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Notes on Behavior Under Uncertainty

We assume that the individual's preferences can be described

by a utility function that makes utility depend 
on the amount of the one

good that the individual consumes. So we write

(1) Utility = U(C)

where C is the amount of the good consumed. We assume that utility is

increasing in consumption, U'(C) > 0; that the marginal utility of

consumption, though positive, decreases with increases in C, U''(C) < 0;

and that U(C) is bounded for Cu[0,m).

We assume that the individual is making plans for the future,

which we collapse to a single date in the future. To incorporate the

existence of uncertainty, we assume that there are n mutually exclusive

states of the world, indexed by e = 1, 2, ... , n. The individual has

a set of subjective probabilities 7(0) > 0 giving the probability that

he assigns to the occurrence of state ci.

An individual's claim to future consumption 
goods will in

general depend on the state of nature that happens to occur. We let

(,()) denote his consumption if state 0 occurs. The individual is assumed

to maximize his expected utility

n
v = C (0)U(C(i)),

0=1

subject to certain constraints.
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Suppose that there are only two states of the world, so that

n = 2. The individual's expected utility is then

v = T(1)U(C(1)) + T(2)U(C(2)).

Along lines of constant expected utility (indifference curves) we have

dv = 0 = 7(1)U'(C(1)dC(1) + 7(2)U'(C(2))dC(2)

which implies that

dC(2) _ n(1)U'(C(1))
dC(1) 7(2)U'(C(2))

dv = 0

Expression (2) gives the slope of the indifference curve. The concavity

of the indifference curve is found by differentiating (2):

2 ,,TI(1)U'(Cll))U" (C(2)) d C 2)
d C(2) _ r (1)U'(C(1)) + dC(1)

dC(1) 2  (2)U' (C(2)) H(2)U'(C(2)) 2

The slope of the indifference curves increases as C(1)/C(2) increases,

implying that they are convex.

Next notice that for C(1) = C(2), we have

() dC2 _1L)
dC(1) 7T(2)

dv = ()

C(1) = C(2)

Bundles of C(1), C(2) for which C(1) = C(2) correspond to certain claims,

since regardless of the state that occurs, the individual is able to

consume the same amount. A 45 line through the origin in C(1), C(2)

plane thus contains all certain bundles (see Figure 1), so that it is

appropriately called the certainty line. Along the certainty line, the
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slope of the indifference curves

u ,) equals -(1) /7(2), independently

of the form of the utility function-

o, . so long as the form of the utility

,, unction does not itself depend on

the state of nature that occurs.

The certainty line is thus an

Ci)

Figure 1 "expansion path."

Consider an individual whose initial endowment consists 
of a

certain claim on Y units of consumption goods. The individual is then

confronted with a bet which he can undertake in any amount a so long as

Y If -i, units of the bet are taken, the individual will receive an

additional (tX(1) units of the consumption good if state 1 occurs, but

must sacrifice , units of output if state 2 occurs. Thus the payoff,

(,(s)t (d(((l), (IC(2)) associated with taking , goods worth of the bet is

(X( 1), -). The bet is said to be "favorable" if its expected value in

terms of goods is positive. The expected value of the bet's payoff

stream is

-(1) (X(1) + 1) - x

The bet is then favorable if

(1),(X(1) + 1) - >  0

U t

( /' ) n (1( ) X ( 1-)----+ 1 '

The bet is said to be "fair" if the above inequality is replaced by an

equality.
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,( 9 If the individual undertakes

l ie c units of the bet, his claims

to consumption across states

of nature become

C(1) = YO + cX(l)

"/n ...... C(2) = Y - ,

Figure 2 
j o() t o

from which we can deduce that by varying the amount of the bet taken,

(, the individual can substitute C(1) for C(2) at the (constant) rate

(5) dC 2 = _ 1
dC(1) X(1)

So -1/X(1) is the slope of the "budget line" through (YO,Y0 ) along which

the individual can trade claims to consumption in state 1 for claims to

consumption in state 2. If a = 0, the individual's claims remain (YO,Y 0).

If x = YO, the individual's claims become (YOX(1) + Y0, 0). The straight

line connecting these two points is the individual's budget line (see

Figure 2).

