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1. Introduction

In this paper, we propose new recursive methods for studying repeated games with

private monitoring. Our contribution is twofold. We present a model of repeated games with

infinite histories — that is, games in which time extends infinitely backward and forward

— and establish new set-based methods for verifying the equilibrium conditions for a large

class of stationary strategies. For a subset of this class, strategies which depend only on the

players’ signals in the last k periods, these methods allow the construction of all pure strategy

equilibria. We also establish a connection between equilibria of games with infinite histories

and correlated stationary equilibria of traditional games with a start date and derive simple

necessary and sufficient conditions for determining if an arbitrary correlation device yields a

correlated equilibrium. This allows, for games with a start date, the construction of all pure

strategy sequential equilibria in this subclass.

Games with infinite histories are interesting in their own right. Our model lets us

abstract away from the inherent non-stationarity of the set of possible histories that plagues

games with a start date. A long tradition in economic theory is to use the repeated game

model to study the dynamic provision of incentives because in the case of perfect or public

monitoring, such models offer a highly tractable stationary environment without end-of-

horizon effects. However, with private monitoring, the stationarity is broken by beginning-

of-horizon effects: the set of possible private histories changes through time and with it the

possibilities to coordinate play among players. Our model of repeated games with infinite

histories solves this problem.

Our formulation is simple. A joint strategy is a mapping from each player’s privately

observed infinite history to how he plays today. An equilibrium strategy is one where each



player’s mapping, given what he can infer regarding what his opponents have observed, is a

best response to the other players’ strategies.

We pay particular attention to strategies which can be represented as finite automata,

that is, where private histories are grouped into a finite number of private states and a

player’s action depends only on which private state he is in. For this class, we develop

recursive methods on sets of beliefs for each player about the private state of each of his

opponents. The key is that if all players’ strategies are finite automata, a particular player’s

private history is relevant only to the extent that it gives him information regarding the

private states of his opponents (a point first made by Mailath and Morris (2002)). This lets

us summarize a player’s history as a belief over a finite state space, a much smaller object

(a point also made by Mailath and Morris (2002)). The advantages of working with sets

of beliefs are two. One is that it is necessary and sufficient to check incentives only for

those beliefs lying on the boundary of the set of beliefs which can be generated by infinite

histories (Lemma 1). The other advantage of working with sets of beliefs is that these sets

can be readily calculated using recursive methods which look similar to those developed by

Abreu, Pearce, and Stacchetti (1990) but which operate on sets of beliefs rather than sets of

continuation values (Lemma 4).

We also connect our results on games with infinite histories to the more traditional

(and more problematic) formulation of games with a start date. In this part of the paper, we

first show that any equilibrium of the game with infinite histories can be used to construct

a correlated equilibrium of the corresponding game with a start date, where the correlation

device sends each player a fictitious private history. We then develop methods for verifying

whether an arbitrary correlation device signaling initial private states, when coupled with
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finite state equilibrium strategy of the game with infinite histories, forms a correlated equi-

librium. Since sequential equilibria are examples of correlated equilibria (with degenerate

signaling devices), and since strategies which depend only on the signals a player has seen in

the last k periods are finite state strategies, these methods deliver necessary and sufficient

conditions for constructing all k-history dependent pure strategy sequential equilibria.

Finding equilibria in repeated games with private monitoring is known to be difficult.

See, for example, the work of Kandori (2002) and Mailath and Samuelson (2006), Chap. 12.

Among several difficulties, a central one is that with private monitoring, the recursive struc-

ture of public monitoring games is lost. The continuation of (sequential) equilibrium play in

a game with private monitoring is not a sequential equilibrium, but rather a correlated equi-

librium in which private histories function as the correlation device. But as Kandori (2002)

notes, the correlation device becomes increasingly more complex over time. By introducing

infinite histories, we make the correlation device stationary and regain some tractability. The

mapping to correlated equilibria of games with a start date is then natural. In fact, using

randomization or exogenous correlation in period 0 of the game to make it more stationary

(and create interior beliefs about the private history of other players) has been suggested by

Sekiguchi (1997), Compte (2002), Ely (2002), and Cripps, Mailath, and Samuelson (forth-

coming). We present a robust way of applying this method to construct a family of equilibria.

Our results complement the existing literature on the construction of belief-free equi-

libria (for example, the work of Ely and Välimäki (2002), Piccione (2002), Ely, Hörner and

Olszewski (2005), and Kandori and Obara (2006)), in which players use mixed strategies and

their best responses are independent of their beliefs about the private histories of their oppo-

nents. In contrast to belief-free equilibria, the equilibria we construct are belief-dependent;
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players’ best responses do depend on their beliefs. Our work is also related to that of Mailath

and Morris (2002), who show robustness of finite-history dependent strategies in games with

almost-public monitoring (and in Mailath and Morris (2006) show problems with robustness

of infinite-history dependent strategies). Mailath and Morris show that for a strict k-history

dependent equilibrium of a game with public monitoring, if the game is slightly perturbed to

almost-public monitoring, the strategies still form an equilibrium. We can apply our results

to this class of games and calculate exactly how much correlation is necessary. They provide

a sufficient bound on the correlation, but leave finding a necessary and sufficient cutoff an

open question.

2. Games with Infinite Histories

Consider a stage game, Γ, with N players, i = 1, . . . , N , each able to take actions

ai ∈ Ai. Assume that with probability P (y|a), a vector of private signals y = (y1, . . . , yN)

(each yi ∈ Yi) is observed conditional on the vector of private actions a = (a1, . . . , aN),

where for all (a, y), P (y|a) > 0 (full support). Further assume that A = A1 × . . . AN and

Y = Y1 × . . . YN are both finite sets.

The current period payoff to player i is denoted ui(ai, yi). That is, player i’s payoff is

a function of his own current-period action and private signal. Players put weight 1 − β on

current utility and weight β on future payoffs and, as usual, care about the expected value

of utility streams.

