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Abstract

We explore quantitatively the possibility of multiple equilibria in a model of

sovereign debt crises. The source of multiplicity is the one identified by Calvo

(1988). This type of multiplicity has been at the heart of the policy debate through

the recent European sovereign debt crisis. Key for multiplicity in the model is a

stochastic process for output featuring long periods of either high or low growth.

We calibrate the output process in the model using data for the southern European

countries that were exposed to the debt crisis. We find that expectations-driven

sovereign debt crises are empirically plausible, but only in periods of stagnation.

Multiplicity is state dependent: in periods of stagnation and for intermediate levels

of debt, interest rates may be high for reasons unrelated to fundamentals.
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1 Introduction

How important are expectations in triggering sovereign debt crises? In this paper,

we explore the quantitative implications of a model of sovereign debt crises that exhibits

state-dependent multiplicity. The mechanism we consider to generate multiplicity is the

one proposed by Calvo (1988) in which high interest rates induce high default probabilities

that in turn justify the high rates. We show that the mechanism is quantitatively relevant.

We build on Lorenzoni and Werning (2013) and Ayres et al. (2018), which argue that the

mechanism in Calvo (1988) is of interest when the fundamental uncertainty is bimodal,

with both good and bad times.

Our analysis of self-fulfilling equilibria in interest rate spreads is motivated by two

particular episodes of sovereign debt crises. The first one is the recent European sovereign

debt crisis that started in 2010, when most of the countries involved were facing a pro-

longed stagnation. The peak of the crisis was in the summer of 2012 and receded substan-

tially after the policy announcements by the European Central Bank (ECB) in September

of that year. The spreads on Italian and Spanish public debt, which where very close to

zero since the introduction of the euro and until April 2009, were higher than 5 percent

by the time the ECB announced the Outright Monetary Transactions (OMT) program.

They were considerably higher in Portugal, Ireland, and Greece, particularly in the latter

two cases. With the announcement of the OMT, according to which the central bank

stands ready to purchase euro area sovereign debt in secondary markets, the spreads in

most of those countries slid down to less than 2 percent, even though the ECB did not

actually intervene. The potential self-fulfilling nature in the events leading to the high

spreads in the summer of 2012 was explicitly used by the president of the ECB to justify

the policy.1

The second episode is the Argentine crisis of 1998–2002. Back in 1993, Argentina

had regained access to international capital markets, but the average country risk spread

on dollar-denominated bonds for the period 1993–1999, relative to the US bond, was

7 percent. The debt-to-GDP ratio was roughly 35 percent, very low by international

standards, and the average yearly growth rate of GDP was around 5 percent. Still, the

Argentine government defaulted in 2002, after four years of a long recession. Note that

a 7 percent spread on a 35 percent debt to GDP ratio amounts to almost 2.5 percent

of GDP on extra interest payments per year.2 Accumulated over the 1993–1999 period,

this represent 15 percent of GDP, or almost half of the debt-to-GDP ratio of Argentina

in 1993. An obvious question arises: Had Argentina faced lower interest rates, would it

have defaulted in 2002?

1See De Grauwe and Ji (2013) on the poor correlation between spreads and fundamentals during the
European sovereign debt crisis.

2This calculation unrealistically assumes one-period-maturity bonds only. Its purpose is just to illus-
trate the point in a simple way.
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The main contribution of this paper is to show that the mechanism that generates

multiplicity in Calvo (1988) is quantitatively plausible. Key for multiplicity is a bimodal

output growth process, with persistent good and bad times. We modify an otherwise

standard sovereign default model to incorporate an endowment growth rate process that

is governed by a Markov chain with persistent high and low growth regimes. To calibrate

the model, we estimate this output process for a set of countries that have recently been

exposed to sovereign debt crises. We show that the calibrated model features self-fulfilling

debt crises, which resemble the episodes just described.

In our calibrated model, there are equilibria in which interest rates can be high or

low, depending on expectations. This happens only if fundamentals are weak. It is only

in times of low and persistent growth that spreads can be high because of expectations.

In the high-growth regime, the region of multiplicity is either empty or negligibly small.

Thus, the multiplicity we compute is state dependent: expectations can trigger a crisis

only when growth is low.

Jumps in interest rates may happen even absent exogenous changes in expectations. In

this economy with a bimodal distribution for the growth process, the schedule of interest

rates faced by the borrower can also exhibit large jumps due to fundamentals. It follows

that jumps in interest rates are not necessarily a sign that a bad-expectations equilibrium

is in the making. The discrete jumps, due to either fundamentals or expectations, induce

policy responses by the borrower that can be interpreted as endogenous austerity. The

borrower optimally refrains from increasing debt in order to avoid the costs associated

with those jumps. This endogenous austerity is featured in some of the equilibrium

simulations discussed in the paper.

Our model follows the quantitative sovereign debt crises literature that grew out of the

work of Eaton and Gersovitz (1981) and was further developed by Aguiar and Gopinath

(2006) and Arellano (2008).3 In these models, a single borrower faces a stochastic endow-

ment and issues non-contingent debt to a large number of risk-neutral lenders. There is

no commitment to repay. Timing and choice of actions are important: the assumptions

in Aguiar and Gopinath (2006) or Arellano (2008) are that the borrower moves first and

chooses the level of non-contingent debt at maturity. We make two main changes to the

standard setup. First, we assume that the borrower chooses current debt rather than

debt at maturity. This assumption is key to generating multiplicity. When the borrower

chooses debt at maturity, it is implicitly choosing the default probability and therefore

also the interest rate on the debt. Instead, when the borrower chooses current debt,

default may be likely if interest rates are high or unlikely if interest rates are low.4

3Other related literature includes Aguiar and Amador (2018), Aguiar et al. (2014), Bocola and Dovis
(2016), Cole and Kehoe (2000), Conesa and Kehoe (2017), Corsetti and Dedola (2014), Lorenzoni and
Werning (2013), and Roch and Uhlig (2018), among others.

4Ayres et al. (2018) show that the timing of moves is also key. In particular, when lenders are first
movers, there is multiplicity regardless of whether the borrower chooses current or future debt.
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One fragility of the multiplicity mechanism in Calvo (1988) is that, for commonly

used distributions of the endowment process, the high-rate schedule is downward sloping,

meaning that the interest rates that the country faces decrease with the level of debt.

That is not the case, as shown in Lorenzoni and Werning (2013) and Ayres et al. (2018),

if the endowment is drawn from a bimodal distribution with good and bad times. Our

second change to the standard setup, which is empirically founded, is that the exogenous

endowment process is drawn from such a distribution. Specifically, we allow the en-

dowment to follow a Markov-regime-switching process that alternates between persistent

high and low growth. We view this distribution of the endowment process as reflecting

the likelihood of relatively long periods of stagnation in a way that is consistent with

the evidence in Kahn and Rich (2007). We emphasize the plausibility of long periods of

stagnation as drivers of the multiplicity. To calibrate the bimodal distribution for the en-

dowment process with periods of stagnation, we estimate a Markov-switching regime for

the growth rate of output for Argentina, Brazil, Italy, Portugal, and Spain. The model is

shown to be consistent with a sovereign debt crisis unraveling, triggered by coordinated

expectations. This happens in periods of low growth when debt is neither too low nor

too high.

