u)l
if 8, > 0, while

(20) Ppalleyq,q) * (p, 4 WUl o) 2 pn—-lU[cn-l,l(u)]

+ (l-pn_l)U[cn_l,e(u)l

if 8, =0, O, 4 > 0, or if 6, > 0 and (9) holds with equality, and simi-
larly for types n = s; s = 2, eee, n =1 if (9) and (10) hold with equality
(or if OnO%n-1 = 0), etc.

Some explanation of conditions (4)-(10) is in order. Equation (4)
simply requires ¢y to be resource feasible. (5) and (6) require coalition
membership to be voluntary, as discussed above, while (T) requires ¢, to be
incentive feasible within coalition k. (8) states that type i agents in
coalition k must not wish to join the incumbent coalition and claim to be of a
type other than i, and conversely.

Equations (9) (and (10)) are our analogs of standard conditions for
blocking. In particular an allocation can be blocked in either of two ways
here. One is that type n agents are made strictly better off by Jjoining the
blocking coalition, subject only to the condition that any other members of
coalition k join voluntarily. The idea here is that type n agents can "force"
a better allocation for themselves by defecting, where the possibility is
considered that after their defection agents of other types may wish to defect
as well, even though they would have preferred the initial arrangement. The

second way in which blocking can occur is either that type n agents do not
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defect (or are indifferent regarding coalition membership), but type n - 1
agents can "force" an improved allocation for themselves by defection, J#here
again types with indices less than n = 1 may be "induced" to defect. Hence
blocking requires that type n agents be made (weakly) better off if they
defect, and if they are not strictly better off (or if they do not defect),
that type n - 1 agents be made (weakly) better off if they defect, etc.
Notice that all agents in the blocking coalition need not be better off than
they were initially.

The strong role played by the ordering of types in our definition of
blocking is based on the idea that some types have greater command over re-
sources (per capita, and in an average sense) than others, and thus have the
ability to induce certain outcomes. While this will be made clearer below, we
note now that the idea that certain players occupy special positions in co-
operative games has been widely used in recent developments in models of games
with private information.zj However, an admitted shortcoming of this approach
is that it requires an obvious ordering of types, although clearly a number of
economies of interest have this feature.

As a final matter of definition, an allocation rule is a core allo-

cation rule iff it is not blocked by any coalition. It is also appropriate,
then, that we say somesihing regarding why we phrase the discussion in terms of
core allocation rules. WNotice that, through condition (2.b), the actions of a
potential blocking coalition affect the set of feasible actions for the incum-
bent coalition. Put somewhat informally, this is a setting in which standard
"informational externalities" arise. The problem of defining the core for an
economy with externalities has been put forth elsawhere.éj In particular,
since the actions of a poteatial bloecking coalition affect the feasible set of
an incambent coalition and conversely, it 1s necessary to state explicitly how

the incumbent coalition responds to blocking threats. Our focus on allocation
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rules simply requires that the incumbent coalition specify in advance how it
will respond to any attempts at blocking. This is its allocation rule. Thus
our use of this concept allows a unification of previous treatments of the
core with externalities in that the incumbent coalition may react to attempts
at blocking through its rule, but must state in advance and hold constant the

rule by which it reacts.

A Set of Allocation Rules

A mch studied allocation rule is one which solves the problem (for

fixed 8 >> 0)

(11) max p Ule ,) + (1-p )U(c ,)
subject to
(12) p;Ule; 1) + (1-p; )U(ey,) 2

PiU(le) + (l—Pi)U(cJQJ ¥1i, J =1, eee, n,
(13.a) plU(cll) + (l-pl)U(cle) > ﬁi

(13.b) p.U(c

i il) = (1_P1)U(Ci2) > Ul(e); i = 2’ swowy D = Le

(1%)

=3

iy Bi [Pi(el—cil)"'(l"pi)(32'012)] > 0,

where the values ﬁ}(&); i =1, oo, n = 1 are defined recursively by
(15) U; = max plU(cll) + (1-p;)U(e;,)

subject to p(cqyi-eq) + (1-p;)(cqp-e5) = 0.

(16) ﬁ;(ﬁ) = max piU(cil) + (l'Pi)U(ci2)

subject to
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(17) pJU(cjl) + (1-pj)U(cj2) > U&(e); 1 X TRE -~ L
i
(18) J-Zl BJ [pJ (el-cjl)*f(l—pj)(ercje)] >0
(19) pJU(cjl) + (1—pJ)U(C32) > ij(chl) + (1-pj)U(ch2); ¥ j, hy j, h < i.

Solutions to this problem have been associated with "Wilson equilibria'" by
Spence (1978) and Miyazaki (1977). We will claim that a subset of solutions
to the problem (11)-(19) is a core allocation rule. Prior to stating this
result, however, we need to make two remarks about this problem.