As long as the slope of the budget line exceeds the slope of

the individual's indifference curves at YO,Y, the individual can increase

his expected utility by undertaking at least a small part of the bet.

This requires that

X(1) 7(2) 1-T(1) '

from equations (3) and (5). The above inequality can be rearranged to

read

111(1) > 1

X(1) + 1 '
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which is identical with inequality, (4), the condition that the bet be

favorable. For our special case, we have thus proved Arrow's proposition

that an individual will always take at least a small part of a favorable

1

Within this framework, we now consider securities that entitle

the individual to alternative patterns of consumption across our two

states of nature. Consider a security, one unit of which entitles the

owner to receive X(1) units of the consumption good if state 1 occurs

and X(2) units if state 2 occurs. If the individual buys units of the

security, he is entitled to receive a pattern of returns (-AX(1), 1X( 2 ))

across; states of nature. In Figure 3, one unit of the security gives

S) the returns labeled by point A.

Suppose that the security costs

- i(the individual S units of current

output per unit of security.

If the individual has an investment

Figure 3

portfolio worth Y units of current output, he could then buy YO/SX

units of the security and obtain a pattern of returns (YOX(1)/SX YOX(2)/SX)

across states (of nature. Point B in Figure 3 depicts such a pattern of

returns.

Now suppose that there is a second security, one unit of which

gives a pattern of returns (Z(1),Z(2)) across states of nature, where

Z(1) and Z(2) are both denominated in consumption goods. If one unit of

the security costs SZ , the individual could purchase Y0/S units of the

security if he put his whole portfolio of Y0 current goods into that
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security. Then his pattern of returns across states of nature would be

(YOZ(1)/S ,YoZ(2)/S ). Such a pattern of returns across states is

labeled D in Figure 3.

Now suppose that the individual considers putting a percentage

A of his portfolio into security X, and 1-A into security Z. He would

then purchase AYo/SX units of security X, and (1-A)YO/SZ units of security Z.

Hlis pattern of returns across states of nature would then be

(6) (C(l),C(2))= YO(AXl + (1-)Z ) 1  - +S ( )Z

Such points are linear combinations of (X(1),X(2))YO/S X and (Z(1),Z(2))YO/Sz,

and so lie on the straight line connecting points D and B in Figure 3.

A change in A brings changes in the consumption stream across states

according to

dC(2) X(2) Z2) 1 YodA,
S x  S Z

so that the "budget line" along which the consumer can alter the pattern

of claims to the consumption good across states of nature has slope

X(2) _ Z(2)
d2 S SdC±2) X Z

dC(1) X(1) Z(1)
SX SZ

For this slope to be negative, the numerator and denominator must be of

opposite sign, which means that one security must not dominate another.
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That is, one unit of current output's worth of security X must offer

more consumption in state 1 if it offers less in state 2 than does one

unit of current output's worth of security 2.

By suitably choosing A (which need not be between 0 and 1),

the individual is able to obtain any combination of C(1) and C(2) in the

nonnegative quandrant satisfying equation (6). A negative . or one exceeding

unity indicates that one security or the other is being sold short or being

issued by the individual (see Figure 4). Notice that by choosing his

portfolio suitably, the individual

can set C(1) equal to C(2), so that

/ n 4 he need bear no risk, if that is

his desire.

The individual chooses

his portfolio so as to maximize

Figure 4

his expected utility subject to the budget constraint (6). Usually, this

involves choosing A so that it corresponds to a point of tangency between

an indifference curve and the budget line. As always, however, corner

solutions are possible.

Suppose now that a third security, security y, is added to our

setup. The security has returns across states (y(1)/SV ,(2)/S ) measured

in consumption goods in states 1 and 2 per unit of current consumption

good; S is the price of one unit of the security in terms of current

consumption goods Now unless the returns (y(1)/S ,y(2)/S ) can be

expressed as a linear combination of the returns of securities X and Z,

one of the securities will not be held. To determine which of the

securities will be held, simply plot the points (X(1)/SX,X(2)/S X ) ,
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(Z(1)/S ,Z(2)/S ), and (y(1)/S ,y( 2 )/S ). Then determine which straight

line through any two of the points provides the individual with the best

opportunity locus or budget line in C(1), C(2) space. These two securities

will be held while the third will not (see Figure 5). The result will

then be that the price of the

ci+) security that isn't held will

fall (or perhaps the prices

of the others will rise)

until all three points lie

along the same line. Thus

arbitrage requires that where

Figure 5

there are two states of the world there be at most two securities whose

returns are linearly independent. Similar reasoning implies that where

there are n states of the world, the returns on at most n securities can

be linearly independent (i.e., the rank of the matrix of returns on

securities across states is at most n).