The central results of this paper, that expectations-driven sovereign debt crises are

empirically plausible, can contribute to the assessment of the role of policy in sovereign

debt crises. It is when fundamentals are weak that a lender of last resort may be called in,

not because fundamentals are weak but because the weak fundamentals create conditions

for a role of expectations. Of course, the role of the lender of last resort in periods of

stagnation will have effects on the economy beyond those periods in which interest rates

could be high because of expectations.

The paper closest to ours in its motivation is Lorenzoni and Werning (2013). They

show that bonds of long maturities are essential in generating the multiple equilibria they

analyze. Our quantitative exploration is focused on the characteristics of the endowment

process, as estimated using data of countries exposed to sovereign debt crises. In order

to isolate this effect, we consider a model with one-period debt only.

The paper proceeds as follows. In Section 2, we discuss a simple two-period model

to show the key role played by the bimodal distribution in generating multiplicity. In

this case, we can derive analytical expressions that highlight the importance of each of

the few parameters in the model, and provide intuition for the results in the more com-

plex quantitative model of Section 3. There we also describe the calibration procedure,

including the estimation of the endowment process. In Section 4, we discuss the model

results and summarize the robustness exercises. Section 5 contains concluding remarks.
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2 A two-period model

Here we illustrate the main mechanisms of the model in a simple two-period case.

The economy is populated by a representative agent that draws utility from consumption

in each period and by a continuum of risk-neutral foreign lenders. The initial wealth of

the agent is denoted by ω. The endowment in the second period is distributed according

to

y2 =

yl, with probability p

yh, with probability (1− p)

in which yl < yh.5

The representative agent preferences are given by u(c1) + βEu(c2), where u is strictly

increasing, strictly concave, and satisfies standard Inada conditions. We assume that the

initial wealth and the discount factor β are low enough so that the agent will want to

borrow. In period one, the borrower moves first and issues a non-contingent debt level b.

Lenders respond with an interest rate R. We denote by R(b) the interest rate schedule

faced by the borrower. In period two, after observing the endowment y2, the borrower

decides whether to pay the debt or to default. In case of repayment, the borrower

consumes the endowment net of debt repayment, c2 = y2 − Rb. In case of default, the

borrower repays a fraction κ of the debt and consumes c2 = yd − κb, yd < yl. The agent

defaults if the cost of repayment is larger than the benefit:

(R− κ) b︸ ︷︷ ︸
cost of repayment

> y2 − yd︸ ︷︷ ︸
benefit of repayment

. (1)

In the first period, given initial wealth ω and an interest rate schedule R(b), the

borrower solves the following problem:

V (ω) = max
b
{u(c1) + βEu(c2)} , (2)

subject to c1 = ω + b,

c2 = max
{
y2 −R(b)b, yd − κb

}
,

and is subject to a maximum debt level constraint, b ≤ B.

The assumption that the borrower moves first by choosing a level of debt and that

lenders move next with an interest rate schedule is standard. We depart from the liter-

ature, as in Aguiar and Gopinath (2006) and Arellano (2008), in that we assume that

the borrower chooses current debt b rather than debt at maturity, Rb. The risk-neutral

lenders will be willing to lend to the agent as long as the expected return is the same as

5The discrete distribution will help make clear the main mechanisms for multiplicity. We owe this to
an insightful discussion by Fernando Alvarez.
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the risk-free rate R∗, that is,

R∗ = h(R; b) ≡
[
1− Pr

(
y2 − yd < (R− κ) b

)]
R + Pr

(
y2 − yd < (R− κ) b

)
κ, (3)

in which h(R; b) is the expected return to the lender when the interest rate is R. Given

a value for b, the expected return for lenders can be written as

h(R; b) =


R, if R ≤ yl−yd

b
+ κ

R(1− p) + pκ, if yl−yd
b

+ κ < R ≤ yh−yd
b

+ κ

κ, if R > yh−yd
b

+ κ.

(4)

In Figure 1, we plot the expected return as a function of the interest rate R, for three

levels of debt, together with the risk-free rate R∗. Notice that for low levels of R, the

expected return is equal to R since debt is repaid with probability one. In this region, as

R increases, the expected return increases one to one. Eventually, R will be high enough

that the borrower will default in the low output state, which happens with probability

p. At this point, the expected return jumps down. As R increases, the expected return

increases at a lower rate, (1− p), since repayment happens only in the high output state.

Finally, for high enough R, default will happen with probability one, and the expected

return will be the recovery rate κ. A higher level of debt decreases the expected return

uniformly, shifting the curves downward.

For low levels of debt, there is only one solution to equation (3), with R = R∗. For

intermediate levels of debt, there are two solutions: one solution has R = R∗ associated

with a zero probability of default, and the other has R = (R∗ − pκ)/(1 − p) associated

with a probability of default equal to p. For higher levels of debt, the only solution is

the high rate R = (R∗ − pκ)/(1− p). Finally, for even higher debt, there is no solution.

There are multiple solutions only for intermediate levels of debt.

We can now define the following correspondence relating debt levels to interest rates:

R(b) =


R∗, if b ≤ yl−yd

R∗−κ
R∗−pκ

1−p , if (1− p)yl−yd
R∗−κ < b ≤ (1− p)yh−yd

R∗−κ

∞, if b > (1− p)yh−yd
R∗−κ

(5)

An equilibrium is an interest rate schedule R(b) and a debt policy function b(ω) such

that, given the schedule, the debt policy function solves the problem of the borrower in

(2), and the schedule R(b) is a selection of the correspondence R(b).

The correspondence R(b) is plotted (red line) in Figure 2. For all debt levels below

b1 ≡ (1−p)yl−yd
R∗−κ , there is only one interest rate, the risk-free rate. For debt levels between

b1 and b2 ≡ yl−yd
R∗−κ , there are two possible interest rates, the risk-free rate and a high rate.
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Figure 1: Expected return function for different levels of debt

(a) low debt

(b) medium debt

(c) high debt

For debt levels between b2 and b ≡ (1 − p)y
h−yd
R∗−κ , there is again only one interest rate,

the high rate. There are multiple interest rate schedules that can be selected from this

correspondence. We focus on two of those schedules: a low interest rate schedule, Rlow(b)

in Figure 2a (blue line), and a high interest rate schedule, Rhigh(b) in Figure 2b (blue

line).

We think of b1 as the debt level above which interest rates jump because of expec-

tations, since alternative expectations could sustain low interest rates. We think of b2
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as the debt level above which interest rates jump because of fundamentals, since no ex-

pectations could sustain lower interest rates. We think of b̄ as an endogenous borrowing

limit, since any debt issued above this level implies a default probability of one.