We start by considering the case (denoted Γ−∞,∞) in which time is assumed to extend

infinitely both backward and forward. (Histories are infinite.) In Section 5, we connect

our results to the more traditional case where time is assumed to start at date t = 0 and
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extend forward only (denoted Γ0,∞). To this end, let ai denote an infinite history of player i’s

private actions ai = {ai,1, ai,2, . . .} with the set of possible private action histories ai denoted

by Ai. (All history sequences move backward in time with the time subscript referring to the

number of periods before the present period.) Likewise, let player i’s private signal history be

denoted yi = {yi,1, yi,2, . . .}, where Yi denotes the set of possible private signal histories for

player i. Finally, let A = A0 × . . .×AN, Y = Y0 × . . .×YN, Z = A×Y, Zi = Ai ×Yi

and Z−i = A−i ×Y−i, where the subscript −i refers to the set {1, 2, . . . , i− 1, i + 1, . . . , N}.

In words, zi ∈ Zi is what player i has directly observed and z−i ∈ Z−i is what player i has

not directly observed, but his opponents have.

For player i, let a mixed strategy σi(ai|zi) : A×Zi → [0, 1] map infinite private histories

to the probability of taking a given action. Denote a joint strategy as σ = (σ1, . . . , σN). This

formulation implicitly restricts strategies to not depend on the calendar date (a concept we

have, in fact, not introduced).

A. Stationarity:

Let π : B(Z) → [0, 1] be a probability measure over infinite histories where B(Z)

denotes the Borel subsets of Z. Let G(σ, π) : B(Z) → [0, 1] be the probability measure over

infinite histories induced by π and the addition of one more period through the strategy σ

and the function P (y|a). That is, for all Ŝ ∈ B(Z)

G(σ, π)(Ŝ) =
∫
Z

∑
a

(
Πjσj(aj|z)

) ∑
y

P (y|a)I
(
((a, y), z) ∈ Ŝ

)
dπ(z),

where I is the indicator function. A pair (σ, π) is said to be stationary if G(σ, π) = π.
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B. Beliefs:

With full support all infinite histories occur with zero probability. So to define condi-

tional beliefs we consider sets of histories.

For sets of infinite histories Ẑi ∈ B(Zi) such that π(Ẑi × Z−i) > 0, one can define

player i’s conditional probability measure πi : B(Zi)× B(Z−i) → [0, 1] as

πi(Ẑ−i|Ẑi) = π(Ẑi × Ẑ−i)/π(Ẑi × Z−i).(1)

This uniquely defines beliefs π-almost everywhere. However, for sets of infinite histories where

player i has deviated, this formula has no implications since the measure π puts zero measure

on the entire set of infinite private histories which can only be reached through player i’s own

deviation.

In games with a start date and full support, player i’s beliefs can still be uniquely

defined for histories where he has deviated. The full support assumption ensures that player

i will never see evidence that his opponents have deviated (and thus will assume they haven’t).

Beliefs regarding what his opponents have seen after t dates can then be defined for arbitrary

(on or off path) specifications of player i’s actions and signals using the strategy σ, the signal

function P , and Bayes’ rule. But this logic does not extend (as far as we can show) to games

with infinite histories where player i has deviated an infinite number of times.

To see this, note that if player i deviated only in the most recent period, one can define

beliefs conditional on player i’s off path actions as follows: Let (ai, yi) be an arbitrary action

and signal representing player i’s most recent action and signal and let Ẑi be a set of infinite

histories where player i has not deviated, representing his actions and signals for all earlier

periods. In this case, the probability of (a−i, y−i) × Ẑ−i conditional on (ai, yi) × Ẑi can be
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defined as

πi((a−i, y−i)× Ẑ−i|(ai, yi)× Ẑi) =
∫
Ẑ−i

(Π−iσ−i(a−i|z−i))P (yi, y−i|ai, a−i)∑
âi,ŷi

(Π−iσ−i(â−i|z−i))P (yi, ŷ−i|ai, â−i)
dπi(z−i|zi).

This logic generalizes to all histories where player i has deviated only a finite number of

times, and thus there exists a date before which he has not deviated. But this logic does not

generalize to infinite histories where player i has deviated an infinite number of times since

one cannot pin down “initial” beliefs regarding the actions of the other players.

To handle these cases we consider trembling. That is, if σi : A×Zi → (0, 1), all actions

by player i are on path and conditional probabilities can be defined as in equation (1). Given

this, we say πi is a valid conditional belief measure if there exists a sequence {(σs, πs, πi,s)}∞s=0

such that σi,s : A × Zi → (0, 1), σs → σ in the sup norm and πs → π and πi,s → πi in the

weak-∗ topology.

C. Equilibrium Definition

Let vi(z|σ) be the function recursively defined by

vi(z|σ) =
∑
a

(
Πjσj(aj|zj)

)(∑
y

P (y|a)[(1− β)ui(ai, yi) + βvi((a, y), z|σ)]
)

and Evi(zi|σ) =
∫
z−i

vi((zi, z−i)|σ)dπi(z−i|zi).

A triplet (σ, π, πi) is a Stationary Sequential Equilibrium of the game with infinite

histories Γ−∞,∞ (SSE-ih) if

1. For all i, z, and σ̂i : zi → [0, 1], Evi(zi|σ) ≥ Evi(zi|(σ̂i, σ−i)).

2. G(σ, π) = π.
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3. For all i, πi is a valid conditional belief measure.

3. Finite State Strategies

This section develops methods for analyzing a particular (but large) class of strategies.

First, we assume that each player’s strategy can be described as a finite automaton, and

second, that along the path of play information depreciates (an assumption formally made

below). We show how to verify whether or not a particular strategy profile of this type is an

SSE-ih. Given this, we show how to calculate all pure strategy equilibria of an important

subset of these strategies: those which depend only on the last k periods of a player’s history.