It is sometimes analytically convenient to work with "pure"

securities that pay off one unit of consumption in state i and nothing

in any other state. Such securities were introduced by Arrow and are

known as Arrow-Debreu contingent securities. The return vector for

such a security lies along

one of the axes. Thus, in our

2-state example, one unit of

a state 1 contingent security

offers a return vector (1,0),

while one unit of a state 2

....... _.__ _security offers a return vector
)Figure 6 (,1)(see Figure 6).

Figure 6 (O,l)(see Figure 6).

1
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Even where such contingent securities don't literally exist,

it is possible effectively to "trade" them and to compute implicit

prices for them where the number of ordinary securities equals the

number of states of nature. For example, consider our 2-state example

where securities X and Z exist. Security X derives its value from the

value that consumers attach to the consumption stream the security

delivers. Let p(i) be the amount of current output an individual would

sacrifice to obtain one more unit of consumption in state i. Then it

must be so that

SX = X(l)p(l) + X(2)p(2)

(7)

SZ = Z(1)p(1) + Z(2)p(2),

i.e., the price of each real security must reflect the value of the

consumption streams that the security represents a claim on. The above

equations can be solved for p(1), p(2), the implicit prices of the

contingent securities, so long as X(1)Z(2) - Z(1)X(2) # 0, i.e., so long

as the returns on securities X and Z are not linearly dependent.
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Liquidity Preference as Behavior Towards Risk
2

Tobin's explanation of the demand for money as emerging partly

as a result of wealthholders' desire to diversify their holdings can be

viewed as an application of the theory just described. Suppose that

there are two states of the world and that there are two assets: a

risky asset that pays off X(O) in state 6 = 1, 2 for each unit of current

output's worth of the asset; and a riskless asset called "money" that

pays off one unit of current output, regardless of state, for each unit

of current output invested in it. From our preceding discussion, we

know that the household will hold at least a little of the risky asset

provided that the expected rate of return is positive, i.e., provided

that holding the risky security amounts to undertaking a favorable bet.

By investing one sure unit of output ("money") in the risky asset, the

investor obtains an expected return of

T(1)X(1) + TT(2)X(2)

which must exceed unity if the security is to offer the individual a

favorable bet. Notice that for money to be held, it must be so that

either X(l) < 1 or X(2) < 1, or else the risky asset would dominate

money. The expected rate of return on the risky asset, denoted by r, is given by

r = .(1)X(1) + f(2)X(2) - 1.

It is easy to show that if we start from a position in which r = 0, an

increase in r, i.e., an increase in either X(1) or X(2), will cause the

investor to increase his holdings of the risky asset and decrease his

holdings of money. (This is an example of Arrow's proposition that at

least a small part of a favorable bet will be undertaken. We leave it



- 11 -

to the reader to work out the details.) Clearly, by risk aversion, if

r = 0, the investor will hold his entire portfolio in terms of money.

Notice that we have established that at low enough interest rates, the

investor's holdings of money will vary inversely with the interest 
rate

on risky assets.

At higher interest rates, an increase in r (i.e., in X(1) or

X(')) may or may not cause holdings of money to contract. As usual,

there are two effects: a substitution effect inducing a movement along

an indifference curve, an effect which leads to lower money holdings;

and a wealth or income effect, which may or may not 
offset the substitu-

tion effect, depending on the shape of the investor's indifference

curves.

Notice that it is possible that the investor will want to hold

no money (though if r > 0, he will always want to hold some of the risky

asset). This will occur if the rate of return on the risky asset is so

high, that the situation is as depicted in Figure 7, where the budget line

is flatter than the indifference

curve even where the investor's

entire portfolio is in the risky

Ye ao asset.

(Y,Y 0 ) - returns vector if whole

portfolio held in money.

(Y X(1),Y X(2)) = returns vector

if whole portfolio held in risky

asset.