Figure 2: Interest rate schedules

(a) low interest rate schedule

(b) high interest rate schedule

Whether spreads are low or high has implications for the level of debt that can be

raised. The region of multiplicity happens for intermediate levels of debt, between b1 and

b2. If debt is sufficiently low, interest rates can only be low, whereas if debt is sufficiently

high, rates can only be high. It is for intermediate levels of debt that interest rates can be

either high or low depending on expectations. The size of the multiplicity region (b2− b1)

is p× b2, which depends on the probability of the low endowment and on the maximum

amount of debt it can sustain at the low rate under favorable expectations.6

Figure 3 shows the optimal debt policy as a function of the initial wealth for the high

and low interest rate schedules. For high levels of wealth, the optimal choice of debt

is below b1, and thus the schedule does not matter. As wealth decreases, the schedule

matters. For the high interest rate schedule, the borrower chooses to keep debt levels

at b1 in order to avoid the discrete jump in interest rates on the whole level of debt.

6The multiplicity region is p× b2 when b2 < b̄, which is the relevant one in the quantitative model of
Section 3.
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Eventually, for low enough wealth, the marginal utility of consumption in the first period

is high enough that the borrower chooses to increase its debt level discretely. This discrete

jump shows that the borrower has incentives to avoid at least part of the multiplicity

region between b1 and b2. As wealth decreases even more, debt levels keep increasing

until they reach the endogenous borrowing limit b. When the borrower faces the low

interest rate schedule, borrowing keeps on increasing as wealth declines until it reaches

the level b2. At this point, there is a choice to keep it constant for lower levels of wealth.

Eventually, there is also a discrete jump, and debt levels continue to increase until they

reach the endogenous borrowing limit.

Figure 3: Debt policy function

The choice of keeping debt levels constant as wealth decreases is a form of endogenous

austerity. This happens in our model because of the discrete jumps in interest rates

induced by either expectations or weak fundamentals. As we show, the quantitative

model of Section 3 exhibits the same behavior.

The role of the bimodal distribution Here we analyze how the shape of the bimodal

distribution affects the multiplicity of equilibria. We start by considering alternative

probabilities of the low endowment state p. Figure 4 plots the interest rate correspondence

R(b) for two values of p. The higher is p, the higher is the interest rate that the borrower

faces if default happens in the low endowment state. The higher is the interest rate,

the lower is the minimum debt level such that the borrower defaults in the low state. It

follows that the higher p is associated with a higher interest rate and a larger region of

multiplicity.

We relate the parameter p to the parameters in the full quantitative model in the next

section. There, we have a two-state Markov process in the growth rates of output. The

probability of switching to, or remaining at, the low growth regime is the analog of the

value of p in this two-period model. In the estimations described in Section 3, we show

that low output growth states are persistent, meaning higher p during stagnations. Con-

sequently, in the quantitative model, stagnations come with larger regions of multiplicity
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and higher interest rates.

Figure 4: Interest rate correspondence for different p’s

Next, we consider the case in which the endowment in the second period is drawn

from a bimodal normal distribution, y2 ∼ pN(yl, σ2) + (1− p)N(yh, σ2). Figure 5 shows,

for different values of σ, the expected return function h(R; b) in Figure 5a and the implied

interest rate correspondence R(b) in Figure 5b. The case with σ = 0 (red) is the one

analyzed before, in which there are two solutions to equation (3). For strictly positive

small levels of σ (blue), there are now four solutions to equation (3). However, the two

solutions on the downward-sloping part of the expected return function are such that, if

the interest rate decreases, the expected return increases. This implies segments of the

interest rate schedule that decrease with debt b. These segments are clearly not very

reasonable, and we rule them out for reasons discussed in Ayres et al. (2015). For higher

values of σ (black), there are two solutions to equation (3), but one can be ruled out.

Therefore, to have multiple admissible equilibria, we need to have relatively low levels of

σ. We show this is the case in the estimations of Section 3.

The endowment levels yl and yh are also important for multiplicity, as is clear from

Figure 2. As yl approaches yh, multiplicity disappears as the endowment distribution

converges to the unimodal case. If instead yl approaches yd, multiplicity also disappears.

For intermediate levels of yl, when b2 < b̄, the multiplicity region p × b2 shrinks as yl

declines. The reason is that a lower yl reduces the value of repayment in the low state,

which in turn reduces the maximum amount of the debt that can be sustained at the low

rate, b2. For a similar reasoning, higher yh does not change the multiplicity region because

it does not affect the amount of debt that can be sustained in the low endowment state.

The multiplicity region is maximized for intermediate levels of yl. A similar rationale will

apply to the quantitative results of Section 3.

Varying the recovery rate κ A higher κ lowers the interest rate schedule (Figure 6)

since it increases the return for lenders in case of default. The higher κ and the lower

interest rate reduce the cost of repayment in the low endowment state, which in turn

10



Figure 5: Varying the standard deviation of endowment shock, σ

(a) expected return function

(b) interest rate correspondence

increases the maximum amount of the debt that can be sustained at the low rate, b2.

Thus, higher κ increases the multiplicity region p× b2.

Figure 6: Interest rate correspondence for different κ’s

The comparative statics discussed above will help us to understand how changes in

parameter values affect the equilibrium of our quantitative model, described in the next

section.
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3 A quantitative model of self-fulfilling debt crises

Next, we consider an infinite-horizon model that allows us to evaluate the quantitative

role of multiplicity in triggering sovereign debt crises. We calibrate the endowment process

in the model using data on GDP growth for a set of economies that were exposed to

debt crises episodes. The calibrated model generates expectations-driven self-fulfilling

debt crises with interest rate movements that resemble those observed in crises periods,

including the recent European experience.

3.1 Model

We take the same structure of the model in the two-period case in Section 2 and

extend it to the infinite horizon. We consider only one-period debt. This approach allows

us to isolate the mechanism we want to evaluate from an alternative one studied by

Lorenzoni and Werning (2013) that arises if debt is of longer maturity. For simplicity, we

assume that, upon default, the borrower is permanently excluded from financial markets.

Lenders recover a fraction of defaulted debt.

In the absence of default, the endowment grows over time as the result of a persistent

and a transitory shock. In each period t, the endowment Yt is given by

Yt = Γte
σεt , (6)

Γt = egtΓt−1, (7)

where εt ∼ N (0, 1), and gt follows a two-state Markov process with transition probability

pg (g′|g). Thus, gt is the current trend growth and Γt is the accumulated growth up to

period t. We assume that gt can be either high or low—gt ∈ {gH , gL}—representing (per-

sistent) times of either fast growth or stagnation. The bimodal nature of gt is empirically

plausible and crucial for expectations playing a role in the model.

The preferences of the borrower are standard,

E0

∞∑
t=0

βtu(Ct), u(Ct) =
C1−γ
t

1− γ
. (8)

The period utility is consistent with balanced growth, which allows us to detrend the

model as we show below.

The borrower can issue one-period non-contingent debt. We make the same assump-

tions on the timing of moves and actions of the borrower as in the two-period model.

In particular, we assume that the borrower moves first and chooses current debt B′

rather than debt at maturity. Lenders move next and offer an interest rate schedule

R(B′,Γt−1, gt, st), where st is a sunspot variable. The sunspot captures the role of expec-

12



tations in selecting the equilibrium interest rate schedule. The sunspot follows a two-state

Markov process with transition probability given by ps (s′|s). We label the two states of st

as good (low-rate schedule) or bad (high-rate schedule)—st ∈ {sB, sG}. The two increas-

ing interest rate schedules are selected from the correspondence using the same approach

as in the two-period case. The high-rate schedule corresponds to the highest interest

rates for each level of debt, and the low-rate schedule corresponds to the lowest rate.