First, in our setting it is possible that 8; = O, i.e., that the
incumbent coalition (which is the coalition announcing an allocation rule) has
no agents of certain types. Then it is necessary to say how the incentive
compatibility conditions (12) (and (19)) involving this i are treated.
Clearly if 6; = O, and if the incumbent coalition does not wish to retain type
i agents, then 1its allocation rule mist be such that type 1 agents will not
wish to return to it and claim to be of type j; j # i. Similarly, if BinJ >
0, type i agents cannot wish to Jjoin the blocking coalition and claim to be of

type j. Hence, we append the following constraints to the problem (11)-(1L):
(20.a) piU[cjl(B;p-B,ck)] + (l-pi)U[cje(ﬁ;u-B,ck)]

<pyUle, q) + (1-p;)U(ey, 5)
(20.b) p;Uley, (85u-0,c, )] + (1-p, JUle, ,(85u-8,c, )] > piU(ckgl)

+ (1-Pi )U(°k32)’

where (20.a) holds for all i, j such that 6, = 0 and GJ > 0, where (20.b)
holds for all i, j such that eiekj > 0, and where the values cj are taken as

parametric in both (20.a) and (20.b).
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The second remark we need to make is as follows. As Miyazaki (1977)
points out, the solution to (11)-(19) (and (20)) need not be unique. Hence-
forth 1let c;s(e;ek,ck) be the allocation rule solving (11)-(19) (and (20))
which gives the highest expected utility to type n - 1 agents if there is more
than one solution. 8imilarly, if there is more than one solution which gives

identical expected utility for type n - 1 agents, c;s

is that solution giving
the highest expected utility to type n - 2 agents, etc. Notice, then, that
C;s need not produce exactly the Miyazaki-Spence-Wilson equilibrium alloca-
tion, since Miyazaki argues that the logic of the Wilson equilibrium concept
results in the following: if the solution to (11)-(19) is not unique, an
equilibrium allocation will be the solution least preferred by type n - 1

agents.

A Result on lotteries

Prior to stating our results, it will be useful to produce a prelim-
inary result due to Prescott and Townsend (1984). However, since the state-
ment of this result requires some investment in additional notation and al-
ready appears elsewhere, this section can be omitted by the reader without
loss of continuity.

The result that we require concerns the use (or absence of use) of
consumption lotteries in any Pareto optimal allocation. Suppose, then, fol-
lowing Prescott and Townsend (1984), that it is possible to offer consumption
lotteries contingent on the realization of the state of nature for each
agent. In particular, let X denote the (finite) set of possible realizations

of the lottery, with typical element x € X. Further, let c;

1s(x) denote the

consumption of a type 1 agent in state s if the realization of the lottery is
X, and let us think of choosing the probabilities qis(x) of x occurring if an

agent is of type i and state s occurs. These choices, of course, must satisfy
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anxqis(x) =1 % 1=1, 4ea, n; s =1, 2. Then a resource feasible lottery

satisfies (for an economy with a vector of population measures u)

n

(21) _E ) {piqil(x)[cil(x)—el]+q12(X)(1-pi){cie(x)-epl} <0,
i=1 xeX

and an incentive feasible lottery satisfies

(22) xZx{qﬂ(x)piU[cil(x)]+q12(x)(l-pi)U[ci2(x)l} > xgx {qjl(X}piU[cjl(x)]

+ a4y, (x)(1p; e 5 (x)1}

J

¥ i, J =1, seey, ny i # j.

Suppose we now consider the following problem:

max ) {qnl(x)an[cnl(X)]+qn2(x)(l-pn)U[cn2(x)]}

xeX

by choice of g;.(x), subject to (21), (22),
(23) xgx{qilfx)piU[cil(x)]+q12(x)(l—pi)U[c12(x)]} > U,
i =1, eee, n =1, with IG_ defined in a manner analogous to equations (15)-
(19)r1j and subject to
(24) Y oa; (%) =13

xeX

i =1, ees, ny s =1, 2. Then we have the following result.

Lemma 1. The solution to the above problem has qis(x) =1 for some x; 1 =1,

suey Do B =11, 2,

Proof. Prescott and Townsend (1984) consider the problem
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n
mx J A I {a; ()p;Uley (x)]+q; 5 (x)(1-p; JUle, 5(x)]}
i=1 "xeX
by choice of values g;.(x), subject to (21), (22), and (24). They show that
this problem has qj4(x) =1 for some x, ¥ i, s, for arbitrary values A
(pe )+ By reinterpreting the li as the optimal ILagrange mltipliers associ-

ated with the constraints (22) on our problem, their result applies.

Core Allocation Rules

In this section, we show that c?s(e;ﬁk,ck), the solution to the
problem defined by (11)-(19) and (20), is the unique core allocation rule for

this economy. It is useful to begin by stating a preliminary result.

Lemma 2. Consider an incumbent coalition solving the problem (11)-(19) (and
(20)) in the presence of another coalition k with associated vector of mea-

sures 0 and allocation vector Cke Suppose Gq(=u-6kq) = 0. Then

(25) Py_qUled 1 1 (v-838,0 )] + (1-p, 1 )Ule¥ 3 5(u-8,,6 0, )]
= ﬁa_l(u—ﬂk;ek,ck)

if 851 (=”'ek,q-l) > 0, with an obvious notation.

Proof. Clearly (abbreviating notation)

Ule’ L )+ (1-p__ e, ,) > T (u-8 38 ,c )
P Cq-1,1) * (1-p 3 U(e ;o) 2 U (u=-638 .c,

q-1

from (13). TFurther, it is easy to show that the incentive constraints (12)
associated with type i hold with equality only for J =1+ 1; 1 =1, ...,
n - 1. Therefore, since the incumbent coalition takes C, as given in solving

the problem (11)-(19) and (20), setting ¢ such that

Q‘lss

* * s
P U(cq-l,l) + (1-Pq_1)U(Cq_l,2) > U _1(H-9k;9ksck)

q-1 q



-20 -

does not relax any constraints in the problem, and consumes resources. Hence

(25) holds.

