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Abstract

We modify a standard SIR epidemiological model to allow for test-

ing and asymptomatic agents. We explore cross country variation’s

ability to allow for identification of key parameters of the model: the

fatality rate and the evolution over time of the normalized transmis-

sion rate. We first show that as long as tests are applied only to agents

who exhibit symptoms, those parameters cannot be identified. We

briefly discuss which additional information may allow for identifica-

tion. Finally, we also describe conditions under which the normalized

transmission rate can be computed with very high accuracy, and how

cross country evidence can be used to evaluate the effect of lockdowns

on evolution of the effective transmission rate over time.
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1 Introduction

Among the uncertainties that make policy decisions difficult during the cur-

rent COVID-19 pandemic, the true fatality rate of the virus and the rate at

which the virus spreads rank at the top. We have daily measures of fatal-

ities and newly detected cases. However, there are reasons to believe that

measurement error affects both numbers.

First, there may be fatalities that never make it to the hospital. If this

were the case, existing statistics on fatalities a lower bound to the true lethal-

ity of the virus. We will mostly abstract from this problem in this note.

Second, there is ample evidence that a sizable fraction of infected persons

develop no symptoms, are never tested, and therefore are never detected.For

example, as of April 22nd, a total of 82,798 infected persons had been de-

tected in China, a country that completed the first (and hopefully last!) cycle

of the disease. The same day, a total of 4,632 fatalities had been recorded.

Absent any asymptomatic agents, these numbers imply a fatality rate of

5.6%, which is extremely large. This rate is comparable to the lowest esti-

mates of the Spanish flu, which is considered one of the deadliest pandemics

in world history.1 Most proposals to relax lockdown policies are based on the

sensible notion that the number of infected people in China is substantially

1About 500 million people are estimated to have been infected, a third of the world
population of the time. The death toll is estimated to be as high as 100 million and as low
as 17 million. According to the lowest estimate, the fatality rate would be about 3.4%.
See Rosenwald, Michael S. (7 April 2020). “History’s deadliest pandemics, from ancient
Rome to modern America”. Washington Post. Archived from the original on 7 April 2020.
Retrieved 11 April 2020.
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larger than 82,798. The debate is about how much larger than that.

In this note, we study the extent to which cross country evidence can be

used to estimate the underlying parameters of a classical SIR model.

A main assumption is maintained throughout – the fatality rate and the

speed at which infected agents recover depend on the specificity of the virus,

and they are therefore similar across countries, once controlled by observables

such as the age structure of the population or the income per capita of

the countries.2 If this were not the case and those two parameters were

systematically affected by a virus-country interaction, then the cross country

evidence would be useless.

If tests were random and the sample size large enough, very precise esti-

mates of the true number of asymptomatic agents could be obtained. How-

ever, because of the urgency created by the crisis, tested agents are mainly

people who exhibit symptoms identified with COVID-19. This bias in testing

makes statistical inference a difficult task.

We extend the simplest version of the SIR model by assuming that coun-

tries set different thresholds for testing, possibly for budgetary reasons. The

model then endogenously relates the number of detected infections, the num-

ber of fatalities, and the number of tests done by countries (or regions). The

endogenous nature of testing is modeled by assuming that tests are performed

on agents who exhibit the known virus-related symptoms. Two unknown dis-

tributions are key primitives of the model. The first one is the probability

2In the analysis below, we will ignore the effect of these observables.
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that an infected agent develops certain symptoms. The second one is the

probability that a healthy agent develops certain symptoms.

We first show that the assumed pattern of testing implies that the avail-

able cross country evidence cannot be used to identify the true fatality rate.

To put it differently, the cross country data on fatalities and detected cases

are consistent with a large set of values for the fatality rate of the virus

including the most extreme estimates, from 0.1% to 2%.

We prove this by showing that there is one more unknown than restric-

tions imposed by the model. Thus, we can set either one to any arbitrary

number, and the model can be used to solve for the other unknowns. The

main reason for this result is that the model imposes no structure on the

distribution of virus-like symptoms among the non-infected agents, which is

a primitive of the model. Absent any restrictions, distributions can be found

that rationalize the cross country data. Under this scenario, the data on

detected infections are uninformative regarding the parameters of interest:

the fatality rate and the evolution of the normalized transmission rate.

We then go on and show how imposing some restrictions on that distri-

bution could potentially allow for identification. We do this by imposing a

restriction that is natural within the context of the particular model we use.

But the logic can be used with alternative restrictions that could be justified

with independent evidence on those distributions.