Figure 7
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The theory described above has often been embodied in a somewhat

different form, set forth by Tobin. As above the individual is assumed

to maximize expected utility

n
v = )(0)U(C(0)).

= 1

If we know C(O) and T(8) for each 0, it is straightforward to deduce a

probability distribution g(C) which gives the probability that consumption

will obtain the value C. In particular,

g(C)-[ T 71(), T = 0C(6) = c .
OET

In the finite-state case currently under discussion, g(C) will obtain a

nonzero, positive value at only a finite number of n' n values of

consumption C. Denote these values of consumption as C l , C 2, ... , Cn,.

Then expected utility v can be written as

n'

(8) v = Y U(Ci)g(Ci)'
i=l

n

where ) g(C.) = 1.
i=1

In a setup with a continuum of states of the world and where

consequently C is allowed to take on any real value, the probability

associated with consumption occurring in a neighborhood of width e

around (C is given by f(C;B) where f(C;B) is the distribution function

associated with C and B is a list of parameters determining that dis-

tribution. In this case expected utility v is

v = v(B) = fU(C)f(C;B)dC.(9)
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Here expected utility is a function only of the parameters B determining

the distribution of consumption. If there is only one parameter in B,

as would be true if C were distributed according to the Poisson distribution,

then expected utility would depend only 
on the value of that one parameter.

If there are p parameters in B, then expected utility 
depends on all p

of them.

The theory has been developed for distributions f(C;B) which

can be characterized by two parameters--one measuring mean or central

tendency, the other measuring variance. The normal distribution is an

example of such a distribution, being completely characterized 
by the

mean and variance of the distribution. 
Members of the class of stable

distributions of Paul Levy are also characterized by two parameters.

Following Tobin, suppose B consists of the mean b C and standard

deviation o C of consumption, so that

f(C;B) = f(C;Uc , UC) .
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It greatly facilitates the analysis also to assume that f(C;B) is

a "stable" distribution. A variate Z with density f(Z;B 2) is said

to be stable if when another variate y with the same form of density

f(y;B ), perhaps with BZ j B , is added to Z, the result is to produce

a variate X = Z + y obeying the same probability law f(X;BX). Assuming

the distribution f(C;B) is stable is natural because stable distributions

are the only distributions that serve as the limiting distribution in

central limit theorems. The normal distribution is the best known

of stable distributions. The central limit property of stable distributions

is useful here because the random variable C is often thought of as

representing a linear combination of a large number of independently

distributed returns on various investments, implying that it will

approximately follow a stable distribution.

Assuming that f(C;B) has two parameters, mean uC and standard

deviation o., and that it is also a stable distribution amounts to

assuming that it is a normal distribution. That is because the normal

distribution is the only (symmetric) stable distribution for which the

standard deviation exists. Then expected utility v is

v(~, ,o ) = o_ U(C)f(C; , )dC.

Defining the standarized variable Z as

C-u
C

Z e

we have that C = UC + oCZ. Then
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v= v(j C' C= f -z1U(C + CZ)f(Z;O,1)dZ,

where f (Z;0,1) is the standard, unit variance normal distribution.

Since expected utility v(%C,oC) depends only on the two parameters

lj ,, we can define indifference curves in the 0C' C plane, i.e., combinations

ol , and 0 that yield constant levels of expected utility. Along such
(, C

curves, we have

dv = 0 = dUJC U'(C + oCZ)f(Z;0,l)dZ

+ docf %ZI'(uC + aCZ)f(Z;0,1)dZ,

so that the slope of the indifference curves in V:C,C plane is

d KZU '(C+ CZ)f( Z ;0, 1 )dZ

f1) U'(11 +CcZ)f(Z;0,1)dz

Since i U 0, while f(Z;0,1) is symmetric the numerator on the right

is negative so long as C)C > 0 (negative Z's being multiplied by larger

U's than positive Z's); the denominator is positive since U' > O. Thus

the slope (10) is positive. To find the concavity of the indifference

curves, we differentiate (10) with respect to C to obtain
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d2 C Uz (iiC+oCZ)f(Z;O, l)dZ