At the beginning of each period, after the endowment and sunspot are observed, the

borrower decides whether or not to default. Default carries three consequences. First,

the borrower is permanently excluded from financial markets. Second, the transitory

component of the endowment becomes ε < 0, and trend growth is set to its unconditional

mean µg = E[g]. Third, lenders recover a fraction κ of the face value of the debt. The

recovery is implemented with a perpetual bond that, in each period, pays a coupon equal

to x times the accumulated trend growth up to that period. That is, if the borrower

defaults on an amount of debt B at time t, then x satisfies

κB =
∞∑
j=0

Γ̃jx

(R∗)j
, (9)

where Γ̃j = µj+1
g Γ− is the trend growth while in default, Γ− is the accumulated trend

growth up to t−1, and R∗ is the risk-free rate. Equation (9) implicitly defines a function

x = x(B,Γ−) such that the present discount value of coupon payments is equal to κB.

Assuming recovery on defaulted debt is realistic and allows the model to predict rates in

line with the observed ones.

Let V d(B,Γ−) be the value to the borrower of defaulting on an amount of debt B

with accumulated trend growth Γ−. Since there is no re-entry to financial markets after

default, this value is

V d(B,Γ−) =
∞∑
j=0

βj
C1−γ
t+j

1− γ
, (10)

where Ct+j = Γ̃je
ε − Γ̃jx,

with x defined in (9).

Let V nd(W,Γ−, g, s) be the maximal attainable value to a borrower that never de-

faulted in the past and starts the period with wealth W , accumulated trend growth Γ−,

and current growth g when the value of the sunspot is s. The value of no default satisfies
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the following Bellman equation:

V nd(W,Γ−, g, s) = max
C,B′

{
C1−γ

1− γ
+ βE

[
max

{
V nd(W ′,Γ, g′, s′), V d(B′,Γ)

} ∣∣∣g, s]} ,
subject to

C ≤ W +B′, (11)

W ′ = Γ′eσε
′ −R(B′,Γ−, g, s)B

′,

B′ ≤ b̄Γ.

We use wealth W as a state variable (instead of current debt) because it reduces the

dimensionality of the state space.7 The borrowing limit is important. Since the borrower

receives a unit of consumption for every unit of debt issued, default could always be

postponed by issuing more debt. This possibility is ruled out by imposing a maximum

amount of debt. Making the borrowing limit proportional to Γ allows us to detrend the

model.

The interest rate schedule R(B′,Γ−, g, s) is a function of the amount of debt issued

because default probabilities depend on it, and the interest rate reflects the likelihood of

default. The rate is also a function of the fundamental state of the economy (Γ−, g) since

these variables contain information about future default probabilities. The interest rate

schedule also depends on the sunspot, reflecting the fact that interest rates may fluctuate

because of fundamentals or expectations.

The optimal default policy can be characterized by a default set. Let D(B′,Γ−, g, s)

be the possible realizations next period that induce the sovereign to default. Formally,

D(B′,Γ−, g, s) =
{

(g′, s′, ε′) : V d(B′,Γ) > V nd(W ′,Γ, g′, s′)
}
, (12)

in which Γ = Γ−e
g and W ′ is given as in (11). Given the set D(B′,Γ−, g, s), we can

compute the next-period default probability as

P(B′,Γ−, g, s) = Pr
(

(g′, s′, ε′) ∈ D(B′,Γ−, g, s)
∣∣∣g, s) . (13)

Interest rate schedule The lenders are willing to offer an interest rate schedule

R(B′,Γ−, g, s) as long as the following no-arbitrage condition is satisfied:

R∗ = [1− P(B′,Γ−, g, s)]R(B′,Γ−, g, s) + P(B′,Γ−, g, s)κ. (14)

Equation (14) states that the expected return of lending to the borrower must be

equal to the risk-free rate R∗. With probability [1− P(B′,Γ−, g, s)], the borrower repays

7If we were to keep current debt B as a state, we would also need to know the previous period interest
rate.
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in full, and with the remaining probability the lender only recovers a fraction κ.

Definition 1 (Equilibrium). An equilibrium is a set of value functions{
V d(B,Γ−, g), V nd(W,Γ−, g, s)

}
, policy functions {C(W,Γ−, g, s), B

′(W,Γ−, g, s)}, a de-

fault set D(B′,Γ−, g, s), and an interest rate schedule R(B′,Γ−, g, s) such that: (i) the

policies solve the borrower’s problem in (11) and achieve value V nd(W,Γ−, g, s); (ii) the

default set is as in (12); and (iii) the interest rate schedule satisfies (14).

Model normalization Since the endowment process has a trend, the state variables

in the model are non-stationary. For computational purposes, we normalize all non-

stationary variables by trend growth Γ−. This requires showing homogeneity properties

of the equilibrium functions. The following proposition states the required homogeneity

properties and uses them to cast the model in stationary form. A more detail derivation

can be found in Appendix A.

Lemma 1 (Model Normalization). The model equilibrium admits a solution such that:

(i) V d(B,Γ−, g) = Γ1−γ
− V d(B, 1, g), (ii) V nd(W,Γ−, g, s) = Γ1−γ

− V nd(W/Γ−, 1, g, s), and

(iii) R(B′,Γ−, g, s) = R(B′/Γ−, 1, g, s). Let b = B/Γ− and ω = W/Γ− be the normalized

states, and vd(b) = V d(b, 1) and vnd(ω, g, s) = V nd(ω, 1, g, s) be the normalized value

functions. The normalized value functions satisfy

vnd(ω, g, s) = max
c,b′

{
c1−γ

1− γ
+ βg1−γE

[
max

{
vnd(ω′, g′, s′), vd(b′)

}]}
subject to

c ≤ ω + gb′

ω′ = g′eσε
′ − r(b′, g, s)b′

b′ ≤ b̄ ,

and the value of default is

vd(b) =
(eε − x(b))

1−γ

1− γ
µ1−γ
g

1− βµ1−γ
g

,

where x(b) = κ
µg

R∗−µg
µg

b. Finally, the interest rate schedule satisfies

R∗ = [1− P(b′, g, s)] r(b′, g, s) + P(b′, g, s)κ (15)

with P(b′, g, s) = Pr
(

(g′, s′, ε′) : vd(b′) > vnd(ω′, g′, s′)
∣∣∣g, s).

