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1. Introduction

To begin, consider the simple dynamic game depicted in
Figure 1. In this game, there are two players (Pl and P2) and two
time periods (0 and 1). Payoffs occur at the end of period 1 and
each player seeks to maximize his payoff. The players must choose
either decision 1 or 0 at the beginning of each period. Pl is
dominant in the sense that he is first to announce his strategies,
although decisions are taken simultaneously by both players in
each period.

The "open loop" (or "precommitment™) solution to this
game can be found using the payoff matrix in Figure 2. In equi-
librium, each player plays the sequence of strategies (1,1),
yielding payoffs (10,5). The time inconsistency of this solution
is evident: Pl clearly has an incentive to charge his period 1
strategy to zero, once period 0 has passed.

The game in Figure 1 also admits a time consistent
solution. That solution may be found by backward induction, as
outlined in Figure 3. In equilibrium, Pl plays (0,0) and P2 plays
(1,1)« By construction Pl has no incentive to change strategies
once period O has passed.

If one wishes to describe policymaking in terms of a
dynamic Stackelberg game, the consistent solution seems the more
realistic of the two solutions outlined above. The intuitive
appeal of the consistent solution is increased if that solution is
viewed as the outcome of a noncooperative game with three play-

ers: P2, representing private agents of an economy, and two



' one acting at time O and one acting at

policy "administrations,'
time 1. While the time O administration can prediect what the time
1 administration will do, it cannot control the future administra-
tion's actions, precluding any precommitment.

In what follows, I would like to suggest a class of
positive models of policymaking that build on the preceding in-
sight in a somewhat ad hoc, but perhaps revealing way. In partic-
ular, I wish to consider cases intermediate to the precommitment
and time consistent solutions, where there 1is some exogenously
specified probability o (1 > a > 0) of policy remaining on its
precommitted path. Viewed in another way, there is a probability
o that the current "administration" will not be voted out of
office next period. Conditional on this last event, the proba-
bility of the current administration sticking to its preannounced
policy is assumed to be one. These models will be called "sto-
chastic replanning" models.

As an example, consider the dynamic game of Figure 1
with a = 1/2. Casting the government in the role of the dominant
player, Pl is now split into two administrations. The period 1
administration, if it comes to power, chooses its (period 1)
strategies as in the consistent solution (see Figure 3). The
period 0 administration, seeking to maximize its expected payoff,
must take into account the possibility that its period 1 strate-
gies may not come to pass, as must private agents (P2). Accord-
ingly, the expected payoff matrix corresponding to that of Figure

2 will be the matrix in Figure L. Inspection of that matrix
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reveals that the equilibrium outcome of this new game occurs when
the period 0 administration plays (0,0) and P2 plays (1,1), i.e.,
at the consistent solution. For sufficiently large o(> #J, how-
ever, the period 0 administration would find it optimal to an-
nounce the precommitment strategies (1,1).

In the next section, the idea of stochastic replanning

is extended to a more complex dynamic game.

2. Stochastic Replanning with an Infinite Horizon

An example will now be considered where private agents
and governmental administrations have (potentially) infinite
planning horizons. Analysis of this example is greatly simplified
by introducing the state variable

1 If replanning occurs (a new administration comes
into office);

B =
2 otherwise.

It might seem at first that a countably infinite state space is
needed for St= with St indexing the number of periods since re-
planning (administration turnover). Fortunately, this turns out

not to be the case for the example considered below.
There 1is always probability a that the current admin-
istration will continue in power next period. Hence {8} 1is
simply a sequence of independent Bernoulli trials. It follows

that

l-a for j =1,

(1) Pr{st+n=j|st} = BefB =il = {5 por J

I
19
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(2) The probability of any current administration being in

power n periods in the future is e

The above facts will be useful for the analysis that
follows.l/

The example to be considered will be the "generic" one
considered by Whiteman (1984) in deriving expressions for the open
loop and time consistent solutions to policy games with linear
rational expectations models. The example is simple enough to be
tractable, yet captures the essential features of more complex

models. In this example, policymakers are confronted with

(1)

B ¥iey = Mg = Xg ¥ g

Here y, is an "endogenous" stochastic process reflecting decisions
of private agents, E; is the conditional expectations operator, p
is a parameter with |p| > 1, Xy is a variable controllable by the
current administration, and {ei} is a sequence of shocks. Ini-
tially, it is convenient to assume that {e } is nonstochastic and
known to all private agents and administrations.