doC 2  jU'(vC+ocZ)f(Z;O,1)dZ

duC

fu' (lc+Qz)f(z;0, )dz

duC

doC ZU''(UC+oCZ)f(Z;
0 , 1 )dZ

C

du 2

do / U' ' (C+oCZ)f(Z;O,l1)dZ.
C

In each case, the limits of integration are -o, o. Since Z 2 > 0 and

U'' < 0, the numerator of the first term is negative, making that term

positive, since it is preceded by a negative sign. The numerator of the

second term is also negative because in the large, U'' must be decreasing

in absolute value as C increases in order for U' > 0 while U'' < 0 for

all C1 [ O,o). This makes the second term positive. Likewise the third

and fourth terms are also positive, taking into account the signs

preceding them. Thus we have that

d2c
dc2
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which shows that each indifference curve has a slope that increases as

we move upward along a curve. An example of a map of such curves is

(1E1)'ic(t '(e in Figure 8.

/ It is convenient to use

equation (10) to compute the slope

of the indifference curves at zero

standard deviation. We have

Figure 8

fZU' ('c)f(z;Ol)dZ

fU' ( c)f(Z;() 1)dZ
ff(Z;O,)dZdoe

(1

-E(Z) - O
1

I
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The numerator equals zero, since the normal distribution is symmetric

about Z = 0, and since U'(i ) is independent of Z. Thus the indifference

curves have zero slope for c = 0. This property of the indifference
c

curves will be seen to reflect that an individual will always take at

least a small part of a favorable risk.

To take a specific example, suppose

U(C = --e a > 0.

Notice that

U'(C) = Xe > 0

U''(C) _= - 2 -XC
U"(C) = -Ae < 0

for C ( -, ° )

for C (-x",)

The density function for the normal distribution is

(C-f1) 2

1 2
f(C;u,o) - 1 e 2

ov/2

Consequently expected utility is given by

(C-p)2
2

1 -,AC 2
E(U(C)) - - -e e

c J2u
dC

2
-(\C + c 2)

1 oo-e 20 dC.

C) f2Tr
(11)
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Notice that

2 2 2(C-U) 2  2CG2 + C - 2C +Ac + 2 - 2
2 22i 2

2 2 2 2 4[C-(p-Xo )] + 2XAio - N

2Q

202

- -(- xprs + (- (1/2) iv) .
2

20

Subtituting the above expression into (11) gives

-A (U - ( 1 / 2 ) , 12 1 00
E[U(c) ] = -e I0

v2 7

22

e 2

But we know that

1 fY)

(J Y2Lii

(C-_') 2

22o dC = 1

For any v' and :0 O. So we have

Xc2

E[U(C)] = -e 2

Along curves of constant expected utility we require

2
- (1/2) ' =constant.

dC.

I
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So the mean, standard deviation indifference curves satisfy

dU- Xda = 0

so that their slope is

d- = A > 0 for a > 0.
do

and their concavity is

2
= > O.

2

do

This concludes our anlysis of our specific example for U(C).

Having characterized the individual's preferences, we now

describe his opportunities. Suppose that there is available to the

individual a safe asset that has the property that if he puts his

entire portfolio into this asset he will obtain a consumption stream

characterized by mean C0 and standard deviation zero. Suppose there is

also an alternative asset (or maybe a portfolio of other assets) such

that if the individual uses his entire portfolio to purchase this asset

he obtains consumption goods in an amount CoX where X is a normally

2
distributed random variable with mean X and variance X . If theX X
individual invests a proportion (1-A) in the risky asset and A in the

safe asset, 0 < A < 1 he receives consumption

C = AC0 + (1-A)COX.

Then the mean of his consumption would be

(12) PC = ACo + (1-A)CO x"

I



- 19 -

Notice that

C-1 = (1- )C0(X-o )

So that

(I ) oc = (1-a)CO X

Solving (13) for A, substituting into (12) and rearranging we obtain

U -1

(14) = C + ( x) -)c 0 < L < C
c 0 c - c- X

X

which gives the locus of combinations of lie' , attainable by varying

, l.i.'e mean li rises linearly with the standard deviation c, the slope

being ) (ix-l)/(X. Of course, the expected rate of return (.X-1) must

exceed zero for the opportunity locus to have a positive slope. This is

the condition that the risk be favorable. Such an opportunity locus is

depicted in Figure 9.