Player i’s strategy σi can be described as a finite automaton if and only if his set of

infinite private histories Zi can be divided into a finite partition Ωi such that σi does not

distinguish between histories zi and ẑi if both histories are in the same cell ωi ∈ Ωi. (That

is, if zi ∈ ωi and ẑi ∈ ωi, then σi(ai|(zi,1, . . . , zi,s), zi) = σi(ai|(zi,1, . . . , zi,s), ẑi) for all ai and

finite histories (zi,1, . . . , zi,s).) Let Di denote the number of elements of Ωi and D−i denote

the number of elements of Ω−i, the set of private states for the other players. Instead of

explicitly writing strategies and payoffs as functions of histories, we (equivalently) express

them as functions of this induced state space.1

Since a player does not know the aggregate state ω, but instead knows only his own

part of it, ωi, he will use all the information available to him (his private infinite history

zi) to form beliefs regarding ω−i ∈ Ω−i. For a particular infinite private history, a player’s

beliefs over the aggregate state of the game are simply a point in the (D−i − 1)-dimensional

unit-simplex, denoted ∆D−i . Let µi(zi) : Zi → ∆D−i denote player i’s beliefs about ω−i after

1 For a useful discussion of the validity of representing strategies as finite state automata in the context
of games with private monitoring, see Mailath and Morris (2002) and Mailath and Samuelson (2006).
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private history zi. Let µi(ω−i|zi) denote the probability assigned to the particular state ω−i,

where µi(ω−i|zi) =
∫
z−i∈ω−i

dπi(z−i|zi).

For a strategy σ and corresponding beliefs πi, information is said to depreciate if for

all ε > 0, i, ω−i, and infinite private histories zi, z0
i , and z1

i , there exists an s such that

|µi(ω−i|(zi,1, . . . , zi,s, z
0
i )) − µi(ω−i|(zi,1, . . . , zi,s, z

1
i ))| < ε (uniform convergence of beliefs).

This condition can be verified as follows: Let X(zi) specify the probability of player i’s

opponents transiting from state ω−i last period to state ω−i this period conditional on player i

observing zi today and his opponents following strategy σ. If there exists an s such that for all

(zi,1, . . . , zi,s), the matrix X(zi,1) . . . X(zi,s) contains no zeros, then information depreciates.2

This condition is immediately satisfied if player i’s strategy σi (for all i) depends

only on the last k periods of yi (as opposed to depending also on his action realizations).

An example of a strategy where information does not depreciate would be if player i plays

whatever action he played in the previous period.

Given a strategy σ and its corresponding state space Ω, we can define expected payoffs

in aggregate state ω as:

Vi(ω|σ) =
∑
a

(
Πjσj(aj|ωj)

)(∑
y

P (y|a)[(1− β)ui(ai, yi) + βVi(ω
+ (a, y, ω) |σ)]

)

where ω+ (a, y, ω) is the next-period state given current-period state ω and new (a, y). That

is, Vi(ω|σ) is the expected utility of player i if he knows the aggregate state (including the

private states of the other players) and he and all the other players mechanistically play the

2If player i’s beliefs were µi or µ̂i s periods ago, beliefs today after (zi,1, . . . , zi,s) are, respectively,
µiX(zi,s) . . . X(zi,1) and µ̂iX(zi,s) . . . X(zi,1). If the differing beliefs are pushed t periods back in time
and an extra t periods of data are added for dates s + 1 to s + t, player i’s beliefs become, respectively,
µi(X(zi,s+t) . . . X(zi,s+1))X(zi,s) . . . X(zi,1) and µ̂i(X(zi,s+t) . . . X(zi,s+1))X(zi,s) . . . X(zi,1). Premultiply-
ing the transition matrix X(zi,s) . . . X(zi,1) by a matrix with no zeros uniformly decreases the distance
between the rows.

9



strategy σ.

For arbitrary beliefs mi ∈ ∆D−i and a strategy σ, let

EVi(ωi, mi|σ) =
∑
ω−i

mi(ω−i)Vi(ωi, ω−i|σ).

We have now defined expected payoffs as functions of private states ωi and beliefs over the

private states of the other players mi, instead of expected payoffs being functions of a player’s

infinite private history zi.

Rather than considering separately the beliefs mi ∈ ∆D−i that a player will have after

some infinite history, it is useful to consider subsets of beliefs. Let M∗
i (ωi) = co({m|m =

µi(zi) for some zi ∈ ωi}) (where co() denotes the closure of the convex hull). Here, M∗
i (ωi) is

the closure of the convex hull of the set of possible beliefs player i can have about ω−i given

that he’s seen zi ∈ ωi, where a belief is possible if there is an infinite private history which

induces this belief. Let M∗
i denote the collection of Di of these subsets, one for each ωi.

The following lemma establishes that to check the incentives of a finite state strategy,

one need only check that for each player i and private state ωi, the player does not wish to

deviate when his beliefs about the other players’ private states ω−i are on the frontier of the

convex hull of all possible beliefs M∗
i (ωi). That is, it is not necessary to check incentives for

every infinite history.

Lemma 1. Consider a finite state strategy σ and measures (π, πi) satisfying conditions 2

and 3 of the definition of an SSE-ih and the implied sets M∗
i (ωi). Then (σ, π, πi) is an

SSE-ih if and only if EVi(ωi(zi), mi|σ) ≥ ∑
ω−i

mi(ω−i)vi(zi, z−i ∈ ω−i|σ̂i, σ−i) for all i, zi,

σ̂i : A× Zi → [0, 1] and all mi such that mi is on the frontier of M∗
i (ωi).
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Proof. If: Suppose incentives hold for beliefs mi and m̂i each in ∆D−i . (That is,

EVi(ωi, mi|σ) ≥ ∑
ω−i

mi(ω−i)vi(zi, z−i ∈ ω−i|σ̂i, σ−i) and EVi(ωi, m̂i|σ) ≥ ∑
ω−i

m̂i(ω−i)vi(zi, z−i ∈

ω−i|σ̂i, σ−i) for all i, ωi and σ̂i : A × Zi → [0, 1].) Then since expected utility for any σ̂i

(including the on-path strategy σi) is linear in these beliefs, for all α ∈ (0, 1), incentives

hold for beliefs αmi + (1−α)m̂i. Next, every infinite history generates beliefs within M∗
i (ωi)

by construction. Further, holding ωi constant, player i’s history is relevant to him only to

the extent that it affects his beliefs regarding the other players’ continuation play which is

determined by ω−i. Thus if incentives hold for the beliefs generated by infinite history zi,

incentives hold for infinite history zi. Finally, the beliefs generated by any infinite history

can be constructed as the convex combination of points on the frontier of M∗
i (ωi).