Finally, we exploit the fact that the model allows for only one degree

of freedom to obtain bounds for one of the parameters of interests: the
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evolution over time of the effective transmission rate. We illustrate with two

examples how this property can be used in making cross country (or cross

state) comparisons. In the first, we study the case of the Nordic countries

(Denmark, Norway, and Sweden) that adopted very different strategies at

the onset of the infections. We set the common fatality rate equal to some

of the estimates that had been found in the literature. The model, together

with the data for the three countries, can be used to back out the implied

values for the other parameters, like the daily rate of transmission. We show

that the different behavior over time of the rate of infection across these three

countries is quite robust to the different values assumed for the fatality rate.

The exercise provides an estimate of the effect of a more severe lock-down

(as in Norway) relative to a less severe one (as in Sweden).

In our second example, we apply the model to several states in the U.S..

The exercise allows us to quantify the effect of lockdowns on the transmis-

sion rate across states. It shows remarkable impact across states, with fast

convergence of the normalized transmission rate to one or below, which im-

plies a decreasing number of active cases. However, a notable exception is

Minnesota, where the normalized transmission rate starts growing on April

19th to values substantially higher than one.

We end the paper by discussing the conditions under which the effective

transmission rate can be identified in the data, even under severe uncer-

tainty regarding the fatality rate. We show that given the available data, the

computation of the effective transmission rate is very insensitive to the true
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fatality rate when the fraction of susceptible agents - those who have not yet

been exposed to the virus - is large. Thus, while the computations are robust

at the onset of an epidemic, they would lose precision in additional waves of

infections.

The paper proceeds as follows. In Section 2, we present the model with

tests and asymptomatic agents, and we discuss conditions under which the

relevant parameters can be identified with available data. In section 3, we

show, by means of examples, that it is possible to obtain precise estimates of

the evolution over time of the effective transmission rate. Section 4 analyzes

a simplified version of the model to explore the theoretical reasons behind

the empirical results of Section 3.
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2 The Model

We modify a simple SIR model to allow for cases that are undetected because

of a lack of symptoms. There is a unit mass of agents who can be in any of

the five following possible states.

• St : number of agents who have so far not been infected.

• Idt : number of agents who have been infected, tested, and detected.

• Int : number of agents who have been infected and were not tested, so

they have not been detected.

• Rd
t : number of agents who have been infected, detected, and have

either died or recovered.

• Rn
t : number of agents who have been infected, were never detected,

and recovered. (As we explain below, our assumptions imply that if

the infection is not detected, mortality is zero).

Then, the following identity must hold.

St + Idt + Int +Rd
t +Rn

t = 1

We assume that, conditional on being infected, agents recover with proba-

bility δ each day. In addition, the fatality rate, again conditional on being

infected, is given by q.
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2.1 Development of symptoms

In this section, we discuss the testing strategy, which may differ across coun-

tries. To simplify, we focus only on tests that detect the virus and do not

consider tests for antibodies. In addition, we assume the tests to have no

errors.

Every agent in St can develop symptoms that are associated with being

infected. We let z ∈ R be an index that determines the severity of the

symptoms. Any agents who transits from St−1 to be infected at time t draws

a shock z that determines the symptoms that will be developed, drawn from

some distribution with CDF F. This shock is permanent and determines the

severity of the infection.

The worse the symptoms of an agent are, the worse the evolution of

the infection is. We assume that if symptoms are larger than an unknown

threshold zq , the infection is deadly. The threshold zq is given by the chemical

characteristics of the virus. All infected agents with z < zq are eventually

cured and develop immunity. Thus, the number of fatalities as a fraction of

infected agents is given by

m = 1− F (zq).

This threshold, together with the duration of the infection, determines the

two exit rates from the infection: the daily mortality rate, q, and the rate at

which infected agents get cured, δ. These rates relate to the mortality rate
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in the usual way for a Poisson process, given by m = q/δ. The threshold zq,

as well as the rates q and δ, is given by the chemical characteristics of the

virus, and we will assume unknown constants.

Non-infected agents in St can also develop symptoms, which explains

why many agents with symptoms test negative. Specifically, we assume that

every period, healthy agents also draw a value for z, but from a different

distribution, with CDF H(z). This shock may be correlated over time.

As it is natural with any new virus, neither F nor H are known during the

the first months of the pandemic. It is lack of knowledge of these functions

that makes identification difficult.

2.2 Endogenous Testing

To allow for endogenous testing, we assume that tests are administered to

agents with symptoms. We assume that there is a critical value, zc ≤ zq, such

that everybody with z ≥ zc is tested in all countries and all periods. These

assumptions imply that all fatal cases are tested and properly identified. As

we mentioned in the introduction, there are reasons to believe that this is

not the case. To focus on the misreporting of infected individuals, we will

nevertheless make this assumption throughout.

