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A Sequential Move Oligopoly Game

Two firms, labelled i = 1, 2, play a sequential move Cournot (quan-
tity-setting) game. 1In each period t, t = 0, 1, ..., firm 1 moves first and
picks an output level Q¢ - Than having seen Qe firm 2 moves and picks an
output level g,.. We call q;; the action of firm i at time t. We assume q;,
is a member of the action space A; for all t. The period t payoff to firm i

when actions A1t and gy are taken is

(1.1) Tig(Gqg09p) = PAyp*ay )a;,

where p(e) is the industry demand function. We assume p(q) is differentiable,
monotonically decreasing in q on a finite interval [0,m] and that p(gq) » O as
g increases to m and p(q) equals zero for all q 2 m.

A strategy oy for firm i is a sequence of functions Tiqr O4pr =9
one for each period t. The function for period t determines player i's ac-

tions as a function of the actions taken by both players times before time

t. Let the history faced by player 1 at time t be denoted h1t where
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That is, h,. records the output levels of both players in all periods before
t. Let Hy. = {hy |a;eA; for all 1<s<t}. In period t player 2 moves after
having observed the current output qq, produced by player 1. Thus the history

fucing player 2 at time t is hyy = (hyt3qqe).  Let

Hyy = {h2t|q13£A1 for 1<s<t and g, _eA, for 1<s<t}.
A strategy o; for player i is a sequence of functions {oit}tT1
where Iyt Hit + A;. Let the strategy space of player i be

si - {oiz(clt)b=1 ’Uit:Hlt-tAl}.



Let o = (01,02) and S = 51*52’ We need to define payoffs over strategies. We

0 is a collection of

first define payoffs over outcomes. An outcome path q
actions for both players, one each t. That is q0 = {q1t’q2t}tf1' The payoff

to firm i under outcome path q0 is
0, _ 1 .t
(1.2) V(") = t§16 7 (a0 005,)

Likewise, the payoff to firm i from t onwards under the outcome path qt from t
onwards is

g%

t
(1:3) Vit(q ) = .
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where % = (G1y,905+9144179064 10+ ) -
Given any history h,. a strategy vector a1(-|h1t), 02('|h2t) gener-

ates an outcome path from t onward, which is inductively defined as,

(1.0 agy = og(hy fhyp)
Ay = 9y(hy |hy ) where by = (hy 5q,,.)
Qpe,q = 94(hye, 10y, ) where by o= (hy50,,,0,,)

) where h ), and soon.

p,q = Op(hpp, 110y PIURIL L UTEL PYRL PYRL PYOR

Payoffs over strategies o,(¢|h;.), o5(*|hy.) are given by

_ 7 os-t
ViglogCelhygd,op(iny )] = Sgtf LPAL PPRL P

where qt = (q1t'q2t'q1t+1'q2t+1"") is defined by (1.4).
Let S1(h1t) denote the set of strategies for player i from t onward,

given history h,. . That is

=] . 3
(1.6) S,(h,,) = {(:1(-11'1“):[018(-|hm)JS:t | 015('|h1tJ.H1t+A1}



=3 =
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where H1t = [h1t“(q1t’q2t"'"q1s-1’q2s-1)|qir

defined in an analogous fashion. We then have

ek, all tsr¢<s}.  Let S,(h,.) be

Definition. ¢ = (01,02)e5 is a subgame perfect Nash equilibrium if for each

t=1,2, .... The following conditions hold: for each h,; & Hq.

(1.7) VglogClngg)yon(ehye)) 2 V1t(ca('|h1t)'°2é'|hét)]

for all oi(-|h, ) € S,(h, ) where h} = [h?t,o;(hw]hm)) and for each hy, e
Hate

(1.8) Voo (0, (- [y )00 By )) 2 Vo (o, (e [y ) 080 By )

for all o4(-|h, ) € Sy(hye).

Notice that in each period t player 1 is a "Stackelberg leader" in
the sense that player 1 when considering a deviation to some a;(-|h1t) takes
account of the fact that the action he adopts at t, say ci(h1t|h1t)’ will
affect the action taken by player 2 by affecting the history that player 2

confronts when it is his turn to move.