Only if: Suppose (σ, π, πi) satisfy condition 1 of the definition of an SSE-ih, but there

exists a belief mi on the frontier of M∗
i (ωi) and a deviation strategy σ̂i : A×Zi → [0, 1] such

that EVi(ωi, mi|σ) <
∑

ω−i
mi(ω−i)vi(zi, z−i ∈ ω−i|σ̂i, σ−i). If mi is the linear combination of

beliefs generated by private histories z0
i ∈ ωi and z1

i ∈ ωi, then this is a contradiction since,

as shown above, if incentives hold for a set of beliefs, they hold for all linear combinations

of those beliefs. But since M∗
i (ωi) is the closure of the convex hull of beliefs generated by

private histories, the only remaining possibility is that mi is within the closure of the convex

hull of beliefs generated by histories, but not the convex hull itself. But if incentives do not

hold for a given belief, then, for a given deviation strategy, the gain to deviation is strictly

positive. This implies deviation is preferred for some neighborhood around this belief as well,

contradicting the supposition.

Lemma 1 is useful for checking whether or not a particular finite state strategy is an

equilibrium when the sets of beliefs generated by that strategy (for each player i) M∗
i are
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known. In Lemmas 2 through 4, we construct a method for generating, for each finite state

strategy, the appropriate M∗
i sets.

We begin by constructing an operator from sets of beliefs to sets of beliefs with the

property that the operator’s largest fixed point is M∗
i . Let Mi (without the ∗) denote an

arbitrary collection of Di closed convex subsets of ∆D−i , and let the one-step operator T (Mi)

be defined as follows: First, let F (ωi) be the set of private states last period consistent with

the private state this period being ωi. (That is, F (ωi) = {ωi| there exists zi ∈ ωi and

zi ∈ Ai × Yi such that (zi, zi) ∈ ωi }.) Likewise, let G(ωi, ωi) = {zi = (ai, yi)| if zi ∈ ωi, then

(zi, zi) ∈ ωi}. That is, G(ωi, ωi) is the set of (ai, yi) pairs such that player i’s private state

transits from ωi to ωi. The successor of belief mi ∈ ∆D
−i given new data (ai, yi) (denoted

m′
i(mi, ai, yi) ∈ ∆D

−i) is determined by Bayes’ rule as

m′
i(mi, ai, yi)(ω−i) =

∑
ω−i∈F (ω−i)

∑
(a−i,y−i)∈G(ω−i,ω−i)

mi(ω−i)
σ−i(a−i|ω−i)P (yi, y−i|ai, a−i)∑

â−i,ŷ−i
σ−i(â−i|ω−i)P (yi, ŷ−i|ai, â−i)

.

In the above formula, the ratio is the probability of the event (a−i, y−i) conditional on (ai, yi).

This probability is then summed over all (a−i, y−i) realizations consistent with the other

player(s) moving from state ω−i to ω−i, averaged over the probability of the other player(s)

being in state ω−i according to beliefs mi. Then

T (Mi)(ωi) = {mi| there exists ωi ∈ F (ωi), mi ∈ Mi(ωi) and (ai, yi) ∈ G(ωi, ωi)

such that mi = m′
i(mi, ai, yi)}.

The T operator works as follows: Suppose one takes as given the beliefs of player i over the

private state of the other players, ω−i, last period. Bayes’ rule then implies what player i
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should believe about ω−i this period for each realization of (ai, yi). If there exists a way

to choose player i’s state last period, the beliefs of player i over the private states of his

opponents last period, and a new realization of (ai, yi) such that Bayes’ rule delivers beliefs

mi, then mi ∈ T (Mi)(ωi). In effect, the T operator gives, for a particular collection of belief

sets Mi, the belief sets associated with all possible successor beliefs generated by new data

and interpreted through σ.

Lemmas 2 through 4 show that the T operator can then be used to generate the true

sets of valid beliefs M∗
i . We write Mi ⊂ M̂i if Mi(ωi) ⊂ M̂i(ωi) for all ωi.

Lemma 2. If M∗
i ⊂ Mi , then M∗

i ⊂ T (Mi).

Proof. For a given ωi choose beliefs mi ∈ M∗
i (ωi) such that mi is the linear combination

of beliefs m0
i and m1

i for which there exist infinite histories z0
i and z1

i which generate beliefs

m0
i and m1

i . Now consider these histories except for the last period. That is, let ẑ0
i =

{z0
i,2,, . . .} and ẑ1

i = {z1
i,2,, . . .}. Beliefs after histories ẑ0

i and ẑ1
i (call them m̂0

i and m̂1
i ) satisfy

m̂0
i ∈ M∗

i (ω0
i ) and m̂1

i ∈ M∗
i (ω1

i ), where ẑ0
i ∈ ω0

i and ẑ1
i ∈ ω1

i from the definition of M∗
i .