In general, countries will test agents more broadly. We model the decision

to test as the choice of a country-specific value of zTt < zc. The probability of

being tested if infected, is modeled by 1−Fz(zTt ) = pzt , while the probability

of being tested if not infected, is modeled by 1−H(zTt ) = pt.
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This assumption allows for the cross country heterogeneity in testing

that we see in the data. A natural interpretation is that richer countries

have larger budgets and can afford more testing, but there are other reasons

why there are variations in testing across countries. A natural question is

whether the cross country heterogeneity in testing allows us to identify the

mortality rate of the virus and therefore the fraction of infected agents.

Notice that our assumptions imply that all fatalities have been detected,

so no undetected agent dies. We therefore let qdt be the fraction of detected

agents with z ≥ zq.

qdt = q
Idt + Int
Idt

,

which has the natural interpretations of the mortality rate, conditional on

being detected. According to the model, this rate varies across countries, as

they set different values for pzt.

The model abstracts from dynamics in the development of symptoms.

Once an agent is infected, she draws once and for all a value for z, which

determines if she will be tested or not. To simplify, we assume that symp-

toms last just one day, so agents are tested either immediately or not at all.

Therefore, with this form of endogenous testing, there are no transitions from

Int toward Idt+1.

Below, we will consider the possibility that some countries in some periods

test agents independently of symptoms. We set a rate τt of non-detected

agents who are tested. In that case, there would be transitions from Int
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toward Idt+1.

2.3 Rate of Infection

As is standard in SIR models, the rate of infection is assumed to be pro-

portional to the number of encounters between susceptible agents, St, and

infected agents, (Idt + Int ). Specifically, the fraction of newly infected agents

is given by

βt(I
d
t + Int )St,

where βt is the rate at which encounters result in infections and is allowed

to depend on time, to allow for social distancing or lockdown policies to have

an impact on the transmission rate of infections. But not all infected agents

will be tested: a fraction pzt are tested and detected, while the rest are never

detected. This last group builds, period by period, the set of asymptomatic

agents.

2.4 Transitions.

S I

Id

In

Rd

Rn

βI
pz

1− pz

δ

q

δ

Figure 1
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Given the above assumptions, the transitions across different states are

as follows.

• An agent in St can

– go to Idt+1 with probability β(Idt + Int )pz,

– go to Int+1 with probability β(Idt + Int )(1− pz),

– or remain in St+1.

• An agent in Idt can

– go to Rd
t+1 with probability δ + q

Idt +I
n
t

Idt
,

– or remain in Idt+1

• An agent in Int can

– go to Rn
t+1 with probability δ,

– or remain in Int+1.

Finally, both Rd
t and Rn

t are absorbing states.

As discussed above, newly infected agents are given by Stβ(Int + Idt ), of

which a fraction pz is tested and detected. A fraction (1 − pz) is not tested

and remains undetected. The non-infected agents in St who get tested get a

negative testing result and remain in St. Note that given the way we model

testing, the infected agents who have z < zT have a fatality rate of zero.
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3 Solution of the model

Given

1. initial conditions {S0, I
d
0 , I

n
0 , R

d
0, R

n
0}, where all are ≥ 0 and such that

S0 + Id0 + In0 +Rd
0 +Rn

0 = 1,

2. and parameters δ, q, βt, p
z
t ,

the following equations solve for the sequences {St, Idt , Int , Rd
t , R

n
t }∞t=1:

St − St+1 = βt(I
d
t + Int )St, (1)

Idt+1 − Idt = βt(I
d
t + Int )pztSt − δIdt − q

(
Idt + Int

)
, (2)

Int+1 = Int + βt(I
d
t + Int )(1− pzt )St − δInt , (3)

Rd
t+1 = Rd

t + δIdt + q
(
Idt + Int

)
, (4)

Rn
t+1 = Rn

t + δInt . (5)

Equation (1) equates the change in the mass of susceptible agents to

change in the mass of newly infected ones. Equation (2) equates the net

inflow into the pull of detected agents to that of the newly infected who get

tested, minus the previously detected agents who either recovered or died.

Similarly, equation (3) equates the net inflow into the asymptomatic agents to

that of the newly infected agents who do not get tested, minus the previously
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infected who recovered. Recall that undetected agents never develop serious

symptoms and do not die. Finally, equations (4) and (5) describe the law of

motion for the two absorbing states. Again, recall that only detected agents

are exposed to mortality risk and that

q
(
Idt + Int

)
= qdt I

d
t ,

where the conditional risk, qdt , is endogenous to policy, since it depends on

the intensity of the tests.