There is also a corollary to lemma 2. This is that, as is well knowngf

g-1

(26) 1 o, b, fee

*
1Py leg1(058 e )2 1+(1p, ) le, (858, ¢, )2, } <o.

We are now prepared to state the first of our principal results.

Proposition 1. The allocation rule C;S(B;Bk,ck} solving (11)-(19) and (20) is

a core allocation rule.

The proof of this for n > 2 makes use of assumption (3.d) for the values eki’
i.e., a blocking coalition must attract all or none of the agents of each
type. Therefore, we begin by proving the proposition for n = 2, in which case

we can employ the weaker assumption (3.c) on the values ski‘

Proof of Proposition 1 (n = 2). For purposes of the proof, we assume the

*
existence of a coalition k which blocks c. and then show that the assumed

187

existence of such a coalition leads to a contradiction. The blocking coali-

~

tion announces the allocation Cx and has associated vector of measures Bk.

~

There are then four possible configurations of Bk to consider.

Case 1. (ékl,éke) & (%kl,o); ékl’ > 0., Thus the blocking coalition consists

only of type 1 agents. But then clearly
with U; defined by (15). However,

(28)  pUlel (W] + (1pIUle (W] > Ty
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by (13.a). Together (27) and (28) contradict (10), so that a blocking coali-

tion cannot have ékl > 0 6k2 = 0.

Case 2. up = B0, 0 < 81 < wyp. Then the blocking coalition consists of
positive measures of agents of each type, but the incumbent coalition retains

some type 1 agents. Then clearly

* * —

Therefore, since coalition membership is voluntary,

-~ -~

(30) P1U(ck11) + (l—Pl)U(ckle) = Ul'
But then
(31) P2U(°k21) + (l-pg)U(ckgg) <U,,

where Ups 1s Lhe solution to the following problem:

max ng(C21) + (l-Pg)U(Ceg)

subject to

(32) p,Uleyy) + (1-p, JUle,,) » piU(cjl) + (1-pi)U(cJ2); i, 3 =1, 2.
(33) plU(cll) + (l-Pi)U(c]_E) = 'ﬁl

(3%) uplpy(eypmey J+(1-pp)(epp=ep)} + 8y {py (g 2y)

+(l—pl)(c12-e2)} < 0.
Since (33) implies that
prleyg-eq) + (1-py)(eqp-ep) =0

[Spence (1978)], clearly



-
(35)  pulep, (W] + (1-p)Ulep ()] > U,

as the problem defining 62 is more heavily constrained than the problem (11)-
(19). But (35) and (31), along with (30) and (13.a) contradict (9) and

(10). Hence a blocking coalition cannot take this form.

Case 3. (ekl= 9k2) = (ul, ”2)' so the blocking coalition is the grand coali-

tion. Now by the definition of c?s(-).
~ -~ * *
(36) poU(epq) + (1-p,)U(e, ,5) < pUle; (W)l + (1-p,)Ule,(W)].

Therefore, by (9), (36) holds with equality. Thus, by condition (10),

-~

(31)  pyUle,qy) + (1-p)Ule, 5) > pyUleq; (W] + (1-p)Ule (W],

Together, (36) and (37) imply that the values Ekis also solve the problem
(11)-(19), and do so in a way which yields higher expected utility to type 1
agents. But this contradicts the definition of e (u). Hence this also

1s

cannot constitute a blocking coalition.

Case L, uy > 8, >0, 8, € [O,ul]. Now since 6 (u-ekQ) > 0,

k2
(38)  pU(c,,) + (1-p,)Ulc, 55) = pUley, (u-8,38,,c, )]
+ (1-p,)Ulep,(u-0,38 ,c, )] > pyUles, (W) + (1-py)Uley, (W],

where the first equality holds since coalition membership must be voluntary,
and the second inequality holds by (9). Also, if the inequality in (38) is

not strict,

(39)  pUle,,) + (1-p))U(e, ;) > pyUle ()] + (1-p)Ule], ()]
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by (10). Then consider a consumption lottery which allocates type i agents in
state s the consumption ékis with probability eki/“i’ and c;s(p-e-,ek,ck) with
probability 1 - (Gki/ui). This lottery is feasible (since each allocation is
individually), and by (39) and (13.a) it yields type 1 agents expected utility
at least U. Also, from (38) (and (39) if the inequality in (38) is not
strict), type 2 agents are at least as well off under this lottery as they are
receiving c;s(u) with certainty in state s (and if they are not strictly
better off, then type 1 agents are). Since c;s (u) is alleged to solve (11)-

(19), this contradicts lemma 1. Hence no such lottery exists, and there is no

blocking coalition with uy > 85 > 0, 68, € [0,1y].

Thus all possible configurations of a blocking coalition have been ruled
out. Therefore no blocking coalition exists, and c?:s(-) is a core allocation
rule as claimed.

We now prove proposition 1 for n > 2. For this proof we require
additional structure on the values aki' Hence we now employ assumption

(3.d): a blocking coalition either has 8y = 0 or & = ; ¥ i.