Lemma 1 provides a stationary model suitable for computations. Intuitively, the

lemma states that only debt (and wealth) relative to trend growth matters. In all that

follows, we will use the normalization just described.
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3.2 Calibration

A subset of our model parameters are standard, and we use common values in the

sovereign debt literature. A period in our model is one year. We set eε = 0.975 so that

2.5 percent of output is lost upon default. This value for output loss lies between the

ones considered in Aguiar and Gopinath (2006) and Arellano (2008), 2 and 3 percent,

respectively.8 We set the annual risk-free rate to R∗ = 1.035, consistent with the average

(gross) annual return on US Treasury bills.9 The recovery rate is set to 75 percent

(κ = 0.75), in line with the estimates in Cruces and Trebesch (2013).10 In order to make

the borrower impatient enough to induce borrowing and default as possible equilibrium

outcomes, we set the discount factor to β = 0.75. Arellano (2008) and Chatterjee and

Eyigungor (2015) use quarterly discount factors of 0.95 and 0.94, respectively, which

imply annual discount factors of 0.82 and 0.77, close to the value we chose.11 We set

the borrower’s risk aversion to γ = 3. This value is between the ones used by Arellano

(2008), γ = 2, and Bianchi, Hatchondo, and Martinez (2018), γ = 3.3.12 Lastly, the

sunspot process is characterized by two transition probabilities: pB = ps(s
′ = sB|s = sB)

and pG = ps(s
′ = sG|s = sG). We assume that the sunspot variable is i.i.d. and takes

the bad realization with a probability of 5 percent—that is, pG = 1− pB = 0.95.

In Section 4 and Appendix D we perform sensitivity analysis for many of the param-

eters described above, and show that our conclusions are robust to alternative parameter

values. Next, we turn to the second subset of parameters, which are related to the

stochastic endowment process.

Estimation of the endowment process The endowment process in equations (6)-(7)

is a regime-switching process characterized by five parameters {gL, gH , σ, pL, pH}, where

pL = pg(g
′ = gL|g = gL) and pH = pg(g

′ = gH |g = gH). We estimate the process

using the filter proposed in Kim (1994).13 We use annual GDP per capita data from

The Conference Board Total Economy Database for years 1980–2017 and estimate the

process separately for five countries: Argentina, Brazil, Italy, Portugal, and Spain.14 We

assume bounded uniform priors for the five parameters and explore the posterior using

8Appendix D shows the results for eε = 0.97 and eε = 0.98.
9Bianchi, Hatchondo, and Martinez (2018) and Aguiar et al. (2016), for example, use R∗ = 1.04.

Appendix D shows the results for R∗ = 1.03 and R∗ = 1.04.
10The haircut estimates in Cruces and Trebesch (2013) vary from 16 percent to 40 percent, corre-

sponding to values of κ between 0.84 and 0.60. We perform sensitivity analysis for different values of κ
in Section 4.

11Aguiar and Gopinath (2006) use a quarterly discount factor of 0.8, which corresponds to 0.41 an-
nually. On the other hand, Aguiar et al. (2016) use annual discount factors between 0.84 and 0.89.
Appendix D shows the interest rate correspondence for different values of β.

12Appendix D shows the results for γ = 2.5 and γ = 3.5.
13We do not use the filter in Hamilton (1989) directly because output growth has a moving average

component. We use the filter in Kim (1994) instead.
14We start in 1980 to avoid the high growth rates of the period of convergence in the 1960s and 1970s.
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Table 1: Prior and posterior distributions

gL gH pL pH σ

Prior distribution

U [−0.1, 0.1] U [−0.1, 0.1] U [0.1, 1.0] U [0.1, 1.0] U [10−3, 0.5]

Posterior distribution
Countries (mean, and 5th to 95th percentile intervals)

Italy -0.017 0.022 0.646 0.843 0.016
[-0.037,-0.008] [0.018,0.028] [0.050,0.990] [0.627,0.990] [0.012,0.023]

Portugal -0.002 0.048 0.805 0.720 0.019
[-0.011,0.003] [0.041,0.057] [0.516,0.990] [0.454,0.939] [0.014,0.025]

Spain -0.018 0.033 0.629 0.838 0.017
[-0.026,-0.010] [0.026,0.039] [0.308,0.990] [0.653,0.990] [0.013,0.025]

Argentina -0.040 0.060 0.620 0.581 0.033
[-0.049,-0.022] [0.051,0.078] [0.346,0.877] [0.358,0.781] [0.025,0.044]

Brazil -0.033 0.029 0.589 0.793 0.019
[-0.071,-0.022] [0.025,0.032] [0.103,0.860] [0.627,0.923] [0.014,0.025]

Note: For each country, we estimate an output process as: ∆ ln yt = gt + σ(εt − εt−1), in which εt ∼ N(0, 1) and

gt ∈ {gL, gH}, with Pr(gt+1 = gL|gt = gL) = pL and Pr(gt+1 = gH |gt = gH) = pH . The table reports the mean and the

interval between the 5th and 95th percentiles of the posterior distributions of each of the parameters for each country.

The table also reports the prior distributions we used, which were chosen to be the same across countries. For each

country, we use data on GDP per capita in 2016 US$ (converted to 2016 price level with updated 2011 PPPs) between

1980 and 2017 from The Conference Board Total Economy Database as the measure of yt. See Appendix B for a

description of the estimation.

a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm. Table 1 shows

the estimates for all countries, and Appendix B contains more details on the estimation

and data sources. As in the model, the estimation assumes the same standard deviation

of shocks, σ, across the two growth states. In Appendix B, we also estimate the process

allowing for state-dependent σ and find they are similar across states.

Two things are worth mentioning regarding the estimates in Table 1. First, the

estimates show clear evidence of a bimodal distribution for output growth. The average

across countries of the difference between gL and gH is 6 percentage points, more than

three times the standard deviation of the transitory shock. The difference between gL

and gH is a key ingredient for expectations to play a role. Second, both the low- and high-

growth states are persistent (between 60 and 80 percent persistence). As we show below,

this relatively high persistence for the low-growth state generates high but plausible

interest rates in the bad-sunspot state. As a benchmark calibration, we use pL = 0.6,

pH = 0.8, σ = 0.015, gL = −0.01, and gH = 0.03.15 Table 2 contains all the model

15We are being conservative in considering a difference in growth rates of 4 percentage points, the
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Table 2: Benchmark calibration

Description Parameter Value

discount factor β 0.75

risk aversion γ 3.0

risk-free rate R∗ 1.035

low-growth rate gL -0.01

high-growth rate gH 0.03

standard deviation of transitory shock σ 0.015

fraction of debt recovered after default κ 0.750

default cost eε 0.975

probability of remaining in low growth pL 0.60

probability of remaining in high growth pH 0.80

probability of remaining in bad sunspot pB 0.05

probability of remaining in good sunspot pG 0.95

parameter values.

3.3 Model computation

Multiple interest rate schedules satisfy equation (15). Some of those interest rate

schedules will be decreasing in the level of debt. We use the same approach as in the

two-period model to select only upward-sloping schedules.16 Again, we focus on two

polar cases, with either low or high rates. The infinite-horizon problem introduces an

additional complexity because the selection affects the value function, which in turn

affects the selection.

The standard algorithm used to compute the recursive equilibrium in quantitative

sovereign debt models, as in Arellano (2008) and others, is not suitable for our analysis.

They typically start with a guess for price/interest rate functions, but our case has

multitude of those functions. To overcome that, we develop a new algorithm that iterates

only on the value function and that, in each iteration, computes the respective interest

rate correspondences and selects the high and low interest rate schedules. In Appendix

C, we explain in detail the algorithm used to build the equilibrium.