Exogenous testing If we were to allow for exogenous testing, where a

fraction τt of non-detected agents get tested, then the law of motion for Idt

and Int would change as follows

Idt+1 − Idt = βt(I
d
t + Int )pztSt − δIdt − q

(
Idt + Int

)
+ τtI

n
t , (6)

Int+1 = Int + βt(I
d
t + Int )(1− pzt )St − δInt − τtInt . (7)

As we show below, the data we have are not enough to identify the model,

even assuming τt = 0 for all t. We proceed to consider that case first. We

allow for exogenous testing at the end of next section.
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3.1 Identification

The problem we address is the inverse of the one we described above.3 In that

problem, given initial conditions and parameter values, we explained how to

solve for the sequences {St, Idt , Int , Rd
t , R

n
t }∞t=1. During an epidemic like the

one that is ongoing, we do observe the sequences {Idt , Rd
t }Tt=1. In addition,

given our assumption that all fatalities are well measured, we also observe

q
(
Idt + Int

)
. However, we do not independently observe q and

(
Idt + Int

)
. It is

therefore impossible to evaluate the current number of truly infected agents.

In addition, we do have a relatively precise range of estimates for δ, since

data on the time it takes for infected people to recover are available.

The first main question we address is whether the model and the cross

country evidence be used to identify q and therefore Int . As we mentioned in

the introduction, the answer is no.

We prove this by showing that given any initial conditions {S0, I
d
0 , I

n
0 , R

d
0, R

n
0},

any possible value for q can be made consistent with the data through proper

selection of the values of the other unknown parameters, βt, p
z
t .

To see this, notice first that equation (3) holds by construction: the three

terms on the right-hand side are observable. Indeed, it is this equation that

is used to compute the observable {Idt }Tt=0. Then, once q is fixed, and given

that we observe q
(
Idt + Int

)
, we can compute the total number of infected

people
(
Idt + Int

)
.

3We follow the strategy of “counting equations” to show that the model cannot be
identified. It is similar to the strategy of showing there are redundant fiscal instruments
in order to implement a given Ramsey allocation.
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Next, using the value for δ, equations (4) and (5) and some initial condi-

tion can be used to compute {Rd
t , R

n
t }Tt=1, while the identity

St + Idt + Int +Rd
t +Rn

t = 1

can be used to solve for {St}Tt=1. Finally, equation (1) can be used to compute

βt, while equation (3) can be used to solve for pzt . Finally, using data on Idt ,

we can compute qdt and Int .

It is reasonable to assume that both q and δ are common to all countries,

since they are specific to the chemical structure of the virus. But the logic

above holds for every country, even if we impose that those two parameters

are common across countries.

Notice that it is possible to compute the values for βt, p
z
t and St without

using information on Idt , which is used only at the end to residually compute

Int and qdt .

As the data are different across countries, the exercise will deliver country-

specific series for {St, βt, pzt}∞t=1 and for {Int , Rd
t , R

n
t }∞t=1. Through the lens of

the model, these differences respond to differences in mitigation policies -

which affect the value for βt - and in testing policies – which affect the value

for pzt .

It is this identification problem that explains the high degree of uncer-

tainty regarding the best course of action for policy. It is also the main

justification for the need to perform random tests at a reasonable scale, as
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has been forcefully argued by many scientists. These tests would allow for the

independent estimation of the amount of undetected cases, Int , and therefore

the fatality rate, q , and the rest of the parameters of the model.

Why do cross country data not allow for identification? At first

sight, it may seem surprising that the ample cross country variation in test-

ing do not allow for identification. This impression may be reinforced by the

notion that in the previous analysis, the only use of the test, was the iden-

tification of Idt . Thus, one may argue that data on the fraction of St agents

that tested negative have not been used.

This is in fact true. We do have information on the number of tests

done daily per million inhabitants in each country, which we denote ωt. The

following equation must then hold in equilibrium:

pztβtSt(I
d
t + Int ) + ptSt(1− (Idt + Int )βt) = ωt.

The only value of that information is to identify the fraction of still sus-

ceptible agents who developed symptoms above zTt , the threshold value for

the symptoms such that agents get tested. In terms of the notation of the

model, those data allow for identification of pt = 1 −H(zTt ). That informa-

tion can be used to estimate the unknown CDF H(zTt ), but that is of no use

for learning the values of the key parameters q and βt.