Since m̂0
i ∈ Mi(ω

0
i ) and m̂1

i ∈ Mi(ω
1
i ) from M∗

i ⊂ Mi, m0
i = m′

i(m̂
0
i , ai, yi) ∈ T (Mi)(ωi) and

m1
i = m′

i(m̂
1
i , ai, yi) ∈ T (Mi)(ωi). Since T maps closed convex sets to closed convex sets

(from the linearity of our Bayes’ rule operator in beliefs), mi ∈ T (Mi)(ωi). This leaves only

the possibility that mi ∈ M∗
i (ωi) is not a linear combination of beliefs generated by infinite

histories, which, from the definition of M∗
i implies mi is on the frontier of M∗

i (ωi). Suppose

then mi /∈ T (Mi)(ωi). Since the above logic can be applied to a sequence of points in M∗
i (ωi)

converging to mi, each point in this sequence is in T (M∗
i )(ωi), implying T (M∗

i )(ωi) is an open

set, a contradiction.
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Lemma 3. If Mi ⊂ T (Mi), then T (Mi) ⊂ M∗
i .

Proof. For a given ωi, choose beliefs mi ∈ T (Mi)(ωi). Since mi ∈ T (Mi)(ωi) there exists a

private realization zi = (ai, yi) and beliefs m1
i ∈ Mi(ω

1
i ) (where ω1

i ∈ F (ωi)) such that mi =

m′(m1
i , ai, yi). That Mi ⊂ T (Mi) ensures that m1

i ∈ T (Mi)(ω
1
i ), thus this can be repeated

indefinitely, generating any finite length history of private outcomes {zi,1, . . . , zi,s} and beliefs

ms
i ∈ Mi(ω̂

s
i ), with the property that beliefs mi ∈ T (Mi)(ωi) are the beliefs player i would

hold if he started with beliefs ms
i and proceeded to experience private history {zi,1, . . . , zi,s}.

That information depreciates ensures that beliefs converge to the actual probability of ω−i

conditional on the entire infinite history. Given this, mi ∈ M∗
i (ωi).

Let T s(Mi) denote the application of the T operator s times on Mi and ∆ = (∆D−i)Di

(that is, Mi = ∆ implies for all ωi, all beliefs are acceptable).

Lemma 4. lims→∞ T s(∆) = M∗
i .

Proof. Examination of the T operator shows it to be monotonic in that if Mi ⊂ M̂i, T (Mi) ⊂

T (M̂i). Since T (∆) ⊂ ∆, T 2(∆) ⊂ T (∆) and so on. Thus T s(∆) represents a sequence of

(weakly) ever smaller included sets, guaranteeing that the limit exists. From Lemma 2,

M∗
i ⊂ T (M∗

i ). Lemma 3 then implies T (M∗
i ) ⊂ M∗

i , thus M∗
i = T (M∗

i ). Further, since

M∗
i ⊂ ∆ monotonicity implies T (M∗

i ) = M∗
i ⊂ T (∆) and so on. Thus M∗

i ⊂ lims→∞ T s(∆).

Since lims→∞ T s(∆) = T (lims→∞ T s(∆)), Lemma 3 implies lims→∞ T s(∆) ⊂ M∗
i .

While Lemma 4 shows that M∗
i is the largest fixed point of T (and thus M∗

i can

be computed by successively applying T to ∆) unlike the value sets calculated in Abreu,

Pearce, and Stacchetti (1990) we can show that M∗
i is, in fact, the unique fixed point of our

operator if the strategy depends only on the last k periods of the player’s private history
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and information depreciates. However, iterating on ∆ is particularly useful since at every

iteration M∗
i ⊂ T s(∆). Thus, if after s iterations, incentives hold on the boundary of T s(∆)

one need iterate no further in order to verify that σ is an equilibrium.

So far, we have focused on the finite state strategies σ and left implicit the corre-

sponding measures on infinite histories π and πi. For a given finite state strategy σ, one can

construct π as follows: Strategy σ and the function P define a Markov transition matrix X

mapping the aggregate state ω yesterday to the aggregate state ω′ today. That information

depreciates implies that this matrix has a unique ergodic distribution, me(ω). The probability

of an infinite sequence ending in a particular z1 = (a1, y1) is
∑

ω me(ω)(Πiσi(ai,1|ωi))P (y1|a1).

The probability of an infinite sequence ending in (z1, z2) (where again the most recent real-

ization is first) is
∑

ω me(ω)(Πiσi(ai,2|ωi))P (y2|a2)(Πiσi(ai,1|ω′i(ωi, z2)))P (y1|a1), and so on.

Likewise, the conditional probability measures πi can be calculated using Bayes’ rule similarly

conditioning only on the last s periods, for all s.

Finally, note that the ability to verify whether or not a finite state strategy σ such

that information depreciates is an SSE-ih (when coupled with the appropriate beliefs π and

πi) allows one to calculate all such pure-strategy k-history dependent SSE-ih for the simple

reason that there exist a finite number of candidate pure strategies.

4. Two Examples

In this section we construct two simple examples. The first is based on Mailath and

Morris (2002). Consider the two player partnership game in which each player i ∈ {1, 2} can

take action ai ∈ {C, D} (cooperate or defect) and each can realize a private outcome yi ∈

{G, B} (good or bad). If m players cooperate, then with probability pm(1− ε)2 + (1− pm)ε2,
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both players realize the good private outcome. With probability (1 − ε)ε, player 1 realizes

the good outcome while player 2 realizes the bad. (Likewise, with this same probability,

player 2 realizes the good outcome and player 1 the bad.) Finally, with probability pmε2 +

(1− pm)(1− ε)2, both players realize the bad outcome. Essentially, this game is akin to one

in which pm determines the probability of an unobservable common outcome and ε is the

probability that player i’s outcome differs from the common outcome. Thus when ε = 0,

outcomes are public, and when ε approaches zero, outcomes are almost public. Payoffs are

determined by specifying for each player i the vector {ui(C, G), ui(C, B), ui(D, G), ui(D, B)}.

Next consider perhaps the simplest non-trivial pure strategy: tit-for-tat. That is,

let each player i play C if his private outcome was good in the previous period and D

otherwise. This is a two-state strategy with Ωi = {R,P}, for “reward” and “punish.” For

infinite histories ending in yi = G, player i is in state ωi = R (and the strategy calls for

the player to play C) and for all other histories, player i is in state P where he plays D.