The objective of the administration in power at time t

will be taken as to minimize

J
. Jr. 2 2
lim 5 E _E B [yt+j+Axt+j], A>0,1>8>0,
J+oo J:O

denoted {xt }. The current

by choice of a plan for { £ 43

xt+J}J=09
t+k
X

t+j+k} as given for j » 0 and

(time t) administration must take {
k > 1. That is, it cannot control the actions of future admin-

istrations.
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For computational convenience, the discount factor B is
assumed to equal 1. Hence the results derived below may be

thought of as applying to the transformed sequen-—

ces {x:} and {y:}, where x* = Bt/2x Bt/?y

+ " and Yy ™ Alterna-—

t.
tively, one could think of the results below applying to the case

where each administration has the "steady state" objective

o 2 2
lim == E [yt+j+xxt+j]'

J+oo 2J %,

s,
Il ~1%4
o

This interpretation is somewhat problematic, however,
because each administration (when 1 > a > 0) is optimizing along a
path for {S.} that ultimately has probability zero, which causes
its optimization problem to be ill-defined.

For the special cases @ = 1 and @ = 0 (corresponding to
the open loop and time consistent solutions of the above policy
model), one can solve for Xy using the methods discussed in
Hansen, Epple, and Roberds (1985), or Sargent (1984).2/  First
consider the case of a = 1l. For the nonstochastic sequence {et}

equation 1 may be rewritten in "feedforward" form:

Y, = -0 (1oL T (x v, ), (2)

where -1 is the lead operator.

Dropping the superfluous superscript on { s , the time

%)

t = 0 policy problem can be solved using the Lagrangian

L e T e N N

{1/2]y e

Il ~18

Axtgl + et [yt+p_

t=0
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where St is a sequence of lLagrange multipliers. Differentiating

(3) with respect to x, and y; yield

Yap™t)te, = 05 (4)

A, +p .

B
Ye +9. =0 (5)

Equations (4) and (5) hold for t » O, subject to the
initial conditions that 6, = O for t < O. Solving for Xy, We

obtain

-1
= ()7 (6)

ta
I

24 &
x, =0 % 1+ () Ty, v > 1. (1)

To find the consistent policy, note that with a = 0, the choice of
Xy is always made by the time t administration, i.e., x; = xt with
probability 1. Hence the impact of xi on Ygs 8 <t is never taken

into account when choosing xi, and all lagged St's vanish from

equation (4). Solving for Xy, one obtains

=
x, = () Ty, t > 0. (8)

Now consider the policy problem for 1 > a > 0, for the
time zero administration. BSince there is now uncertainty, rewrite

(2) as
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£ 3 Aload
y, = =-p (l-p”"L77) Et(x +e, )

t 't

=t Y eE

3=0 6 %49 ")

= o o
= —-p g o} J E‘txt+j -p ; P Je . (9)
J=0 e

The appropriate Lagrangian expression is now, for the

time zero administrationygj

p-JE X

4 tTE+]

v (L B IR " -
0 tEO i B, by, +dx, "] + E6 [Ey +

|_l
s
Il t~18

1 > 2
0 {EIEO(Etyt

n
Il 0~ 8

)+}\at(xg) + A Eo(xt2lsn=2,t>n>0)(l—at)l

t

+

Ey(B0,) (B, + (50,007 I o7Ve

3=0 t+]j

25
Kt+j

+
£
o
e
fan]
o
©
|
H
1
©
.
et
&

+

=1 o - t+]
(B9, ) JZO p jEO(xt+J|Sn=2,t+3>n>0)(l-a N} (10)

Assuming certainty equivalence, differentiating (10)

with respect to XS and Etyt yields

0 =1 2 N AL
Axt + p (1-p~"L) Etet = 0; (11)
Etyt + EtBt = 03 (12)

for t » 0. Proceeding as in the case a = 1 yields
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Xo = (Ap) Yo (13)
0 _ <1 -1 0

Xp = (Xp) Yo 0 x5t > 1. (14)

Similarly, for any time t administration

5 -1

X, = (Ap) Vi (15)
t o -1t

Xeny = (Ap) Yoag*® Xgigopr 9 % 1, (16)