Notice that the logic above hinges on the ability to find a distribution

H(zTt ) that rationalizes the data. To the extent that no restriction is imposed
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on H(zTt ), the logic follows.

Restrictions on H(zTt ). We now discuss how independent knowledge of

the distribution H(zTt ) may be used to identify a fraction of exogenous tests

that could be used to estimate the true fatality rate. In the context of the

model, a reduction in zTt implies that the threshold for testing is reduced,

which means that more infected agents get tested, so pzt increases.

Consider the case in which the ordering of the one-dimensional index, z,

is the same for both infected and non-infected agents. In this case, as the

threshold zTt is reduced, it follows that pt = 1 − H(zTt ) goes up, the same

way pzt does.

Under this assumption, the model implies that pzt and pt must move

in the same direction. But nothing in the identification algorithm for the

parameters implies that this has to be the case. Thus, in order to fit the

data, we must allow for a new variable. One candidate is to allow for a

fraction of tests that do not depend on the symptoms of the tested agents

and that allow for a flow of agents from Int toward Idt+1, so that pzt and pt do

move in the same direction. This possibility is in line with anecdotal evidence

that in some cases, countries did test agents in order to detect at least some

asymptomatic agents in order to isolate them and thereby – mitigate the

infection rate.

We interpret these tests as the exogenous component of the tests done,

which is blurred in the data. Under this interpretation, countries do some
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exogenous testing, but they report the sum of the endogenous tests plus the

exogenous ones.

What we propose now is a mechanism that would use the model to identify

data points in which tests had some exogenous component. If there is enough

of this exogenous component in the data on tests, it may then be used to try

to estimate the true fatality rate. We now illustrate how this process may

work out.

The restriction that pzt and pt must move in the same direction can be

written

(pzt − pt) (pzt − pt) ≥ 0. (8)

We let τt be the rate at which non-detected agents are tested indepen-

dently of their symptoms. Then, the following equation must hold:

pztβtSt(I
d
t + Int ) + ptSt(1− (Idt + Int )βt) + τt(St + Int ) = ωt, (9)

where ωt is the fraction of agents tested at time t.

The law of motion for the infected and detected agents evolves as in (6)

repeated here for convenience:

βt(I
d
t + Int )pztSt + τtI

n
t = Idt+1 − Idt + δIdt + q

(
Idt + Int

)
. (10)

The problem then becomes finding values for {pzt , pt, τt}Tt=0 that satisfy

restrictions (8) , (9) , and (10) . Clearly, there may be many solutions, given
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that restriction (8) is an inequality.

The best way for the model to accommodate the largest possible share

to the endogenous component of the tests is to choose {τt}Tt=0 in order to

minimize ∑
t

τt,

subject to (8) , (9) and (10) , plus the restriction that τt ≥ 0 for all t.

There will be instances when the solution implies τt = 0 for some periods

or country observations. In fact, if in computing the - unique - solution for

{βt, pzt , pt}∞t=1 obtained when τt = 0 for all t and all countries, it turns out that

pzt and pt commove always, so restriction (8) is satisfied, then the solution to

that minimum problem would imply τt = 0 for all t and all countries. The

hope is that the solution implies that τt > 0 for enough period or country

observations that variation can be used to estimate the true fatality rate.

Two caveats are in order. First, restriction (8) follows directly from the

assumptions of the model. And it makes total sense, given that in the model,

symptoms live in a single-dimensional space. If symptoms live in multidimen-

sional sets, this monotonicity property may not necessarily follow from the

fact that H(zTt ) is a CDF. Second, given that the minimization problem gives

the largest possible chance to the endogenous component of the tests, what

we obtain is just a lower bound for the true value for τt.
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4 Computing the effective transmission rate

Despite the difficulties discussed above, the model can still be used to disci-

pline calibration exercises. The reason why is that, as discussed above, the

modeler has one, but only one, degree of freedom in choosing parameters.

Our parameters of interest are q, βt and, to the extent that one is willing

to impose restrictions on the CDF H(zTt ), also pzt and pt. As argued above,

once you choose one of them - q, for example - the model can be used to

compute the others - {βt, pzt , pt}Tt=0, in this example. Thus, the structure of

the model does impose partial discipline in quantitative analysis.

In what follows, using cross country evidence, we provide an example of

how the model can be used to learn about the effect of different mitigation

policies.

4.1 Numerical examples

Following an outbreak of COVID-19 cases in early March, three Nordic coun-

tries took different routes in terms of mitigation policies. While Norway and

Denmark opted for relatively severe lockdowns of their economies, Sweden

chose a more flexible one, based mostly on promoting social distancing, but

left most of its economy open.