4 Model evaluation

We now describe the computation exercises and discuss the results. In Figure 7 we

plot the solutions of equation (15) for debt issuance b′, for the low (dotted red) and high

figure for Italy, rather than the country average of 6.
16See Ayres et al. (2015) for a discussion on this.
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(dotted blue) growth states. The solid lines depict the selected schedules for the good

sunspot (Figure 7a) and the bad sunspot (Figure 7b).

While in the high-growth state, the schedules associated with the good and bad

sunspots are the same, but that is not the case for the low growth state. In the low-

growth state, for intermediate levels of debt, interest rates can be either low or high

depending on the sunspot.

Figure 7: Interest rate schedules under benchmark calibration

(a) low interest rate schedules

(b) high interest rate schedules

In this model, expectations play a role when fundamentals are weak. The reason for

this state-dependent role of expectations is the following. In periods of low growth, the

probability of observing low growth in the future is high. For this reason, if the borrower

is expected to default in the low growth state, the interest rate must be high. This

high interest rate will, in turn, induce the borrower to default in the low-growth state,

confirming the expectations. This will happen even for low debt levels. If the borrower

is not expected to default in the low-growth state, however, the interest rates will be

relatively low and the borrower will be able to issue a larger amount of debt without

risking default next period. This translates into a large region of multiplicity, in which

for intermediate levels of debt, interest rates can be either high or low depending on

expectations.
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In periods of high growth, the probability of switching to low growth is low. Thus,

even if the borrower is expected to default in the low state, the interest rate consistent

with these expectations will be low. Expectations will be confirmed, meaning that the

borrower will default in the low-growth state, but only when debt levels are relatively

large. If the borrower is not expected to default in the low-growth state, however, the

interest rates are only marginally lower, and the debt levels such that the borrower will

not default are not much higher. This translates into a small region of multiplicity, if

any.

The probability of switching to the low-growth state in the infinite-horizon model is

the analog of the probability of the low endowment in the two-period model of Section

2. When that probability is low, the region of multiplicity is small, whereas when that

probability is high, the region of multiplicity is large. In the infinite-horizon model, the

probabilities are functions of the state. In low-growth states, the probability of future

low growth is high, and the region of multiplicity is large. In high-growth states, that

probability is low, and the region of multiplicity is small.

The spread at the high interest rate equilibrium that the model delivers is higher than

the ones observed in countries such as Italy, Spain (around 5 percent), and even those

of Portugal or Ireland (around 15 percent). We do not think of this finding an issue for

several reasons. First, as we show below, the spread is very sensitive to small changes in

both the persistence of the low-growth state and the recovery rate, and there is substantial

uncertainty about the exact value for those parameters (see Table 1). Second, and most

important to us, the spreads observed in Europe at the time were most surely affected by

the chances that the European Central Bank or some other European institution would

intervene, as the ECB finally did. The relevant question to us is what would have been

the spreads in Spain, Portugal, and Italy by December 2012 if they had not been part

of the euro area? On the other hand, the spread generated by the model is closer to the

one observed for Argentina in 2001. A main difference, of course, is that Argentina did

default in 2002, whereas Italy, Portugal, and Spain did not. As we show in the discussion

of the model dynamics below, both paths are consistent with the model.

Figure 8 shows the optimal debt policies as functions of wealth, for the different growth

and sunspot states. In the high-growth state (blue), the policies under the two sunspots

coincide. Debt increases as wealth goes down, except for a region where debt remains

constant before jumping to a higher level. The reason why debt remains constant is to

avoid the discrete jump in the interest rate that higher debt levels would induce, as seen

in Figure 7. The interest rate schedules in the high-growth state are the same for the two

sunspots. This means that the discrete jump in interest rates is due to fundamentals and

not to expectations. There is endogenous austerity due to fundamentals.

Debt levels are lower in the low-growth state (red). In this case, the debt policy

functions are different across sunspot states, reflecting the different schedules. For the
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Figure 8: Debt policy functions under benchmark calibration

good sunspot (solid red), the debt policy is similar to the one in the high-growth state,

including endogenous austerity due to fundamentals. For the bad sunspot (dotted red),

instead, there is also endogenous austerity and a discrete jump in debt levels, but now this

happens for lower levels of debt and is due to the discrete jump in interest rates induced

by expectations. The model features endogenous austerity due to both fundamentals and

expectations.

When facing the high interest rate schedule, the borrower chooses to either keep debt

below the multiplicity region or discretely raise debt above it. Thus, high interest rates

due to expectations induce debt behavior that is either austerity-like, or gambling-for-

redemption-like as in Conesa and Kehoe (2017).

4.1 Dynamics

In this section, we show how the model can generate an expectations-driven crisis

that resembles the dynamics observed during the European debt crises.

Figure 9 condenses the dynamic behavior of the model. For each wealth level, growth

state, and sunspot state this period, it provides the distribution of wealth for each growth

states next period.17 In blue we show the distribution conditional on the high-growth

state next period, and the low-growth state is shown in red. Shaded areas correspond

to the 90 percent distribution, and the solid lines are the means. The dashed blue

and red lines correspond to the wealth default thresholds for the high- and low-growth

realizations in the next period, respectively. The solid black line corresponds to the 45-

degree line. Figure 9, together with the debt policy functions (Figure 8) and interest rate

schedules (Figure 7), completely describes the dynamics of the quantitative model for our

benchmark calibration.

Next-period wealth tends to decrease, as the next-period distributions are located

below the 45-degree line. In the high-growth and good/bad sunspot state (Figure 9a),

17We do not separate the good from the bad sunspot case in the high-growth state because they are
the same. This follows from the fact that the interest rate schedule is unique in the high-growth state.
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there is a fixed point at which wealth converges, around 12.1 percent of trend GDP,

corresponding to the point at which the solid black line crosses the solid blue line. At that

wealth level, the borrower chooses debt equal to 84.4 percent of trend GDP, associated

with an annual interest rate of 10.9 percent. Notice that, in this case, if growth switches to

the low state, default occurs regardless of the sunspot realization in the next period. This

means that the probability of default is around 20 percent, which explains the interest

rate of 10.9 percent.

There is no such fixed point for the low-growth state, regardless of the sunspot re-

alization. The solid black line crosses the solid red line in Figures 9b and 9c, but at

levels below the wealth-default thresholds for the low-growth state. That means that the

economy will already be in default in these cases. Therefore, if a long enough sequence

of low-growth realizations realizes, the borrower will default.

Using Figures 7, 8, and 9, we can simulate a sequence of shocks where the sunspot

plays a crucial role in determining interest rates and default probabilities. We compare

two scenarios that differ only in the sunspot realization: scenario 1, where the sunspot is

always good, and scenario 2, where the sunspot takes a bad realization.

Figure 10 summarizes the dynamics of an economy that starts with wealth equal

to 130 percent of trend GDP and is in the high-growth state in t = 0. In scenario 1,

the sunspot realization is always good. In scenario 2, the sunspot realization is bad in

t = 2 and then returns to the good state. The realizations of the growth shock are the

same in both scenarios. The economy starts in the high-growth state, switches to low

growth in t = 1 and t = 2, and returns to high growth in t = 3, 4, 5. The figure reports the

optimal choices of debt, b′, in each period together with the interest rates and next-period

probabilities of default.