It follows that, as of time t, for j > 1

-1 -1
Xpas = (Ap) Vg + p Xt 431 (17)
with probability o; and
X = (Ap)-ly (18)
t+] t+]

with probability 1 - a. (A more rigorous derivation of equations
(17) and (18) is given in Appendix A.) To solve for the se-

quence {E_x }':O’ use (17) and (18) to eliminate the Yi's from

vk - B
(2):

Et+3yt+j+1 T Ppay T Xpag T Cpay
=> (J‘D)Et+jxt+j+l = Aaxt+j - pyt+J = Xy + et+:j
- 2 -
=> (Ap)Etxt+j+l—(l+ha+kp )Etxtﬁj + aJ\pEtxt+j_l = et+j (19)
for j 2 1. For j = 0, it must hold that

(Ap)E. x = (1+Aa+3\92)x + alpx = e (20)
tTt+1 t t-1 t

if 5 =2 (no replanning), or
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(1+la+hp2)x =e

(Ap)E i l

S
if 5 =1 (replanning occurs). In other words, equation (20)
always holds subject to the pseudo-initial condition Xg_1 = 0,
when St = 1.

Equation (19) is a nonstochastic difference equation in
Etxt+j that can be solved by traditional methods. The character-

istic polynomial of equation (19) is equal to

clzY = Qplzs™r = (Hekatxp2) + oipz
= ()2 L+ o beap™bap ) az) (21)
Let a(z) = -z=% + (A Llp~l+ap~l4p) - az. Then lim a(z) = -

z+ 0

-1, p -1 -0a. Defin-

and lim af(z) = —==. Now a(l) = h'lp'l + ap
Ztoo
ing g(a) = a(l), g(a) has a minimum on [0,1] at a = 1, where g(a)

=AL ol 4ol 4+ - 250, It follows that c(z) always admits a
L/

factorization .~

e(z) = col1ez™)

1 (1—022)

where c¢q, ¢p € (0,1). (For @ = 0, ¢cp = 0, and for @ = 1, ¢ =
32.)
The solution for Etxt+j may thus be written in feedback-

feedforward form as

-1

; (22)

o o

Il ~18

Etxt+j = ceEtXt+j-1 . ©1%+j+x°

0
for j > 1, To solve for xi, I will now assume that ey follows the

first order difference equation e = Yey_;, Where [Y' < 1. Then

equation (22) reduces to
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_ -1_J
Etxt+J = C2Etxt+j-l +c Y et/(l'clY)' (23)

Suppose now that S, = 2. Using equations (23) and (17), equation
(9) may be rearranged to yield the following feedback-feedforward

law for Xt

X, = foet + flxt-l (2k)

(A complete derivation of equation (24), along with expressions
for fo and fl’ can be found in Appendix B.) In the case that St =

1, one can show, using equations (18), (9) and (23), that
x, =f.e . (25)

In other words, X will have two representations, depending on the
current value of S;.

Finally, note that having solved for {x.}, the equi-
librium values of [yt} may be obtained either by using equation

(9), or equations (17) and (18).

3. Interpretations of the Results

Equation (22), given knowledge of the {e.} sequence, can
be used to generate time t forecasts of xt+j and Ye4je Equation
(22) can also be used to generate what I will term "impulse re-
sponse functions," by which is meant the difference between two
hypothetical forecasts of xt+j or yt+J’ the first given a hypo-
thetical path for {e;} of the form (...,et_2,et_l,E£,O,0,...},
where e, is specified by the forecaster, and the second given a

t
pa.th {--o’et_e’Et_l,O’o,o, ao.} fOI‘ {et}-
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What is unusual about such "impulse response functions,"
in the case that 1 > a > 0, is that these functions will vary
randomly over time. While these impulse responses will be identi-
cal for St = 2, in the case that St = 1 the scaling of the impulse
response will be determined by the magnitude of Xy _1° Such random
impulse response functions are evocative of Sims' (1982) random
coefficient VAR methods for forecasting series. While the degree
of coefficient randomness generated by this simple example does
not begin to capture the complexity of Sims' specification, this
might not be the case for an example with more complex policy
dynamics.