The countries’ outcomes, as shown in Figure 2, have also been different.

The figure shows daily data starting on March 18th, the day when – by

chance, one may guess - two of the three countries reached one fatality per
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Figure 2: Cumulative reported cases
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Note: Active cases projected by assuming δ = 0.1

million inhabitants.4 Figure 2.a shows the number of detected cases per

million inhabitants for the three countries. Figure 2.b shows the number of

fatal cases, also per million inhabitants for the same three countries. Finally,

Figure 2.c shows the number of active detected cases, assuming a recovery

rate δ = 0.1, which implies an average period of infection of 10 days. We use

this value as a benchmark.

The data have been obtained from the Johns Hopkins University5. The

data source also contains data on recovered agents. However, it is incomplete,

and there are many reasons to believe that the data collection process is not

homogeneous across countries. Thus, we do not use data on recoveries.

Recall that as we will not impose any restriction on H(zTt ), we will not

be using data on tests, Thus, data on detected infections allow us only to

estimate the value for qdt , which is not a parameter of interest. Thus, the

4Denmark reached that number only on March 19th. We still chose to start the three
countries on March 18th.

5Source: https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases.
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following exercise uses data only on fatalities. We therefore let

It = Idt + Idt ,

Rt = Rd
t +Rd

t .

4.2 The data

The criterion we chose to start the analysis for each country was the day

it reached one fatality per million. As it turned out, that date was March

18th for both Norway and Sweden and March 19th for Denmark. Given the

proximity of the dates, we then decided to start the three countries on March

18th.

Simple inspection of the data, as in Figure 1, shows very large volatility in

new daily fatalities. Feeding the raw data to the model also delivers volatile

series that are harder to interpret. Thus, we smooth the data. In Appendix

1, we explain in detail our procedure.

We normalize the data on daily fatalities by the size of the population,

and express them per million inhabitants.

4.3 Calibration of the recovery rate δ

This parameter depends on the chemical characteristics of the virus and their

interaction with the human body. Medical evidence suggests that the average

duration of the infection period ranges between four and 14 days. As our
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benchmark, we use an average of 10 days, but we will also show results for

values of five and 20 days. As the recovery rate is the inverse of the average

duration, we set δ = 0.1 for our benchmark (and will check robustness for

δ = 0.2 and δ = 0.05).

4.4 The numerical exercise

We now show that it is still possible to learn from the different experiences in

the three Nordic countries. We do so by fixing a value for the mortality rate,

m, assumed to be the same across countries. This implies taking a stand on

the single free parameter the model allows.

Once that parameter is chosen, we use the model to solve for the other

parameters for each of the three countries, which allows for a comparison of

the values for the evolution over time of the transmission rate, βt. Clearly,

the result does depend on the assumed value for the unknown mortality rate,

m. But the exercise can be repeated for a range of reasonable values of the

mortality rate, and thus a range of values for the mitigation rate will result.

The results are remarkably robust to the value of m and indicate a much

stronger response of the mitigation efforts in Norway than those in Sweden;

the results for Denmark suggest a mixed outcome, with an initial increase in

the mitigation rate and a subsequent drastic reduction.
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4.5 The algorithm

To make clear the nature of the exercise, we now summarize all the steps

described so far that we apply to the data of the three countries:

1. We first smooth the data to obtain series of {Itq}Tt=0.

2. We choose δ = 0.1, which is equivalent to an average duration of the

infection for patients who recover in 10 days. (We also solve the cases

of δ = 0.05 and δ = 0.2.)

3. We assume two possible values for m, 1% to 0.1%, a range that has

been considered in the literature.6

4. Given m and δ, we compute {It}Tt=0.

5. Given an initial value for R0, the series {It, q}Tt=0, and the assumed

value for δ, we compute {Rt}Tt=0.

6. Given {It, Rt}Tt=0, we compute {St}Tt=1 , using the identity

St + It +Rt = 1.

7. We use the initial condition S0 and {It, St}Tt=1 on equation

St − St+1 = βtItSt

6See Atkeson [2020]
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to compute {βt}Tt=0.

4.6 Results

We first discuss the case of the three Nordic countries, then go on to discuss

the comparison across states.

4.6.1 Case 1: Three Nordic countries

In Figure 3, we show the evolution of the value for qdt for the three Nordic

countries the observations were smoothed through a three-day equal-weight

moving average process. This is the estimated value obtained when using

δ = 0.1. The data for the three countries start on March 18th and end on

April 30th.