Thus, for computation purposes, the set M∗
i (ωi) is simply an interval specifying the range

of probabilities that player −i realized a good outcome last period, given that player i is in

state ωi. The mapping T from Section 3 then maps a collection of two intervals (one for each

ωi) to a collection of two intervals, and the results in that section imply that starting with

the unit interval for each of these and iterating delivers the true intervals M∗
i (R) and M∗

i (P ).

For β = 0.9, p0 = 0.3, p1 = 0.55, and p2 = 0.9 and a payoff of 1 for receiving a good

outcome and a payoff of –0.4 for cooperating, we can easily verify that the static game is a

prisoner’s dilemma and that tit-for-tat is an equilibrium of the public outcome (ε = 0) game.

For ε > 0, beliefs matter and one must construct the intervals M∗
i (ωi). The procedure of

iterating the T mapping (starting with unit intervals) is relatively easily implemented on a

16



computer. For ε = 0.025 the procedure converges (in less than a second) to these intervals:

M∗
i (R) = [0.923, 0.972], and M∗

i (P ) = [0.036, 0.199]. For each specification of ωi, if player i

believes the other player saw a good outcome with a probability within M∗
i (ωi), he wishes to

follow the equilibrium strategy (C if ωi = R, D otherwise); thus tit-for-tat is an equilibrium.

If ε is increased to ε = 0.03, then the intervals M∗
i (ωi) shift toward the middle and

widen: M∗
i (R) = [0.908, 0.966] and M∗

i (P ) = [0.043, 0.229]. Now, if ωi = R and player i

believes that his opponent is in state R with probability 0.908, he wishes to deviate and play

D rather than C. Thus, with ε = 0.03, tit-for-tat is not an equilibrium, since, by construction,

there exists an infinite private history for player i ending in G such that he believes the other

player saw a good outcome last period with probability 0.908 (the lower end of the interval).

Simply put, being only 91 percent sure your opponent saw the same good signal as you

(and thus will cooperate along with you) is an insufficient inducement for cooperation in this

repeated prisoner’s dilemma.

From Mailath and Morris (2002) we know that in this example, for sufficiently small

ε, tit-for-tat is an equilibrium, and obviously for sufficiently high ε it is not. Our analysis

of this example allows us to go further: to establish exactly for which epsilons the profile is

an equilibrium. That is, our methods allow us to consider whether any proposed strategy is

an equilibrium strategy, regardless of whether the signals are nearly public. In fact, one can

construct equilibria which depend on the private signals not being nearly public.

Consider a two-player battle of the sexes game where each player i ∈ {1, 2} can take

action ai ∈ {Ballet, Hockey} and each can realize a private outcome yi ∈ {G, B} (good or

bad). If both players take the same action, they both realize a good outcome with probability

0.9, both receive a bad outcome with probability 0.08, and player i realizes a good outcome
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while player −i receives a bad outcome with probability 0.01. If the players take differing

actions, they both realize a good outcome with probability 0.05, both receive a bad outcome

with probability 0.05, and player i realizes a good outcome while player −i receives a bad

outcome with probability 0.45. If player 1 realizes a bad outcome, her payoff is zero, and if

she realizes a good outcome, her payoff is 3
2

if she played Ballet and 1 if she played Hockey.

Likewise, if player 2 realizes a bad outcome, his payoff is zero, and if he realizes a good

outcome, his payoff is 3
2

if he played Hockey and 1 if he played Ballet. As in the previous

example, β = 0.9.

Our methods can be used to check if the following simple strategy is an equilibrium:

if a player’s private outcome was good, repeat last period’s play regardless of whether it

was on or off path. If his (or her) private outcome was bad, switch away from last period’s

play regardless of whether it was on or off path. This strategy is a two-state automaton

ωi = ([PlayBallet], [PlayHockey]), and belief sets are intervals specifying the probability that

the other player is in state PlayBallet. (This strategy depends on previous actions as well as

signals, but nevertheless, information depreciation is easily verified.) For these parameters,

the intervals are M∗
i (PlayBallet) = [0.889, 0.988] and M∗

i (PlayHockey) = [0.012, 0.111], and

incentives hold on the boundaries of these two intervals. But note they hold precisely because

this is not a game with almost public signals. That is, suppose player 1 is in state PlayHockey

and deviates by playing Ballet, while believing (with high probability) that player 2 is in

state PlayHockey. If she realizes a bad outcome, the function P above implies she believes

player 2 most likely received a good outcome (and thus will not switch states), and thus it is

in her interest to follow the equilibrium by playing Hockey next period. If P were such that

she believed player 2 also had a bad outcome, as would be the case if outcomes were almost

18



public, after this deviation, player 1 would no longer be willing to follow the strategy.

5. Games with a Start Date

In this section we connect our results in Section 3 for games with infinite histories to

the more traditional class of infinitely repeated games where there exists a start date, t = 0.

We first show how to construct, for each SSE-ih, a correlated equilibrium in the corresponding

game with a start date in which the correlation device sends fictitious infinite private histories

to each player. Then, as we did in Section 3, we restrict ourselves to finite state strategies

where information depreciates and show how, for each finite state SSE-ih, to construct a

correlated equilibrium in which the correlation device signals an initial state ωi for each player

i, as opposed to signaling infinite private histories. Finally, we develop conditions for checking

whether an arbitrary correlation device which signals starting states, when coupled with a

finite state strategy σ, is a correlated equilibrium. Since sequential equilibria are examples

of correlated equilibria (with degenerate signaling devices), these methods deliver simple

necessary and sufficient conditions for constructing all k-history dependent pure strategy

sequential equilibria of private monitoring games with a start date.

