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As a comparison of the "Keynesian" model with Tobin's Dynamic

Aggregative Model reveals, whether or not it is assumed that there

exists a market in stocks of capital at each moment has drastic theoretical

implications, particularly about the potency of fiscal policy as a

device for inducing short-run movements in output and employment. The

structure of the Keynesian model depends sensitively on ruling out a

market in existing stocks of capital and instead positing a demand

schedule on the part of firms for a finite rate of addition per unit

time to their capital stocks. That element of the Keynesian model is

perhaps its most essential piece, ruling out as it does the movements of

capital across firms and industries that thwart fiscal policy in Tobin's

model; at the same time, the investment schedule is the weakest part of

the Keynesian model from a theoretical viewpoint, being defended (at

least until recently) on a very ad hoc basis.

These notes describe the most successful attempt to rationalize

the Keynesian investment schedule, a line of work due to Eisner and

Strotz, Lucas, Gould, and Treadway.* The key to the theory is the

assumption that there are costs associated with adjusting the capital

stock at a rapid rate per unit of time, and that these costs increase

rapidly with the absolute rate of investment, so rapidly that the firm

R. Eisner and R. H. Strotz, "Determinants of Business Investment,"
Research Study Two in Impacts of Monetary Policy, (Englewood Cliffs,
N. J.: Prentice Hall, 1963); R. E. Lucas, "Adjust ment Costs and the

Theory of Supply," Journal of Political Economy, 75 (1967), 321-334;
J. P. Gould, "Adjustment Costs in the Theory of Investment of the
Firm," Review of Economic Studies, 35 (1969) 47-56; A. B. Treadway,

"'On Rattional Entrepreneurial Behavior and the Demand for Investment,"
Review of Economic Studies, 36 (1969), 227-240.
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never attempts to achieve a jump in its capital 
stock at any moment.

These adjustment costs occur at a rate per unit of time (measured in

capital goods per unit of time) described by the twice differentiable

function C(K), which obeys

C-0) < 0 as ~ 0,

C"(K) > 0, C(0) = 0.

Costs of adjusting the capital

stock are nonnegative and increase

at an increasing rate with the

Figure 1 absolute value of invesmtent.

The firm's discounted net cash flow net of costs of adjustment is defined

to be

f(N(t),K(t),i(t),t)
= e t[p(t)F(K(t),N(t)) - w(t)N(t) - J(t)6K(t)

- J(t)K(t) - J(t)C(K)]

where J(t) is the price of capital goods at time t, and r is the instantaneou

interest rate, assumed constant over [(0,T]. We continue to assume that

F(K,N) is linearly homogeneous in K and N. The firm chooses paths of N

and K over time to maximize its present value over the time interval

[Q,T], which is

T -t.
PV = f(N(t),K(t),K(t),t) dt + S(T)K(T)e

0

where S(T)K(T) is the scrap value, if any, of the capital stock at 
time

T. We think of T as being in the very distant future. The firm operates

in competitive markets for output and labor, being able to rent all the
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labor it desires at the wage w, and to sell all the output it wants at

the price p. The firm starts out with capital stock K(O).

Among the necessary conditions for an extremum for present

value are the "Euler equations"

af te[0,T]
'- -0

a- d af- 0 teC0,T].

(A heuristic explanation of these Euler equations is contained in the

appendix to these notes.) Evaluating these derivatives, we have

f e-rt[p (tr) - w(t)]

72 e t[p(t) - J(t)C1

f = ertJ(t) + J(t)C(RC)]
at

d af -ert[3(t) + J(t)C'(K) + J(t)C"(K)K]
-it

ret[J(t) + J(t)C (k)].

So for our problem the Euler equations become

(1) p(t) -- W(t) = 0 or --

and

(2) - - rJ + -(rJ3)C'() + JC'~)K = 0

Equation (1) requires that the marginal product of labor equal the real

wage at each moment, an equation that determines the labor-capital ratio

at each moment (since F(N,K) is linearly homogeneous). Equation (2) is



a differential equation that determines the (finite) rate of growth of

the capital stock at each moment. To simplify the problem, we now

assume that firms expect the prices J(t), p(t), and w(t) to grow over

time at the same constant rate per unit time r, over the entire horizon

of our problem. This makes J/J = p/p = w/w = for all t, and leaves

relative prices and wages constant over time. Furthermore, assume for

simplicity that the cost-of-change function is quadratic, 
so that

C ( 42 Y 
>.