Figure 3: Fatality rates by country
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As can be seen, the estimate is high for Sweden, intermediate for Den-

mark, and low for Norway. Given that the assumed true fatality rate is the

same across countries, these results suggest that the fraction of undetected
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agents is larger in Sweden than in Denmark, while that fraction is the small-

est in Norway. Incidentally, this is consistent with the fact that by April

26th, the number of tests per million people was 30.310 in Norway, 26.900 in

Denmark, and 9.357 in Sweden.

Besides those qualitative characteristics, in order to make quantitative

progress, we feed these data into the model. As mentioned above, to avoid

the large day-to-day fluctuations, for each country we will feed the model

a value for Idt q
d
t that is derived from the quadratic approximation we also

present in Figure 3.

As mentioned above, our benchmark case is given by δ = 0.1. We tried

two alternative values, q = 0.001 and q = 0.0001, that correspond to two

values for the fatality rate considered in the literature, of 0.1% and 1%.

Our variable of interest is the transmission rate, βt. That parameter

determines the gross flows to the pool of infected agents. On the other hand,

the parameter δ is the major determinant of the gross flows out.7 Thus, what

really matters is the size of βt relative to the value of δ. In the following figures,

we therefore plot the ratio βt/δ, known as the normalized transmission rate.

The main results for the high mortality rate (q = 0.001) and low mortality

rate (q = 0.0001) cases are reported in Figures 4a and 4b respectively. Several

conclusions arise from the figures.

1. A very different pattern emerges between Norway and Sweden. For the

low mortality rate case, by March 25th, Norway starts very close to a

7The fatality rate also matters, but it is very small relative to δ.
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Figure 4: Normalized transmission rates for the case δ = 0.1
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normalized transmission rate of 1 and climbs to a peak of around 1.3.

It then starts a steady decline that crosses the value of 1 by April 1st,

remaining substantially below that value from that point forward. By

contrast, Sweden starts at around the same value as Norway, and by

March 31st, climbs to peak over 2. It then starts a volatile decline,

remaining substantially above Norway by over 0.5 and always above

the threshold 1.

2. The case of Denmark is in between. It behaves like Sweden till around

April 5th, but it then goes below the threshold 1 on April 9th, remain-

ing slightly below it from that point forward.

3. The results are robust to a 10-fold difference in the mortality rate. All

rates are slightly lower, except for Sweden, where the drop is more

important. The difference between Norway and Sweden is even larger
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in this case.8

Figure 5: Normalized transmission rates for cases δ = 0.05 and δ = 0.2
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In Figure 5, we reproduce the results using alternative values for the

recovery rate. Specifically, in figures on the first row, we solve the case of

δ = 0.05, while in figures on the second row, we solve the case of δ = 0.2. As

it can be seen in Figure 5, the results are quite robust to these alternative

assumptions.

Figure 5 hides another difference that follows trivially but runs in favor

8There is a spike at the end of the period in Norway. This is because the qdt estimated
is very close to q, which according to the model, implies a large reduction in Int . This
probably reflects the fact that the assumed m may be too large, or that the qdt measured
on those days may be artifically low, owing to sample size.
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of Sweden. The share of susceptible agents, St, is now lower in Sweden, so

that country is closer to herd immunity.

4.6.2 Case 2: Several US states

We now illustrate the methodology for some US states. The data source is

the New York Times9. For each state, we chose the initial day to be the one

when it reaches 10 fatalities per million inhabitants. In all cases, we use two

values for the recovery rate, δ = 0.2 and δ = 0.1. In addition, we also use

the same values for q that we used for the Nordic countries, corresponding

to values for the fatality rate m = 1% and m = 0.1%.

Figure 6: California and Florida
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In Figure 6, we show the results for California and Florida. The left panel

shows the case of δ = 0.1, while the right panel shows the results for δ = 0.2.

9Source: https://github.com/nytimes/covid-19-data.
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The x-axis shows the days since the initial date of observation. Both states

initially behave similarly, starting at high values, but with converging to the

value of 1 in about 20 days. They then hover around the value, with some

spikes that appear temporary. The results are very robust to the value of

delta.

Figure 7: Georgia and Washington
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Figure 7 shows the results for Georgia and Washington. They start with

values for the transmission rate that are much higher than the previous cases,

but they also rapidly converge to values very close to 1. In both cases, by the

last days of April (the end of our sample), there seems to be a small increase

in transmission. Again, the results are quite robust to the values assumed

for δ or m.

Figure 8 shows the case of Minnesota, which is quite different from the

cases that we solved. It starts with normalized transmission rates that are
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Figure 8: Minnesota
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very close to 1, but after the third week, it exhibits an increasing trend that

appears worrisome. This behavior is very robust to alternative values for δ

or m.