The sunspot realization in t = 2 determines whether the economy faces a high or

low probability of default. If the sunspot realization is good (scenario 1), the economy

chooses debt equal to 49.0 percent of trend GDP, with a low interest rate, 4.0 percent,

and a low probability of default in the following period, 1.7 percent. On the other hand,

if the sunspot realization is bad (scenario 2), the economy chooses debt equal to 60.4

percent of trend GDP, with a high interest rate, 46.4 percent, and a high probability of

default in the following period, 60.1 percent. Therefore, the high interest rate in t = 2

for scenario 2 is only driven by bad expectations, representing a self-fulfilling debt crisis.

We can use the simulation in Figure 10 to interpret the European debt crisis. The

economies in southern Europe switched from high to low growth in the 2000s. The

low-growth state made these economies vulnerable to a self-fulfilling debt crisis, which

eventually happened in 2010. However, the intervention by the ECB was able to rule

out the bad (high interest rate) equilibrium, and the economies switched to scenario 1,

with low interest rates and low probabilities of default. These types of interventions by

a lender of last resort are fully justified when view through the lenses of this model.
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Figure 9: Model dynamics

(a) high growth, good or bad sunspot

(b) low growth, good sunspot

(c) low growth, bad sunspot
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Figure 10: Scenario Simulation

(a) growth shock (gt) (b) sunspot shock (st)

(c) wealth (ωt) (d) debt (b′t)

(e) interest rate (Rt) (f) probability of default in t+ 1 (Pt)

4.2 Robustness

We finish this section by showing that our results are robust to reasonable perturba-

tions in the value of the key model parameters, pL, κ, σ, gH , and gL. We show that our

results for the multiplicity region and interest rate schedules are robust to different pa-

rameter values.18 We argue that the effect of each parameter on multiplicity of equilibria

18As Figure 7 shows, there is no multiplicity in the high-growth state for our benchmark calibration,
so here we focus only on the interest rate correspondence in the low-growth state. The correspondences
for the high-growth state as well as the robustness exercises with the remaining parameters are presented
in Appendix D.
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is very similar to the one discussed in the two-period model of Section 2 for the analog

parameters, p, κ, yl, and yh.

Varying pL Figure 11a shows the interest rate correspondence for different values of

pL, the probability of remaining in the low-growth state. As can be seen, multiplicity of

equilibria si robust to perturbations in the value of pL. This parameter is analogous to

p in the two-period model, the probability of observing the low endowment. As in the

two-period model, a higher pL results in higher interest rates and a larger multiplicity

region. The higher is pL, the higher is the interest rate because default is more likely in

the low-growth state. At the same time, the higher is the interest rate, the lower is the

amount of debt on which the borrower defaults in the low-growth state. This is the same

rationale as the one discussed in the two-period model, which leads to higher interest

rates and a larger multiplicity region the higher that pL is.

In addition, two dynamic considerations emerge in the quantitative model. First, a

higher pL means a more persistent low-growth state, a lower probability of switching to

high growth, and thus a lower value of being in the low-growth state. As a result, the

amount of debt that can be sustained in the low-growth state decreases. This is different

from the two-period model, where the value of low endowment does not depend on p.

Second, a higher pL reduces the value of default by reducing the average growth rate of

the economy, µg. This makes default less attractive, and thus more debt can be sustained.

This is different from the two-period model, where the value of default is independent of

p. Thus, the first and second effects work in opposite directions. Overall, interest rates

and the multiplicity region increase with pL.

Varying κ A higher κ lowers the interest rate schedule and increases the region of

multiplicity, as Figure 11b shows. The intuition is the same as in the two-period model. A

higher κ decreases the value of default and also increases the expected return to lenders,

both of which reduce interest rates. In turn, the amount of borrowing that can be

sustained in equilibrium increases.

Varying σ A lower σ is associated with a larger region of multiplicity, as Figure 12a

shows. This has the same effect as decreasing σ in the two-period model, but now

there is also a dynamic consideration. While σ does not affect the value of default

by assumption, it decreases the value of repayment because the borrower is risk-averse.

This makes default more attractive, reducing the levels of debt that can be sustained in

equilibrium. However, our estimation results are such that reasonable perturbations in σ

do not substantially alter the multiplicity of equilibria.
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Figure 11: Robustness exercises: pL and κ

(a) varying the persistence of the low-growth state pL

(b) varying the recovery rate κ

Varying gL and gH Changes in gL and gH do not affect interest rate levels, which

are largely determined by pL, but do affect the levels of debt that can be sustained in

equilibrium, as Figures 12b and 12c show. The higher is gH , the higher is the value of

repayment, since the economy will eventually switch to the high-growth state, and thus

the larger are the debt levels that can be sustained in equilibrium. However, differences in

gL and gH also affect the value of default—unlike in the two-period model where the value

of default is given by yd. The higher are gL and gH , the higher is the value of default,

and the smaller is the amount of debt that can be sustained. Because in equilibrium

the borrower only defaults in low-growth states, the effect of gH on the default value is

irrelevant, but a higher gL makes default more attractive in the low-growth state. This

is why sustainable debt levels are smaller for higher gL levels. In any case, as with σ, the

empirical plausible estimates we obtain for gL and gH are such that small perturbations

do not substantially alter our results.
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Figure 12: Robustness exercises: σ, gH , and gL

(a) varying the standard deviation of transitory shocks σ

(b) varying the high-growth rate gH

(c) varying the low-growth rate gL

5 Concluding remarks

In the model of sovereign debt crises of Calvo (1988), there are multiple interest

rate schedules because expectations of high probabilities of default are self-confirming.

In particular, if expectations of default are high, interest rates must be high, and high

interest rates increase the burden of debt, inducing the borrower to default. While this

mechanism is highly intuitive, the multiplicity in Calvo (1988) is fragile. In particular, for

commonly used distributions of the output process, the high-rate schedules are downward
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sloping. This means that the higher is the debt, the lower is the interest rate that the

borrower faces. The reason is that, when interest rates are high, the negative effect

of increasing the interest rate on the probability of default that dominates the direct

positive effect. Ayres et al. (2018) analyze a simple two-period model to show that when

the distribution of the output process is bimodal, with good and bad times, there are

multiple upward-sloping interest rate schedules. The question that remains is whether

that source of multiplicity is quantitatively relevant. In this paper, we show that it is

indeed the case, but only in times of persistent low growth.

We estimate the output process for Argentina, Brazil, Italy, Portugal, and Spain,

and find that the distribution of growth rates is bimodal and has high persistence. We

calibrate an infinite-horizon Calvo-type model with the estimated process and obtain

that expectations do play a role in periods of stagnation. In those periods, growth is low

and expected to remain low. If a country is expected to default in bad times, then the

probability of that happening is high, so interest rates must be high. If interest rates are

high, the country will indeed default in bad times, confirming the expectations. With

those expectations, the level of debt that the country will be able to issue at low rates is

low. Instead, if the country is not expected to default in bad times, interest rates will be

low, and the country will not be induced to default, confirming the low rates. The level

of debt that can be issued at low rates is high. Thus, for intermediate levels of debt, the

country will be facing either high or low rates depending on expectations. Instead, when

growth rates are high and are expected to remain high, if a country is expected to default

in bad times, that will happen with low probability. Interest rates will be low, and the

borrower will not be induced to default. There is no role for expectations in good times.