The above example also yields an insight concerning
policy analysis not entirely inconsistent with Sims' (1982) views
on the subject.if In the example above, to evaluate the perform-

oo

ance of a policy { -g» one needs to know the probability a.

t
%eess

Knowing the sequence { t is not sufficient, for policies are as

)

in Sims' Weltanschauung, regularly recomputed subject to the

evolution of {St}. Of course, it is extremely doubtful that Sims'
world view included policy replanning only driven by some exogen-—
ous process such as {S;}. The exogeneity assumption maintained in
the examples above, however, may represent a useful first step in
constructing positive models of policymaking.

Finally, the example above may shed some light on the
"rules versus discretion" debate. Suppose that {e;} is some
easily forecastable process, e.g., a Gaussian ARMA process, and

that {e.} and {S.} are independent at all leads and lags. This
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modification has the effect of making the policy problem of the
example less trivial for the cases a = 0 and o = 1. Appealing

once again to certainty equivalence, equation (22) becomes

[+ <]

-1 k
Y ¢, E.e i (26)
k=0 1 “ErEeyek

T T T

Under an AR(1) specification for {e}, the solution for
{xt} and {yt} will then be the same as given for the certainty
case above (see egs. (25), (26), (17), and (18)).

Assume that initially o = 0, so that precommitment is
impossible. Then it is intuitively clear that the performance of
"policy" might not be linearly increasing in o. For example,
increasing the probability of precommitment from zero to 1/10 may
result in only a slight improvement of policy performance. If one
imagines the recent 'monetarist experiment" in the U.S. as such a

change from a = 0 to a small value of a, the results of this

experiment are perhaps not surprising.

4. Numerical Examples

In this section, numerical examples are presented that
illustrate properties of the model presented in Sections 2 and 3.

Example 1. In this example, it is assumed that p = 2, A
= .1, and that e = 1 for all t. Equilibrium values of x; and ¥
are plotted in Figures 5 and 6, respectively. Values are plotted
for a = 0, 1, and .5 (for one realization of {8:}).

Examples 2-10. In these examples, ey is stochastic, and

is assumed to follow the process
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where {u,} 1s Gaussian white noise independent of {5¢1,
2
E =1,
and ut
In each of the examples, the parameter p is equal to
1.1. The parameter )\ takes on the values 1, 10, and 0.1, and a
takes on the wvalues 0, 1, and .5. A random number generator was

used to construct artificial e, and S, (for the a = .5 case) time

series of length 500. The same artificial series were used for

all simulations. For every example, the statistic S(a,A)

svar (y) + A svar (x)

"

was calculated, where "svar" means sample variance. A sample

performance index was then calculated as

P(a,A) = 100(S(a,r)/S(0,1)).

The index P gives the sample performance of a policy as a percent-
age of the sample performance of the best consistent policy.

The results of the simulations are reported in Table
1. These results suggest that performance improves (i.e. P falls)
as the probability of precommitment o rises. Evidently, for the
example considered the advantage of precommitment increases with
the weight A attached to policy fluctuations. Also increasing
with A is the degree of nonlinearity in the improvement of policy
performance due to increasing a. The reader should note that the

generality of the last two effects is far from obvious.
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Appendix A. Derivation of Equations (17) and (18).
Let the random process {wi} be defined as
w. = min {t-j},
t
J
Sotoj‘t,sj=l-

That is, Wi equals the number of periods since the last adminis-

tration change. The process w, is a Markov chain with state space

= {0,1,2,...}, and transition matrix T given byé-/
(1-a) @ 0 0 +us ]
(1-a¢) 0 @ 0 4ue
(1-a) 0 0 & sus .

- -

. . L] L] .

Now conside; the period O administration's problem. Since it is

assumed that wy = 0, for t » 0 it must be true that

wt € {0,1’-.0,t}l

Assuming Xy and yi to be wt—measurable, and from the definition of

Wy, One can define

% @ xt(t);
t -
xt+j = xt+j(j)'

Under this notation, equation (9) takes the form



£ P? £+
-1 37 _j t+j
-p 'zo o ) xt+j(wt+j)Pr{wt*ﬂ|wt}. (A.1)
J t+j=0

The time 0 administration's problem is to maximize, by

the expression

choice of {xt(t)}t:O’

A 2
+*5 X t(wt) Pr{wtlwo}

subject to (9), and wy = 0. To solve this problem, use the

Lagrangian L =

I 1 Gy B 3 x w)P)8, Gy, ()

t+]