Figure 9: New York
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Finally, Figure 9 shows the case of New York. This is also a special

case. From the point of view of our analysis, the main reason is that the

number of fatalities relative to the population is above 0.12% by May the

3rd. Therefore, imposing a fatality rate relative to the infected population
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of 0.1% makes no sense in this case. Thus, for New York, we used m = 1%

- as before - but we chose as an alternative value m = 0.3%. The general

behavior is similar to the other cases: it starts high, but it then converges to

1. However, compared with other states - notice, for instance, the difference

with Florida and California in Figure 6 - it starts at higher values and it

takes longer to converge (25 or 30 days, depending on the case).10 This is

consistent with the events that we saw unfold in New York.

5 Explaining the previous results

In this section, we show that the computation of the transmission rate using

data on fatalities is quite robust to the assumed value for the true fatality

rate. In the limit in which the size of the susceptible agents is arbitrarily close

to 100%, the estimate of the normalized transmission rate is independent of

the value for m. In order to do so, we use the model in which the detected

and the undetected agents are grouped together. Thus, this version of the

model implies that given

1. initial conditions {S0, I0, R0}, where all are ≥ 0 and such that

S0 + I0 +R0 = 1,

10The comparison with Washington and Georgia may seem puzzling, given the very
high estimated cases in the early days. We have not made a detailed comparison, but the
estimates for the early days are less reliable, given that samples are smaller for those days,
so we did not pursue this further.
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2. and parameters δ, q, βt,

the following equations solve for the sequences {St, It, Rt}∞t=1 :

St − St+1 = βtItSt

It+1 − It = βtItSt − δIt − qIt (11)

Rt+1 = Rt + δIt + qIt.

We have data on Ft = qIt for t = 0, 1, ...., T, and we know δ. Assume

q = q̃. Then, our estimate for Ĩt is

Ĩt =
Ft
q̃

for t = 0, 1, ...., T.

We assume that R0 = 0, so

R̃t = (δ + q̃)
t∑

j=0

Ĩj.

In addition,

S̃t = 1− Ĩt − R̃t,

and

S̃t − S̃t+1 = β̃tĨtS̃t.
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Now, let q = kq̃ for k > 1. Then, the evolution of infections is given by

Ît =
Ft
kq̃

=
Ĩt
k

for t = 0, 1, ...., T.

A known property of this model - that the growth rate of infections is inde-

pendent of the fatality rate - follows:

Ît+1 − Ît
Ît

=
Ĩt+1

k
− Ĩt

k

Ĩt
k

=
Ĩt+1 − Ĩt

Ĩt
.

In addition, equation (11) implies

Ît+1 − Ît
Ît

= β̂tŜt − δ − q̂,

and

Ĩt+1 − Ĩt
Ĩt

= β̃tS̃t − δ − q̃.

so,

β̂t
Ŝt

S̃t
+
q̃(1− k)

S̃t
= β̃t. (12)

The solution for R̂t is given by

R̂t = (δ + q̃k)
t∑

j=0

Îj = (δ + q̃k)
t∑

j=0

Ĩt
k
,

which implies
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R̂t =

(
δ + kq̃

kδ + kq̃

)
R̃t.

The solution for the set of susceptible agents is then given by

Ŝt = 1− Ît − R̂t = 1− Ĩt
k
−
(
δ + kq̃

δ + q̃

)
R̃t

k
.

Thus,

Ŝt

S̃t
=

1

k

k − 1 + S̃t + R̃t
q̃(1−k)
δ+q̃

S̃t
.

Replacing in equation (12) above

β̂t
Ŝt

S̃t
+
q̃(1− k)

S̃t
= β̃t

we obtain

β̂t
k − 1 + S̃t

kS̃t
+

(1− k)

k

R̃t

S̃t

q̃

δ + q̃
− q̃(k − 1)

S̃t
= β̃t

When S̃t is close to 1 so R̃t is close to zero, we obtain

β̂t − q̃(k − 1) ' β̃t.

So, the difference between the two values for the parameters we used is just

0.0009. As the function is continuous, the estimate is quite insensitive to

k when S̃t is close to 1. Even for values of S̃t = 0.9, the difference between

36



the two estimates is less than10%.

Thus, in the early stages of the epidemic, one can obtain very precise

estimates of the transmission rates. However, as the epidemic progresses, or

in second waves of the epidemic when R is large, identifying the evolution

of βt requires more precise information regarding the fatality rate. This

explains the behavior of the estimates in figures 4 to 9, since the data analyzed

correspond to the outburst of the epidemic.
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