As we have seen, the

C, c-slope of the indifference curves

./o at (c = 0 is zero. That means

that if AX-1 
> 0, the individual

C, will always take at least a small

part of the risk, since then the

Figure 9 opportunity locus through (O,CO)

has a positive slope, permitting the individual to move to a higher

level of expected utility by taking some risk. It follows that beginning

from a situation where px-1 = 0, an increase in the rate of return on

the risky asset, i-1, will lead to a decrease in the amount held in the
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safe asset and an increase in holdings of the risky asset. Thus, for a

low enough rate of return on the risky asset, an increase in that rate

does cause a decrease in the investor's demand for the safe asset. For

higher values of the rate of return on the risky asset, however, an

increase in that rate will not necessarily lead to a decrease in holdings

of the safe asset, there being offsetting substitution and wealth effects.

We leave it to the reader to study these offsetting effects in the

context of the present graphical formulation of the theory. Needless to

say, all of these features of the analysis have their counterparts in

the state-preference version of the theory which we summarized above.

There are several unsatisfactory aspects of the theory that we

have just sketched. For the formulation cast in terms of the mean and

standard deviation of consumption, we have to assume that consumption is

normally distributed, which requires that we act as if consumption can

be an unbounded negative number. It is difficult to imagine negative

consumption. If to circumvent this difficulty we restrict consumption

to be nonnegative, we must pay for this by adopting a probability function

for consumption that lacks the statistical property of stability,

and so greatly weakens the appeal of the theory. But as we have seen

above, the essence of the theory can be cast in terms of the state-

preference analysis where the assumption that consumption has a normal

distribution need play no role.

As a theory of the demand for money, the theory is certainly

of limited applicability. For one thing, the occurrence of unforeseen

price level changes makes money a risky asset in terms of goods, so that

the "money" in the model above does not really correspond with the asset
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called money in the real world. For another thing, money is dominated

by assets like Treasury bills and savings deposits that are as risk-free

as money but offer positive nominal yields. At best, the above theory

is one about the demand for such assets, not money. To explain the

demand for money it seems essential to take into account the presence of

transactions costs.



- 22 -

The Modigliani-Miller Theorem

Throughout these pages, we have assumed that firms have no

bonds outstanding, that they retain no earnings, and so they finance all

of their investment by issuing equities. It is an implication of the

"Modigliani-Miller theorem" that our assumptions about these matters are

not restrictive.. In particular, Modigliani and Miller's analysis

implies that in the absence of a corporate income tax, the firm's cost

of capital is independent of whether the firm raises the funds by retaining

earnings, issuing bonds, or issuing equities. Moreover, Modigliani and

Miller's theorem was proved in the context of a model that explicitly

recognized the existence of uncertainty. These notes sketch the reasoning

of Modigliani and Miller by using the state--preference presentation of

5
Stiglitz.

We collapse the entire future into a single point in the

future. We assume that there is a finite number n of possible future

states of the world, each state representing an entire constellation of

possible outcomes of all sorts of events in the future. We let 6 = 1,

2, ... , n be an index over the possible states. In state 6 = 1, for

example, it rains two inches in Eugene, Oregon, Ali defeats Foreman in

the ring, Nixon wins a third term, and so on. States 0 = 2, ... , n

correspond to different outcomes of this set of events. An individual's

happiness, indexed by U, in the event that state I prevails depends on

the usual way on the amounts of n goods that he consumes:

U = U(ql (),.. .,qm( )) U/ i() > 0

U ( ) concave
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where qi(0) is the amount of the i good consumed by the individual in

,;t tc (), i 1, ... , m. We have assumed that the form of the utility

function U( ) is independent of the state 0.

The consumer's notions about the likelihood of various states

of the world occurring are supposed to be summarized by a set of subjective

probabilities '(1), r(2), ... , 7(n) that obey

01

where T(0) is the probability that the consumer assigns to state

occurring. Individuals are assumed to maximize expected utility v:

I1

(1) v =  i ( n(O)U(q ( )," ". ' m ( ) ) "

The consumer is assumed to come into a certain endowment qi of claims to

goods i - i, ... , m, should state 0 occur, J =1, ... , n. It is assumed

that there exist competitive futures markets in which individuals trade

claims to the ith good in state t; prior to the occurrence of the state.