If players receive private signals si ∈ Si at the beginning of the game, a joint strategy

σ is such that σi,t(ai,t|si, (zi,1, . . . , zi,t)) : A × Si × Zt
i → [0, 1], where Zt

i = (Zi)
t. Let

vi,t(s, (zi,1, . . . , zi,t)|σ) be the expected discounted payoff to player i if he knows the joint

signal s, every player’s private history (zj,1, . . . , zj,t), and he and the other players follow

σ. Let Evi,t(si, (zi,1, . . . , zi,t)|σ) =
∫
s−i

vi,t(s, (zi,1, . . . , zi,t)|σ)dπi,t(si, (zi,1, . . . , zi,t)), where πi,t

describes player i’s beliefs regarding the signals and histories of the other players given what

he knows at date t. By a correlated equilibrium we mean a joint strategy σ, a signaling device

19



or probability measure x : B(S) → [0, 1], (where S is the joint signal space), and conditional

probability measures πi,t : B(Si)× Zt
i × B(S−i)× Zt

−i → [0, 1] such that

1. Strategies σi are mutual best responses (given beliefs) after all signals and histories.

2. Beliefs, πi, after all signals and histories are consistent with the signaling device x, the

strategy σ, and P .

The next lemma demonstrates that any SSE-ih (σ, π, πi) of Γ−∞,∞ induces a correlated

equilibrium of the game with a start date Γ0,∞, by letting the signal space S be a set of infinite

fictitious histories and having the strategy for the game with a start date combine a player’s

fictitious history signal and his actual history up to date t in such a way that the player

treats his fictitious history as if it were real. That is, if player i receives fictitious history

(ẑi,1, ẑi,2, . . .) (with date subscripts going backward in time as in the previous sections), and

then experiences actual history (zi,0, zi,1, . . . , zi,t) (with date subscripts referring to the calen-

dar date), we let σi,t(ai,t|s = (ẑi,1, ẑi,2, . . .), (zi,0, . . . , zi,t)) = σi(ai,t|(zi,t, . . . , zi,0, ẑi,1, ẑi,2, . . .)).

In effect, through the use of fictitious histories, we have constructed fully stationary strategies

in a game with a start date — a somewhat difficult task since in a game with a start date,

the calendar date is automatically encoded into a player’s history through the length of that

history.

Lemma 5. Take as given an SSE-ih (σ, π, πi) of Γ−∞,∞. For the game with a start date, Γ0,∞,

let S = Z, x = π, and σi,t(ai,t|s = (ẑi,1, . . .), (zi,0, . . . , zi,t)) = σi(ai,t|(zi,t, . . . , zi,0, ẑi,1, . . .)).

Then (σ, x, πi) is a correlated equilibrium of Γ0,∞.

Proof. The result immediately follows from (σ, π, πi) being an SSE-ih and that σi,t reacts

to a fictitious history signal, or an actual history with a fictitious history prepended to it, as
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if it were an actual history in Γ−∞,∞ .

While general, Lemma 5 may not be very useful since it relies on a signal space with

a continuum of signals. If σ is a finite state strategy where information depreciates, Lemmas

6 and 7 below construct correlated equilibria with the signal space S equaling the (finite) set

of states Ω.

Lemma 6. Take as given a finite state SSE-ih (σ, π, πi) of Γ−∞,∞ where information depreci-

ates. For the game with a start date, Γ0,∞, there exists a correlated equilibrium with S = Ω

and σi,t(ai,t|ωi, (zi,0, . . . , zi,t−1)) = σi(ai,t|ω′i(ωi, zi,1, . . . , zi,t−1)), where ω′i(ωi, zi,1, . . . , zi,t−1)

denotes player i’s private state if he starts in private state ωi and realizes (zi,1, . . . , zi,t−1).

Proof. Let X denote the probability transition matrix from state ω yesterday to state ω′

today defined by σ and the function P . Since information depreciates, X defines a unique

ergodic distribution over states ω. If joint signals are drawn from this distribution, beliefs

for each player i must lie within M∗
i since the beliefs of player i regarding ω−i (conditional

on ωi) are a weighted average of player i’s beliefs regarding ω−i when conditioning on his

entire infinite history. By construction, if beliefs over ω−i start within M∗
i , they will always

lie within M∗
i . That (σ, π, πi) is an SSE-ih then ensures that incentives hold at all signals

and histories.

Lemma 6 ensures that every finite state SSE-ih of Γ−∞,∞ where information depreciates

defines at least one correlated equilibrium of Γ0,∞. But one still may ask if other correlation

devices may work to permit, say, higher initial values than the correlation device constructed

above. Thus we now turn to developing necessary and sufficient conditions for any correlation

device x : Ω → [0, 1], when coupled with a finite state SSE-ih σ, to constitute a correlated
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equilibrium.

Define M̂i to be set of beliefs such that incentives hold for all beliefs mi ∈ M̂i. Lemma

1 showed that a necessary and sufficient condition for a finite state dependent strategy to be

(part of) an SSE-ih is that M∗
i ⊂ M̂i for all i. We need to ensure, however, that incentives

are satisfied not only for a particular belief generated by a correlation device, but also for

all possible successors of that belief, and successors of those beliefs, and so on. Recall (from

Section 3) m′
i(mi, ai, yi) ∈ ∆D

−i as the successor beliefs (regarding ω−i) of beliefs mi given new

data (ai, yi). Further recall ω+
i (ai, yi, ωi) as the next-period private state given current-period

private state ωi and a new (ai, yi). Define the operator T̂ (Mi) (mapping sets of beliefs to sets

of beliefs) as

T̂ (Mi)(ωi) = {mi|mi ∈ Mi(ωi), and for all (ai, yi),

m′
i(mi, ai, yi) ∈ Mi(ω

+
i (ai, yi, ωi))}

In words, T̂ eliminates an element of Mi(ωi) if there exists a successor belief which is not in

Mi(ω
+
i ). Clearly, T̂ is monotonic and T̂ (M̂i) ⊂ M̂i. Thus {T̂ s(M̂i)}∞s=0 represents a sequence

of (weakly) ever smaller included sets, guaranteeing that the limit, denoted M , exists.