Proof of Proposition 1 (n > 2). As in the proof for n = 2, we assume the

existence of a blocking coalition announcing an allocation vector c¢, and

derive a contradiction. Again there are several possible configurations of ﬁk

for a potential blocking coalition, which we consider case by case.

Case 1. 6, > 0 % i such that j <i < &, 8, = 0, otherwise. Then, by (3.d),
eki =W ¥ i; J €1 < &, i.e., the blocking coalition attracts all agents of

types j through £.

(a) Suppose j=1, 2 =n. Then the grand coalition constitutes a blocking

coalition. Therefore, by (9)
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-~ ~

(b0)  p U, ) + (1 )Ule, ,) >p Ulel (W] + (1 )ule’ (W],

If (40) holds with equality, then

-~

o1 om0, )

(1) ) + (1-p__)u(e

k,n-1,2

> pn_lU[c:_l’l(u)l ¥ (1—pn_l)UIc:_l,2(u)],

etc. Of course for some type i

~ A

(42) p.Ule, ;) + (1p)U(c,, ) > p,Uley, (W] + (1-p, Ul ()]

where if i # n,

~ -

) + ( Yu( ) > p.. Ule:
APy Uy, 4g,2) P PiagUlCi4sn

(43) P. ()]

1+5U(ck,i+s,l

+ (L-p,, Wleg,  H(W)]

i+s,2

¥ s =1, vee, n - i. However, (42) and (43) contradict the definition of

% ;
c;5(n), so that a blocking coalition cannot be of this form.

(b) Then suppose & = n, j > 1. Since eki =y ¥ i > j, all types with index

g < J receive an allocation such that

* * —

-0 1 = -0, = -0
(Lk) p,_qUley g 1(w-038,c, )] + (1-p, 1)Ule, , H(u O3 Oacy )] = Uy, (u-6,),
with Uj_l(u-ﬁk) defined by (15)-(19). Then define Cjq 3 i = j, +se, N3 8

= 1, 2, to be the allocation solving
max p,U(cyq) + (1-p,)U(cy o)

subject to



i i2
py_1Ules g 9) + (1-py_1)U(e, , ) = U, (w)
iil u {p; (eyq-e; )+(1-p, e, —,)} < 0.
Clearly
(45)  p U ) + (1 JU(E ) < Uler (W] + (1-p )Ule],(w)]

since the problem above is more heavily constrained than (11)-(19).

holds with equality, then

Ule: . . (w)]

the) P aMy 3 ) + (e  JOE, o) <o n-1,1

n n-1
*
+ (1-Pn_l)u[cn_1,2(U)Is

etc. Therefore, such a blocking coalition with n = £ is impossible.

If (Ls)

(c) Then 85 = w3 1 =j <i < 2<n, and By = O otherwise. By (10), then,

~

(W) pUley ) *+ (1-p,)ULe, ,0) > ppUley; (W] + (1-p )ule (W],

and if (L47) holds with equality, there is an analogous expression for type

L -1, etec. Moreover, obviously

L
e izl (u; -8, ) [(eyy-eq Jp; +(ey5-e5) (1-p; )] = 0.
Therefore,
* *
(49) p Ule ;(u-838,c)] + (1-p )Ule ,(u-8,;6,,c )]

>p Uler ()] + (1p JUle ()]
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since by (47) and (48) an incentive constraint in the problem (11)-(19) (and
(20)) is (weakly) relaxed with no expenditure of resources. Also, if (L9)
holds with equality, there is an analogous expression for type n - 1 (if n - 1
> %), etec. Finally, in the initial problem (11)-(19) with 6 = p it was feasi-
ble to assign types i = £+ 1, ..., n the allocation crs(u-ek;ﬁk,ck), and
types i =1, ..., & the allocation ékis in state s, since these are feasible
allocations individually, and since it is easy to show that the allocations
ékis satisfy (13). Therefore, the existence of the posited allocations, along

*
. (u), so this case is also

with (47) and (48), contradict the definition of cj

impossible.
(d) Then 84 = u33 1 < j €1i < &< n, and Oy = O otherwise. Now by lemma 2

pj_lU[c::_l,l(u—ek;ak,ck)l + (l-pj_1)U[c;_1,2(u-6k;9k,ck)] =T, (),

and therefore, by the corollary to lemma 2,

Il =1

3 (ug =8 ;) {p; (cjq-e) )+(1-p; )(esp—ep)} < 0.

i
Also, by condition (10), (47) holds. Therefore, for the same reason as in
case (l.c) above, (49) holds, and its analog for type n - 1 holds if (L49) is
an equality (and if n = 1 > &). Thus we can construct the same contradiction

as in case (c). Having exhausted all possibilities under case 1, then, we

have shown that this case is impossible.

Case 2. There exist indices i, j, and & satisfying j < 1 < & such that akjeki
> 0 and eki = 0. Also, without loss of generality, let £ be the largest index

with 0 < 8y, (=u£). Finally, let q be the largest index such that 8 = 0 and

ek,i+1 > 0.