The individual faces a price pi(O) at which he can buy or sell whatever

claims he wishes on the ith good contingent on state occurring. The

value of the consumer's endowment is

n m 0

S Pi()qi 
) "

-1 L= 1

The consumer maximizes expected utility v subject to

n m In mi

(2) i= Pi(o)qi ( ) = Pi()qi(

0=1 i=1 E=1 i=l
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which states that the market value of his endowment equals the market

value of the bundle of contingent commodities that he purchases. Where

A is an undetermined Lagrange multiplier, the consumer's problem can be

formulated as maximizing

n m0

J = -()U(q (e) m..,q (e)) +( Pi(e)(qi(e)-qi(e)
e=1 i=1

The first order conditions are

(3) ( i() + pi() =  0 i = 1, ... , m
7q )(0) i

- 0

Dividing (3) for E) and i by (3) for 0 and j, we have

_ U
Sqi(0) p (0)

(U ~(0) i

pi(e)

which is the analogue of the familiar static marginal equality for the

household. From (4) and the budget constraint (2), demand curves for the

nn contingent commodities can be derived. By aggregating these demand

curves over the set of all consumers, market demand schedules can be

obtained, which together with total market endowments permits computing

a general equilibrium in which the prices p.i(), i = 1, ... , m, n = 1, ... , n
1

are determined.

Arrow 6 has shown that consumers are just as well off where

these nm markets in m commodities contingent on state 0(=l,...,n)

occurring are replaced by n markets in "contingent securities," with one

security for each state. Each security promises to pay one dollar

should state I occur. Following the occurrence of a state, consumers

then trade the m goods as described by the standard static model.
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It is straightforward to add production to the model sketched

above. We consider such a competitive model in which there exists a

complete set of n markets for the n contingent securities, each promising

to pay one dollar if state 0 occurs in the future. The model is assumed

to possess a general equilibrium in which the equilibrium present price

of a claim to one dollar in state 0 is p(8). Notice that the price of a

n

sure dollar next period is Y p()), which can be interpreted as the

6=1

reciprocal of one plus the risk-free rate of interest. The assumption

that there exist perfect markets in the contingent securities for all n

states of the world means that it is possible to insure against any

risk. Individuals need bear no risks if that is their preference.

We will assume no taxes are present. Now consider a firm

whose prospective returns, net of labor and materials costs, but gross

of capital costs, are X(O) dollars in state 6. Suppose that the firm

issues an amount of B dollars worth of bonds. The firm now promises to

pay (r+l)B dollars to its bond holders next period, provided that it

does not go bankrupt, i.e., provided that X(8) > (r+l)B. If the firm

(loes go bankrupt, i.e., if X(O) < (r+l1)B, then the bond holders receive

only X(()). Thus the realized rate of return on bonds r( ) depends on

the state of the world:

r + 1 if X(O) > (r+l)B

r(0) + 1 ={X(l
if X(0C)) < (r+l)B.

Only if X(0) > (r+1)B for all C, is r(0) equal to the promised coupon

rate r for all ).
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The value of the firm's bonds must equal the sum of the

values of the contingent securities that the bond implicitly consists

of. For each state in which the firm doesn't go bankrupt, the bonds

will in total pay off (r+l)B. The present value of those returns is

(r+l)B p(0) where S = X() (r+l)B

For states 0) in S' - 0X(O) < (r+l)B}, in which the firm goes bankrupt,

the bonds pay off X(O). So the present value of payments in those

states is

B ): X(l}) p(0)
()FS'

The total present value of the firm's bonds B must thus satisfy

B (r+)B Y p(O) + B I XB) p(o )
0E:S eCS'

Dividing by B and solving for (r+1), we obtain

1- X()
S' p(0 )

E-S pB(r+l) '

which tells us that the rate of return a firm's bonds must bear depends

on the firm's probability of defaulting, and so on the number of bonds

it has issued. Notice that if there is zero probability of the firm's

going bankrupt, S' being empty, r equals the risk-free rate of interest.

The firm's equities bear a payout stream across states of

nature given by

X(O)-(r+l)B if X(O) > (r+1)B

0 if X(0) < (r+l)B.