Lemma 7. Take as given a finite state SSE-ih (σ, π, πi) of Γ−∞,∞ where information depre-

ciates. For the game with a start date, Γ0,∞, the strategy σi,t(ai,t|ωi, (zi,0, . . . , zi,t−1)) =

σi(ai,t|ω′i(ωi, zi,1, . . . , zi,t−1)) constitutes a correlated equilibrium when coupled with correla-

tion device x : Ω → [0, 1] with implied conditional beliefs πi(ω−i|ωi) =

x(ωi, ω−i)/
∑

ω−i
x(ωi, ω−i), if and only if πi(ωi) ∈ M i(ωi) for all i and ωi.
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Proof. If πi(ωi) ∈ M i(ωi) for all i and ωi, then by the construction of M i, incentives hold for

all histories. Only if: M̂i is a collection of compact sets because it is defined by weak incentive

compatibility constraints that are linear in beliefs. Second, the T̂ operator maps compact

sets into compact sets because Bayes’ rule is linear in prior beliefs. Hence, {T̂ s(M̂i)}∞s=0 is

a sequence of ever smaller (in the sense of set inclusion) collections of compact sets so the

limit M i (ωi) is also compact. Now, suppose that πi(ωi) /∈ M i (ωi) for some ωi. That implies

that there exists an s such that πi(ωi) /∈ T̂ s(M̂i), but that means that there exists a history

of the length s such that player i has a profitable deviation after that history. For example,

if s = 0, then πi(ωi) /∈ M̂i(ωi) for some ωi, and then incentive compatibility does not hold

at date t = 0 for signal ωi. If s = 1, then πi(ωi) ∈ M̂i(ωi) but πi(ωi) /∈ T̂ (M̂i)(ωi) for some

ωi so that incentive compatibility does not hold at date t = 1 for a private signal ωi and a

private history (ai,0, yi,0) at date 0 such that πi(ωi) = m′(πi(ωi), ai,0, yi,0), and so on.

The implications of Lemma 7 for constructing sequential equilibria can be seen by

referring to our first example from Section 4. In that example, with ε = 0.025, tit-for-tat

is a k = 1-history dependent SSE-ih. That is, incentives hold for the beliefs which can

be generated by infinite histories, M∗
i (R) = [0.923, 0.972], M∗

i (P ) = [0.036, 0.198]. But

incentives hold for wider beliefs than these intervals. For this example, M̂i(R) = [0.704, 1]

and M̂i(P ) = [0, 0.704]. Further, for this example, T̂ (M̂) = M̂ , thus M̂ = M . A correlation

device signaling states R and P according to the ergodic distribution of signals G and B

has πi(ω−i = R|ωi = R) = 0.966 and πi(ω−i = R|ωi = P ) = 0.085. Since both of these

beliefs are within M(ωi), this signaling device can be used to create a correlated equilibrium

for the tit-for-tat strategy. The point of Lemma 7, however, is that any correlation device

which delivers πi ∈ M can be used as well. In particular, since M(ωi = R) includes the
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belief that ω−i = R with probability 1, putting all probability on ω = (R, R) delivers a

correlated equilibrium. But since this correlation device is degenerate, we have constructed

a sequential equilibrium where both agents cooperate in the first period and play tit-for-tat

after that. Likewise, since M(ωi = P ) includes ω−i = R with probability 0, we have also

constructed a sequential equilibrium where both agents defect in the first period and play

tit-for-tat after that. Finally, since M(ωi = R) does not include the belief that ω−i = R with

probability 0, we have demonstrated that having one player cooperate and the other defect

in the first period (and playing tit-for-tat after that) is not a sequential equilibrium. Thus

we have exhaustively determined which starting conditions, when coupled with a particular

SSE-ih, are and are not sequential equilibria.

This logic generalizes. Since the number of pure-strategy k-history dependent strate-

gies where information depreciates is finite (and we have derived methods for checking whether

each is an SSE-ih) and the number of pure-strategy possibilities for determining play in the

first k periods of a game with a start date is also finite (and we have derived methods for

determining whether each of these starting conditions satisfy incentive compatibility), we

have constructed methods for determining all pure-strategy k-history dependent sequential

equilibria (such that information depreciates) of traditional games with a start date.

6. Concluding Remarks

The equilibria we have characterized here can be used to construct others. For example,

we can construct sequential equilibria for games with a start date in which players mix in the

first period and then follow pure stationary strategies conditional on the initial randomization

simply by letting the players draw randomly their private fictitious histories (a construction
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similar to Sekiguchi (1997)). Or, we can also design some other non-stationary strategies in

the first few periods and append to it one of our equilibria. Furthermore, once we find an

equilibrium for a discount factor β, we can apply Ellison’s (1994) method and construct an

equilibrium for discount factor β
1
2 by simply dividing the game into odd and even periods

and making the players treat these two parts of the game independently. Since incentive

constraints are continuous in β, the sets M i are too, so finding a generic equilibrium for one

β provides a neighborhood of equilibria around it. (Recall that the M∗
i sets are independent

of β.)

Some questions remain open. First, we have assumed away any problems associated

with interpreting off equilibrium behavior by assuming full support of signals. Can our

methods be extended to games without full support? These questions, albeit important, seem

tangential to the stationarity issues we have addressed. Some relaxation of the full support

assumption is possible, for example by the introduction of public signals (that is, making

some realizations of yi perfectly correlated). But the analysis is much more complicated

when some private signals indicate a deviation by another player, and this has not yet been

studied much. Second, we have considered finite state strategies. It is an open question

how important this restriction is in repeated games with private monitoring. For example,

Cole and Kocherlakota (2005) show that for some games with public monitoring, the set of

payoffs achievable with public k-history dependent strategies (an important subset of finite

state strategies) is strictly smaller than the whole set of PPE payoffs (at least for strongly

symmetric strategies). We don’t know how rich the class of games with that property is

and whether the same is true for sequential or correlated equilibria of games with private

monitoring.
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