(a) Let 2 =n. Then by lemma 2
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~

(50)  pUlc ) + (1 )U(c_,) <p UE ;) + (1-p )U(E

n2)

where Eis solves the problem
max an(cnl) + (l_Pn)U(an)
subject to
p;Ulc;;) + (1-p, )U(e,,) Pﬁi(u); i=1, esey n=1;1i %9

p U(qu) B (l-pq)U(cqz) = ﬁq(u)

q
n
Low lp; (eyq-ey )+(1-py )e p-ep)] < O
i=1
However,
(51) U )+ (1 )U(E 5) <p Uler ()] + (1p )0l (w)]

~

since the problem defining c;g is more heavily constrained than (11)-(19). 1If
either (50) or (51) is a strict inequality, then the above contradicts (9).

If (50) and (51) both hold with equality, then similarly

~ ~ ~ ~

U(cn_l’l) + (l-pn_l)U(cn_1’2) < Pn—lU(cn-l,l) + (l—pn_l)U(cn_l’e)

and

~ ~ *
Coo1,1) * (e g)U(e 5 o) <pp gUle, ;5 4 (W]

p. U(

n=1

+ (1p, e, ) (0],

etc. Thus, if (50) and (51) hold with equality (10) is contradicted. There-

fore, this case is impossible.
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(b) Then % < n. By lemma 2

* ¥* o
(52) qulcql(u—ﬁk;ﬂk,ck)] + (l~pq)U[cq2(u-ek;ﬁk,ck)] = Uq(u-ak),

with U(u-8,) defined by (15)-(19) and (20). Therefore, by (3.d), (13), lemma

2, and the fact that (52) holds with equality,
-~ ~ E 3 *
(53) pUle,,) + (19 )U(c ;) <pUle, (W] + (1-p,) Ule ,(w)].

Again, if (53) holds with equality, an analogous expression holds for £ - 1
(if 2 =1 > q, or holds for the largest index r less than £ such that ekr >
0), etc. Thus either (53) (with strict inequality) contradicts (10), or an
analogous expression for a lowaer ialex contradicts (10). Therefore, this case

is also impossible, so there is no blocking coalition of the type posited.

Case 3. Then there exists just one index £ with 6., (=ug) > 0. But then

(invoking lemma 2 if 2 #n or & # 1), clearly

-~

pUleyy) + (10,)U(c ) < pUley, (W] + (1-p,)Ulepy(w].

As this contradicts (10) (or (9) if 2 = n), there is no blocking coalition

with 8,5 = w3 1 = 2, 8 = 0 othervise.

Thus we have ruled out all possible configinraLions of a blocking coalition,
proving the proposition.
*

Having shown that the allocation rule cis(egﬁk,ck) is a core allo-

cation rule, we now turn to proving that this is the unique core allocation

rule in this setting.

*
Proposition 2. cis(B;Bk,ck) is the unique core allocation rule.




=P8 =

* ;
As we have shown that cy (=) is a core allocation rule, we now show by con-

S

struction that any other allocation rule is blocked by the grand coalition.

~

Proof of Proposition 2. Consider any allocation rule cls(e;ﬁk,ck) announced

i * *
by the incumbent coalition such that ¢;.(u3;0,0) # cis (130,0)(= cig (W) for
some i for some s. We then construct a blocking coalition k with associated

vector of measures 8, = u as follows. The blocking coalition announces allo-

< *
cations cyjg = cj5(u)e Then we show that 64 = u; ¥ i, and that all condi-

tions for k to be a blocking coalition are satisfied. There are two cases to

consider:

Case 1. Eis(u) does not maximize p U(c,q) + (1-p,)U(c,5) subject to 1)

(14). Then obviously

~

p UIE (W] + (1 JUIE ()] < p Ule, ) + (1-p JUle, ).

Therefore, (9) is satisfied, and Bk, = ¥,+ Moreover, clearly if 8 = (“1’ S

Hp_1s 0), then

~

pn_lU[cn_l,l(Ei;ek,ck)l + (l-pn_l)U[cn_l,z(ﬁ;ek,ck)] <uU__,(w)

~ ~

Uley po1,1) * (1-p 4 )Uley 100

s Pn—l

Therefore, ek,n-l = W, 1+ Repeating this argument we derive 83 = u; for all
i Finally, ékis is feasible by construction, so that all the conditions
required for k to be a blocking coalition (and for ékis to be a blocking
allocation) are satisfied. Hence if Eis(u) does not maximize p U(e ;) +

(1-p,)U(c, o) subject to (12)-(14) it is blocked, and, therefore, is not a core

allocation.
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Case 2. Suppose that the problem of maximizing p Ulc,q) + (1-p )U(c,o) sub-
ject to (11)-(14) has more than one solution and that c;o(u) is one such
solution, but not the one giving greatest expected utility to type n -1
agents (or type n - 2 agents, etcs)e Then obviously the grand coalition

blocks cis(-).

- * "
Thus any allocation rule c._(u) # cis(u) for some i, for some s is

is
blocked, establishing the proposition.

The logic of proposition 2 is straightforward. Under any feasible
allocation rule other than C;S(B;Bk,ck) which is Pareto optimal # (G,BK) e AP
x A" (and hence a candidate for a core allocation rule), type n agents subsi-
dize agents of other types. Hence, type n agents can always form a blocking
coalition by defecting, and offering agents of other types an allocation
weakly preferred by them to any allocation they could attain on their own.
S3ince this is at least as good as what these agents can attain in the absence
of type n agents, they are in essence "forced" to join the Dblocking
coalition. This intuition also suggests why c;s(u) is an unblocked allocation

rule.