- 27 -

As with bonds, the value of the firm's equities must equal the sum of

the values of the contingent securities that the equities implicitly

represent. So we have that the present value of equities E is

(f>) t< -= 1 (X(())-(r+l)B)p(
(if

Substituting for (r+l) from (5)

E = , p(r))X() - B

, p(0)X(0) -

i)F S'

in the above expression gives

1 - x(3) \
p(B)9_S' B

B + L X(O)p()

E = ), )(h)X((1) - B
RSUS'

o r

E + B = p()X().

, SUS'

Equation (8) states that the total value of the firm's debt plus equity

equals the present value of the firm's return across state of nature,

evaluated at the price of claims to one dollar contingent on the associated

states of nature. The total value E + B is therefore independent of the

ratio of debt to equity.

Now assume that the firm is contemplating a project that costs

C sure dollars today, and that will cause the firm's returns to change

by dX((1) in state I(. The value of stockholders' equity if the project

(1)

(8)
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isn't undertaken is given by (7). If the project is undertaken, the

value of the original stockholders' equity will be

E' =  p(O)X(O) - B + p(E)dX(O) - C.

0 G-S

The value of the original stockholders' equity is increased by undertaking

the project so long as

) p(O)dX(O) - C > 0;

the project ought to be undertaken by the firm so long as the above

inequality is met because it will increase the value of the equity of

initial stockholders. This is true regardless of whether the project is

financed by issuing bonds or more equities. In particular, notice that

the rate of interest r on the firm's bonds, which depends on the volume

of bonds that the firm has outstanding, is not pertinent in helping the

firm determine whether or not to undertake the project.
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Effects of a Corporate Income Tax

We now suppose that the firm's profits net of interest payments

to bond holders are taxed at a corporate profits tax rate tK. The

returns to stockholders then equal (1-tK)(X(8)-(r+l)B) for states in S,

i.e., states satifying X(0) > (r+l)B, and zero for states in which

bankruptcy occurs. The interest rate r on the firm's bonds continues to

obey (5). The value of the firm's equities is now given by

E = ) (1-tK)(X(0))-(r+l)B)p(e).

Substituting for r from (5) in the above equation and rearranging gives

(9) E = (1-tK) Y X(f)p(O) - B + tKB.
0=1

For t K 0, the value of the firm, E + B, varies directly with the stock

of bonds outstanding. Equation (9) thus predicts that it is in stock-

holders' interest to have the firm levered an indefinitely large amount.

The presence of the corporate income tax implies that there is an optimal

debt-equity ratio for the firm (one indefinitely large) and thus causes

the Modigliani-Miller theorem to fail to hold.

We should note that matters become much more complex when

individual income taxes with different rates for interest income and

capital gains are included in the analysis.
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What it Means for There to be Markets in

Contingent Securities

Suppose that markets for the n contingent securities do not

actually exist and that claims promising one dollar if state 6 occurs

never are traded. Instead, as in the real world, there are n' different

companies each selling claims entitling the owner to share in the company's

profits. It is easy to show that so long as there are more independent

companies than states of nature, it is as if there existed markets in n

contingent securities, since by buying and selling actual securities in

the proper fashion, the individual can obtain any desired pattern of

returns across states of nature.

th
We suppose that the i firm's returns across states of nature

are given by Xi(0), 0 = 1, ... , n. Select n such firms each of whose

patterns of returns across states of nature are not linearly dependent

on the returns of the remaining (n-1) firms. That is, for each i =

1, ... , n the vector (X i (1),X i (2),...,Xi ( n )) cannot be written as a

linear combination of the (n-l) vectors (X.(1),X.(2),...,X.(n)) for

i i. Let the market values of our n firms be V1, V2,..., Vn. If

there were n contingent securities, each promising to pay one dollar in

state () and having price p(8), the values of the n firms would have to

obey

=1

n

V2 = X2(0)p()
0=1

n1

V X(O)(O)
n =I n
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or in compact notation

(10) V = Xp

V I X1( 1) X 1 ( 2 ) . . .X1 ( n )  p(1)

where V = . , X = . , p =

Vn Xn(1)Xn(2)...Xn(n) p(n)

Since X is of full rank, (10) can be used to solve for p, giving

(!I) p = XV.

Equation (11) tells us how to unscramble the implicit prices of the n

implicit contingent securities from the market values of n firms and

the patterns of their returns across states of nature.
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