On this assumption, equation (2) becomes

- JS - rJ + J -(rJ-J)yK + JyK 0.

Dividing by J and solving for K gives

(3) K [r+ + - - , ] * (r - K.

On our assumptions, since al relative prices are constant over time,

and since r and j/J are constant over time, the above equation is a

fixed coefficient, linear differential equation in K:

(4) B

1
where A =  [r + 8 " - K

Since w/p is constant over time, so is N/K, making FK and therefore A

constant over time. The differential equation (4) has the solution

aeBt A
(5) K Aae

where a is a constant chosen to insure that an initial condition or

terminal condition is satisfied. If a= 0, then K = - A/B for all t.



w(t) ee ftw(0), and J(t) = e J(0). Noting that B = (r-W), we have

-Bt A ABt a -Bt}A

e Bt .e ( 2e2Bt 2aeBt + (A)2( 0)

f(N(t),K(t),K(t),t)
= Df- eBt + + K(O)e

A { -Bt)- J(O) {a- Bt

I {aeBt 2a + ( )2e-Bt}J(0).

As ' , the first term in braces approaches a/B; the second term in

braces approaches a, while the third term in braces approaches 0 unless
a = 0, in which case it approaches zero. These calculations imply that

as t becomes large, the discounted net cash flow f( ) becomes a larger

and larger negative number (since the last term in braces in multiplied

by-Y/2), unless a = 0. This occurs because the rate of investment is

increasing approximately exponentially, causing costs of adjustment to

rise at an even faster exponential rate. These costs of adjustment

become so large eventually that they swamp the firm's revenue, and lead

to large negative net returns. For large enough T, that will make

present value a very large negative number. Clearly, such paths are not

optimal ones for the firm to follow, even though they satisfy the Euler

equations. To rule out such paths, the condition a = 0 must be met,

implying that the pertinent solution of our differential equation (4) is

* [7FK " (r+&-7)
(7) K = r - '



Notice that in the context of a one-sector model, p 
= J, so that (7) is

a version of our Keynesian investment schedule

-% I(q-1) I > 0

where q = (FK - (r+6-'))/(r-w ).

Derivations of the Keynesian investment schedule along the

lines sketched above seem to provide the most satisfactory theoretical

foundations yet laid down for that schedule. The theory obviously

depends critically on the assumption that costs of adjustment increase

at an increasing rate with the absolute value of investment (C" > 0).

The arbitrary nature of that critical assumption explains why some

economists are uneasy with the notion of the investment schedule.
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Appendix: Heuristic Explanation of the Euler Equations

We are interested in choosing time paths of x(t) and y(t),

t .[O,T] to obtain the extremum of the functional

T

(I) J(x,y,y,t) f(x(t), y(t), y(t))dt.

Among the necessary conditions for J to obtain an extremum are the

Euler equations:

A = 0 t (0,T]
a(t).
f d f o t(JO,T].

To motivate these equations, we consider the following discrete time

approximation to (1):

(2) J =  e (x(t), Y(t),
tw0

where t = 0,e, 2,..., T- T. Notice that the limit of the sum in

equation (2) as E approaches zero is the integral in equation (1). We

propose to study the first-order conditions for obtaining an extremum of

J as c approaches zero. It is illuminating to write out several

terms of J explicitly

J= *f (x(0),y(0) ±X ) + if (x( e) y(E), Y(E--(

+ .. + Ef(x(n), y(n), in +)

Differentiating J with respect to x(t), t = O, ,..., T, and setting

the derivatives to zero we obtain

(3) = 0, t = OE, .. , T.
(a1 -



Setting the partial derivative of J with 
respect to y(t+E) equal to

zero for t = O, ... , T-e, we have

aj af(x(t) ,y (t) , ) 1
J 

-------- ---

+ e~---------- -~
E

y (t+ )

f(x(t+E) ,Y(t+E)
- -------

(tx(t) , y- tt)) ()

Dividing by s and rearranging, we obtain

aS

(f 4 ) = 0 for tO(0,T].

Equations (3) and (4) are the "Euler equations" 
associated with our

continuous-time extremum problem. It is not surprising that the limits

of the discrete time marginal conditions coincide with continuous time

Euler equations, since the limit of our discrete time J equals the continuous

time J.k