A Two Stage, Noncooperative Game

We now turn our attention to the description of a game which has a
Nash equilibrium which produces the same allocation as does our cooperative
equilibrium. In addition to the set of agents described in the previous
section, then, let us introduce a set of insurance firms F = {1, ..., K}. We

further partition the set of firms into a group of incumbent firms and a group

of potential entrants. The interpretation of this partition is as follows.

All potential insurance customers are initially assigned (in their population
proportions) to the incumbent firms, i.e., customers are initially divided

evenly among the set of incumbent firms. There is also a set of potential
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entrants who may attempt to attract customers from the incumbent firms. This
division of firms serves two purposes. One is purely technical and can best
be discussed after an exposition of the game. The other is to render the game
similar in form to the cooperative game discussed previously. In particular,
the position of incumbent firms is symmetric with that of the incumbent
(grand) coalition in our previous discussion. Finally, without loss of gener-
ality, we may take there to be a single incumbent firm (say firm 1).

As an overview, our game evolves as follows. At stage one the
incumbent firm announces an allocation rule analogous to that discussed pre-
viously. This rule specifies the state contingent allocations received by
each customer of the incumbent as a function of (potentially) three things.
One is the population experiences of the firm's customers (which depends
solely on the measure of agents of each type purchasing policies from the
incumbent). This is in keeping with our earlier discussion of mutual insur-
ance companies. Second, this allocation rule specifies how the allocations
received by the incumbent's customers depend on (i) the number of agents of
each type who purchase policies from new entrants (who defect), and (ii) the
allocations obtained by these defectors elsewhere. This is, of course, an-
alogous to our earlier discussion.

After the incumbent announces an allocation rule, potential entrants
decide which types of agents they wish to attract in positive measure, the
measure they wish to attract of each type, and the state contingent allocation
to be received by each agent purchasing a policy from them. Then the game
ends.

Let f € ¥ index firms. Then for f # 1, the decision variables of
the firm are as follows. First, let Bf denote the vector of measures of each

type of agent "attracted by" firm f, i.e., 05 = (efl’ P efn) e A'. Also,
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the firm must select, for all i such that O8p; > O, an allocation Ceige Let

C1ig denote the allocation received by customers of the incumbent firm. Then

there are several conditions which the choices ef and cpyg must satisfy. One
is that the choices Cgig Must be resource feasible for firm f, i.e., mist sat-

isfy

(54)

Il ~3

. 8p; [py (epyq—eq )+(1-py Mepyp-en)] < 0.

i
In addition, they mst be incentive feasible within firm f, i.e., # i, j such

that Bp;805 > O.

(55)  pyUleggy) *+ (1-pylegyp) 2 ByUlegyy) + (1o Nlegyy)

£32

An allocation is feasible if it is resource and incentive feasible.
Moreover, in order for Op and cp = [(cpyqscp10)seens(copiscenn)] to

be consistent, we require that

1t efi > 0, and

(57) p;Ulepsq) + (1-p; JU(cgy,) < piU(cgil) * (1—pi)U(cg12)

for some g € F if Bfi = 0. More specifically, if firm f desires to set
efi = 0, it mst announce values Ceis satisfying (57). Finally, if firm f
wishes to set 0p; > 0 and ij = 0, it must select values c¢pyg such that type )
agents do not wish to obtain the allocations meant for type i agents at firm

f. Therefore, firm f's allocations mist satisfy

(58) pJU(cfil) + (l-pj)U(cfizl < PJU(ngl) + (1= pJ)U 332)

¥ g € F, for all j such that st = 0, for all i such that efi 5 04
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As in the cooperative case, there is a great deal of ambiguity
regarding values efi in the case when type 1 agents might be indifferent
between the allocation they can obtain from the incumbent firm, and from firm

f # 1. We alternately employ the same assumptions as above:

(59.a) 0. B [0,ui]

fi
if (56) holds as an equality for f = 1, or
(59.b) 0., € 0,m}
if (56) holds as an equality for f = 1.

At stage 2 of our game, then, firms with f # 1 make choices of
feasible allocations, along with consistent values of Bf, so that the strategy
spaces of these firms are subsets of A" x ReM, At stage 1 of the game, the

incumbent firm announces an allocation rule which specifies Ci1ig @S 2@ function

of ﬁl,BF = (82, veey Gp), and of cp = (02, aimis cm). We say that an alloca-
tion rule is feasible if it specifies a feasible set of allocations Bl, ¥
9; > A(K_l)n ¥ Cp € RE(K-I)H such that cp is feasible; £ # 1. In addition to

requiring that an announced allocation rule be feasible, we require that any
announced allocation rule satisfy an additional condition. We begin with a

definition.