_0(xt+j(wt+j)Pr{W£*jIW£})

xPr{wtlwo} g

Differentiating L with respect to y,(t) and x(t) yields

553%37 = [yt(t)+8t(t)]at; (A.2)
t
t
3L _ -1 -1,j I
v, (6 - [Ax, (t)+0 Jzo(p 70, _,(t=3)]a", (A.3)

using the fact that Pr{wt=t|w0=0} = a. Setting (A.2) and (A.3)

equal to zero and solving yield
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x4(0) = (Ap) ™Yy, (0)
and

x, (1) = () Ty, (6) + o7k, ) (1)
Solving similar optimization problems for administrations t = 1,
2, esee yields

x,(0) = (xp) 7y, (0);3 (A.4)

x Gr) = () hy, () + 07 x (e 1),

for w, > 0, and w,_; =w_ - L. (A.5)

Equations (A.4) and (A.5) correspond to equations (17) and (18) of
the text. To justify equation (19), note that (A.4) and (A.S5)

imply that for k = 0, <., t,

E(xt+J(wt+j)|Wt+j=0’wt=k) )

-lE(Y (Wt+j)‘wt+j=0,wt=k) = (lp)-ly (0);

o) KTy £+

- -1, y
E(xt+J(Wt+j)lwt+j>0,wt—k]-(xp) E(yt+j(wt+j)lwt+j>0,wt—k)

+ o E(x (

t4j-1 Wt+J—1)l >0,w, =k).

V4 t

Now use the following facts:

(1) B(xg 4 (7 v, =x) =

k)l

i

(xt+j(w£+j)th+j=0’wt=k)Pr{wt+j=Oiwt=k}

)|

+ E(xt G

4 g >O,wt=k)Pr{wt+J>O|wt=r:}

Yo+
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(2) Pr{wt+J=01wt=k} =1 - a for all k, and
Pr{wt+j>0|wt=k} =l
(3) B(Xy g1 g1 [y a0y ) = Blxg g g G0y g Vv =),

That is, simply knowing Wt+j > 0 does not provide any information

about Vi4g-1°

It follows from facts (1)-(3) that

(g ) g k) = ) TE(y, (v, ) |, =)

E[xt+j wt+j

-1
+ ap E(xt+j—l(wt+j—l)iwt=k]’

or in the shorthand notation of the text,
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Appendix B. Solution for {xt}.

From equation (24), it follows that

E J%e

— gz
txt+j cglxt-cet] + Y

t!
for j » 0, where

g = leglle ) (e y )17

It then follows that

3 _
.E o Etxt+J 808 + 81X, >
J=0
where
~ -1,-1 “1,-1
ag = e[ (1-vp77) T=(1-cp7) ]
and
-1:=1
a, = (l-c2p Y

Substituting the above into equation (9), one obtains

=] =1 =
Yy - P agx, * [-p ay*+(Y-p) Je

1= £

abbreviated as

Yy = Dgey * DyXye

Finally, equation (17) implies, for §; = 2,
Yy = J\pxt - Ax

t-1

Equating (B.1l) and (B.2) yields

(B.1)

(B.2)
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_ L - -
x, =07 x 1+ (0 Tbyx + ()b

which in turn implies equation (24), where

£= (1-(x) 10, )T (h0) "o

1 0’

and

£y = 0T (-(0) T )

Similar substitution when Sy = 1 yields equation (25).
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Table 1
Performance

Index

Example N o P(%)
2 il 0 100.0
3 % 1 58.6
ly 1 b 76.9
5 10 0 100.0
6 10 1 44,0
7 10 0.5 Th.6
8 0.1 0 100.0
9 Q. 1 91.2
10 0.1 0.5 95.8
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Footnotes

/1t is crucial to note that fact (1) does not yield
information about the probability of the current administration
remaining in power. Instead, it gives the probability that some
administration will be keeping or losing its mandate at wvarious
times in the future.

.ngn alternative methodology for solving these problems
is presented by Whiteman (198L4).

QJIn the following expressions, note xg is nonstochas-
tic, although yi, X, and Bt are stochastic.

EjSince a(z) is continuous on (0,»), approaches —= on
the endpoints of that interval, and is positive at z = 1, a(z) and
hence c(z) must have one root in (0,1) and another in (0,=).

inor this paragraph, I plead the customary disclaimer
issued when attempting to interpret any paper by Sims.

éjMarkov chains are extensively discussed in Chung

(1975) and Hoel, Port, and Stone (1972).
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