Definition. An allocation c;, is 6-Pareto optimal if it is feasible, and if

~

given B there does not exist another feasible allocation Cig such that

(60) piU(g ) + (l—pi)U(€£2) > p,Uleyq) + (1-p, JUle, )

il
¥ 1 such that Gi > 0, and if

n ~ ~
(61) izl si[Pi(cil-cil)+(1—pi)(cig-ciz)] <0,

with either (60) (for some i) or (61) holding with strict inequality.
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In short, an allocation is 0-Pareto optimal here if, for a fixed group of

agents, there is no feasible, Pareto noninferior allocation which consumes no

more resources. As we will see momentarily, (61) simply says that Eﬁs cannot
be (strictly) more profitable for the relevant firm than c;, for a given

(fixed) set of customers. Hence an allocation is 6-Pareto optimal if there is
no feasible Pareto superior allocation which consumes no more resources, or if
there is no feasible allocation satisfying (60) which earns greater profits
for the firm. Then we require that any allocation announced by the incumbent
be 8;-Pareto optimal ¥ 8, € A", % 8p> % cp. This restriction prevents the
incumbent from threatening to offer its customers allocations in certain
contingencies which do not (a) maximize its profits given the set of customers
summarized in 6;, and (b) for given profits are Pareto dominated for the set
of customers specified by 0. Hence the requirement that announced allocation
rules mist specify 6;-Pareto optimal allocations merely rules out "threats"
made by the incumbent which it would not wish to carry out should the relevant
contingency arise. The strategy space of the incumbent, then, is the set of
maps of the form clis(el;ei;’gF) which are feasible and specify 6;-Pareto
optimal allocations. Let C¥ denote the space of admissible allocation rules.
Having said all this, we may now specify firm profits. Let e

denote the profits of firm f. Then

(62) m, = n(9 )

Il e~

8p; [p; (e e oy 1 )+(1-py Mep—py 5)1,

sC o)
—£*C.p "

£2Cg3
i

9

i

(8 9 0

l, LRI Y f—l’ f+l’ LR Y 3 etc.

where B_f M)

It should be clear from our discussion (and our terminology) that
the incumbent firm will wish to deter entry (i.e., to prevent 6,y > 0;
f # 1)« This follows from the fact that if an entrant can earn a profit the

incumbent should have been able to choose an allocation rule which prevented
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entry, and which increased the incumbent's profits (since obviously the at-

traction of some type i such that 8.; > 0, f # 1, is profitable). Hence we

couch our definition of a Nash equilibrium in these terms. In particular,

~

Definition. A Nash equilibrium is an annocunced allocation rule ¢ e C¥ such

that
(1) given Cl = [(cllla cllz)’ LA (clnl’ cll’lz)]’
(63) Me[8pacpsu=0p,c; (U=05380,0,)] < O

for all feasible cy and consistent values of Bf.
(ii) for all admissible allocation rules c € C¥ that satisfy (63),

(64) nl(u,é”;o,o) > 7. (7,030,0).

1

The notation in (63) simply means that given that all firms other than the
incumbent and f itself have chosen not to enter the activity of selling insur-
ance, T must also choose not to enter this activity. Hence an equilibrium
allocation rule is the most profitable (admissible) rule which eliminates

rents for any potential entrant.

Existence of a Nash Equilibrium

*
Consider the allocation rule cy;,(07;0p,c¢) solving (11)-(19) (and
(20)), where now 6, is the vector (617, «e., eln)’ and 6, and cy are inter-
preted as the vector of measures (877, ..., brp) and cp =
[(cp11> Cp1o)seseslepyys cppp)l of any potential (single) entrant. Tt suf-
fices to focus on this since the incumbent need only deter entry of each firm
f =2, «es, K singly, i.e., when all firms other than f have not entered the

insurance market. Then we have the following result.
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ST . * .
Proposition 3. The announcement of the allocation rule c1ig constitutes a

Nash equilibrium of our two stage game.

Proof. Obviously c¥* € C¥, Therefore the proof may proceed in two steps.
First we show that the choice c§ deters entry. Then we show that any other
choice of allocation rule which results in at least the same level of profits
as c; fails to deter entry. Hence c* satisfies conditions (i) and (ii) of our

equilibrium definition.

*
(i) It is a straightforward implication of proposition 1 that c; deters
entry. To see this, suppose some potential entrant f # 1 could earn nonzero
profits. Then there would exist some set of indices i with Bfi > 0. Let q =

max{i:efi > 0}. Then
* *
qu(chl) + (l-pq)U(chg) > qu[clql(u)] + (l-pq)U[clqe(u)],

condition (56) holds for all other i such that 8p; > 0, and since (63) fails,

Il =~

191'1 [p; (e g1 )+(1-p; Mep—yps 5)1 > 0.

i
But all of the above implies that there exists a blocking coalition for c¥; in
the cooperative game. This contradicts proposition 1 so there exists no such

potential entrant.

(ii) Then suppose there existed an allocation rule éleC*' with el(u;0,0) #

*
cq(u30,0) such that (64) failed. We may consider two cases.

Case 1. gl(u; 0, 0) does not solve (11)-(19). We now show that entry is not

deterred. In particular, let firm f # 1 offer the allocations
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it

Cpgg™ LygtWie 2 T 0
*

cfns = cns(u) - €

with € > 0 satisfying
p Ulel (W=l + (1-p )ule (W)=l > p Ul (W] + (1-p IUle ,(w)]

which is possible since c(u) does not solve (11)-(19). Then all agents pur-
chase policies from firm f and firm f earns profits w, € > O. Hence entry is

not deterred.

Case 2. c¢7(u30,0) solves (11)-(19), but is not the solution giving highest

utility to type n - 1 agents, etc. Then let firm f # 1 offer the allocations

w3 i#tn-1
Crig = Cygit/e * 70O =

*

€f,n-1,s - cn-l,s(u) .

with € > 0 satisfying
Ule” o L (w)-el Wl - (u)-¢l ule ()]
Palle, g qiii=el + (Tp qiUle 3 siWi-el >3, 4 Uieg . 4 W0

+ (1-p,_WUley g (WS

which is possible by hypothesis. But then all agents are willing to purchase
policies from firm f, and thus f earn profits eu, _q > 0. Hence entry is not

deterred in this case either.

*
We have shown, then, that the allocation rule Clis is a Nash equi-
librium allocation rule, as it satisfies (i) and (ii) in the definition.
Moreover, from the argument above, it is the only allocation rule the incum-

bent can announce which deters entry. Hence we have
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Proposition 4.  All equilibrium allocation rules ¢;(-) have ¢&;(u;0,0) =

*
cl(u,0,0) .

Finally, we should note that, since we have used proposition 1 in our argu-
ment, for n = 2 we can use the weak assumption (59.a) on the values sfi for
the proof above, while if n > 2 the proof requires (59.b).

It remains to discuss two 1issues. One is the intuition behind
proposition 3, and the other is the asymmetry between the incumbent firm
(which specifies an allocation rule as its strategy) and potential entrants
(whose strategies may be viewed as allocations). With regard to the intuition
of proposition 3, we might simply note that a standard method of producing
existence in this setting is to use a reactive equilibrium concept of the form
used by Wilson (1977) (or its adaptation by Miyazaki (1977)). Our approach
augments the strategy space of the incumbent firm to permit it to announce how
it will react to any potential form of entry (and consequent encroachment on
its customers). Potential entrants do not need to conjecture how incumbent
firms will respond to their actions, as they do in the Wilson setting, how-
ever, since the form that the incumbents' reactions will take is specified in
advance. What our results show is that it is not necessary to have firms
"drop" policies which become unprofitable after entry. Rather, it is suffi-
cient to have them reoptimize in the manner specified by our rule.

With regard to why the strategy space of the incumbent firm is
specified differently from that of potential entrants, this is done for the
following technical reason. We could have all firms announce allocation
rules, which would depend (at least potentially) on the allocations (and hence
allocation rules) of other firms. Since each firm's rule might depend on the
rules of other firms, it would be necessary to check that each set of rules

produced a well-defined allocation for each possible division of customers
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among firms. To avoid this purely technical issue, we have adopted the asym-

metric specification implicit in our two-stage game.

A Related Signalling Environment

We now briefly discuss a version of the Spence (1973) signalling
environment due to Prescott and Townsend (1984), and which is also used by
Rosenthal and Weiss (198L4). In this environment there is a continuum of
"workers" who can be divided into a finite set of types, indexed by
i =1, ses, n. Each worker is endowed with a single unit of labor, which is
supplied inelastically. In addition, there is a technology for converting
labor into a single consumption good. In this technology a group of workers
with positive measure is required to produce any output, and a group of type i
workers of positive measure can produce m; units of the good per worker. In
addition, the contribution of any individual to output is not directly observ-
able.

There are two alternate interpretations which can be placed on this
economy. One is that workers cooperate to produce output, i.e., form coali-
tions. Another is that there is a set of firms with access to this tech-
nology. The two cases correspond to the cooperative and noncooperative equi-
librium concepts (respectively) employed above.

As is standard in the signalling literature, each worker knows his
own type. This type is private information, ex ante. However, there also
exists a signalling technology for transmitting information about type. Let
5 € R, be a set of feasible signals with 0 € S, Then an agent may emit any
signal s € 3 to convey information regarding his type.

Let c denote consumption, with R, being the set of feasible consump-
tions for each agent. Then a type i agent has preferences over (c, s) pairs

given by



-h0 -

Indices are ordered so that ¢1 < Yo < ees < wn' and following Spence (1973),
the technological parameters then obey ) < Ty < .e0 < oo Finally, as above,

Hy denotes the measure of type i agents in the population with Z'nl Wy = 1.
1=
As before, we can (depending on whether we are considering the
cooperative or noncooperative case) define the behavior of coalitions (or

firms) and allocation rules exactly as previously. The allocation rule of

interest here solves the problem (for vector of measures 0)

mx e -8
nn n

subject to
Yo, -85 2 -lJ.c‘j =By ¥y Js
¥ c; = 8y > Ui ¥i=1, vee, n -1,

subject to

VoCpy = 85 2 Weq = 5

etc. If 8; = O for some i, an analog of (20) is appended to the problem.
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It is not hard to see that the model has a formal structure es-
sentially identical to that of the adverse selection environment considered
above. Hence it should not be surprising that exactly the same argument can
be applied here to prove propositions 1-b for this economy. As this would be
an exact repetition of earlier arguments, we will simply leave this as an
assertion. It deserves to be emphasized, though, that propositions 2 and 4
apply, i.e., our equilibrium concepts applied to the Spence economy produce a

unique equilibrium (both cooperative and noncooperative).
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Notes

Your specific version is due to Prescott and Townsend (1984).

EySee, e.ge., Myerson (1983).

3/see, e.g., Foley (1970), Richter (197h4), Starrett (1973).

l‘-/(3.d) should be interpreted as holding after the possible defection of
some other groups of agents.

5/see, e.g., Myerson (1983).

S/Foley (1970), Richter (197h), Starrett (1973).

l!With an obvious modification to account for the presence of lotteries.

8/50e Spence (1978).
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