This state-dependent role of expectations is one of the central results of this paper.

The calibrated policy functions also feature behavior that can be interpreted as en-

dogenous fiscal austerity. The bimodal distribution gives rise to large discrete jumps

in interest rates due to expectations, but also due to fundamentals. In order to avoid

the costs associated with these discrete jumps in interest rates, the borrower sacrifices

consumption in order to refrain from increasing debt.

The main policy implication of our analysis is that the role of a lender of last resort

is effective in times when fundamentals are weak, since it is when fundamentals are weak

that expectations play a role.
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A Model Normalization

In this appendix, we provide more details on the normalization step. First, we show

that the value functions and the interest rate schedule satisfy certain homogeneity prop-

erties. Second, we use these homogeneity properties to derive the stationary system in

Lemma 1.

We proceed by guessing that equilibrium functions satisfy certain homogeneity prop-

erties and verify that the guess is consistent with the equilibrium definition. Thus, we

do not claim that all possible equilibria satisfy these properties, but rather that the

equilibrium definition admits a solution with these properties.

Proposition 1 (Homogeneity of equilibrium functions). For any λ > 0, the equilib-

rium functions admit a solution that satisfies the following homogeneity properties: (i)

x(λB, λΓ−) = x(B,Γ−); (ii) V d(λB, λΓ−) = λ1−γV d(B,Γ−); (iii) V nd(λW, λΓ−, g, s) =

λ1−γV nd(W,Γ−, g, s), (iv) R(λB′, λΓ−, g, s) = R(B′,Γ−, g, s).

Proof. Start with (i). From equation (9), provided that µg < R∗, we can solve for x(·)
as x(B,Γ−) = κ

µg

R∗−µg
R∗

B
Γ−

. Thus, x(λB, λΓ−) = x(B,Γ−). To show (ii), we can solve for

V d(·) in equation (10) as V d(B,Γ−) = Γ1−γ
−

(eε−x(B,Γ−))
1−γ

1−γ
µ1−γg

1−βµ1−γg
. Since x(λB, λΓ−) =

x(B,Γ−), it follows that V d(λB, λΓ−) = λ1−γV d(B,Γ−).
Finally, we guess and verify (iii) and (iv) jointly. Using equation (11), we have

V nd(λW, λΓ−, g, s) = max
B′

{
(λW +B′)

1−γ

1− γ
+ (16)

+ E

[
max

{
V nd

(
(λΓ−)gg′eε

′ −R(B′, λΓ−, g, s)B
′, (λΓ−)g, g′, s′

)
,

V d (B′, (λΓ−)g)

}
|g, s

]}

= max
B̃′

{(
λW + λB̃′

)1−γ
1− γ

+

+ E

max

V
nd
(

(λΓ−)gg′eε
′ −R(λB̃′, λΓ−, g, s)λB̃

′, (λΓ−)g, g′, s′
)
,

V d
(
λB̃′, (λΓ−)g

)  |g, s
}

= max
B̃′

{(
λW + λB̃′

)1−γ
1− γ

+

+ E

max

λ
1−γV nd

(
Γ−gg

′eε
′ −R(B̃′,Γ−, g, s)B̃

′,Γ−g, g
′, s′
)
,

λ1−γV d
(
B̃′,Γ−g

)  |g, s
}

= λ1−γ max
B̃′

{(
W + B̃′

)1−γ
1− γ

+

+ E

max

V
nd
(

Γ−gg
′eε

′ −R(B̃′,Γ−, g, s)B̃
′,Γ−g, g

′, s′
)
,

V d
(
B̃′,Γ−g

)  |g, s
}

= λ1−γV nd(W,Γ−, g, s) ,
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where the second equality of (16) uses a change of variable B′ = λB̃′; the third equality
uses property (ii) for V d(·) and the guess of properties (iii) and (iv) for V nd(·) and R(·).
We still need to show that R(λB′, λΓ−, g, s) = R(B′,Γ−, g, s) is consistent with equation
(14), since we used this property in the derivation of (16). For this, it’s enough to show
that the default probability under (B′,Γ−) is the same as under (λB′, λΓ−). Notice that

P (λB′, λΓ−, g, s)

= Pr
(

(g′, s′, ε′) : V d (λB′, (λΓ−)g) > V nd
(

(λΓ−)gg′eε
′
−R(λB′, λΓ−, g, s)λB

′, (λΓ−)g, g′, s′
) ∣∣∣g, s)

= Pr
(

(g′, s′, ε′) : λ1−γV d (B′,Γ−g) > λ1−γV nd
(

Γ−gg
′eε

′
−R(B′,Γ−, g, s)B

′,Γ−g, g
′, s′
) ∣∣∣g, s)

= Pr
(

(g′, s′, ε′) : V d (B′,Γ−g) > V nd
(

Γ−gg
′eε

′
−R(B′,Γ−, g, s)B

′,Γ−g, g
′, s′
) ∣∣∣g, s)

= P (B′,Γ−, g, s) .

With these properties, the stationary system in Lemma 1 can be obtained by substi-

tuting V nd(W,Γ−, g, s) = Γ1−γ
− vnd(W/Γ−, g, s) and V d(B,Γ−) = Γ1−γ

− vd(B/Γ−, 1), where

vnd(ω, g, s) = V nd(ω, 1, g, s) and vd(b) = V d(b, 1).
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B Endowment Process Estimation

In this appendix, we provide more details on the estimation of the GDP process used

in the quantitative evaluation of the model. We use the filter in Kim (1994) to obtain

the likelihood function and explore the posterior using a Metropolis-Hastings MCMC

algorithm with a random walk proposal density.

Let Yt denote the country’s GDP during year t, and let ∆yt = log(Yt) − log(Yt−1)

denote GDP growth. The process in equations (6)-(7) implies

∆yt = gt + σ (εt − εt−1) (17)

where εt ∼ N (0, 1), and gt follows a two-state Markov process with transition proba-

bilities pg(g
′|g). Denote gL and gH to the possible values of g: gt ∈ {gL, gH}. The

transition probability is fully summarized by the two parameters pL and pH where

pL = pg (gt+1 = gL|gt = gL) and pH = pg (gt+1 = gH |git = gH).

Let θ = {gL, gH , σ, pL, pH} collect all parameters determining the process in equation

(17). Denote Yt = {∆y0,∆y1, . . . ,∆yt} to be all observations up to period t, and L(θ|YT )

to be the likelihood of parameters θ where T is the total number of observations. We

construct the likelihood L(θ|YT ) using the filter in Kim (1994).

We assume uniform priors on parameters, which bounds the possible space for θ (see

Table 1). Additionally, we include the normalization of gL ≤ gH as part of our priors.

Let p(θ) denote the prior selection. The posterior of parameters θ is then given as

P(θ|YT ) = L(θ|YT )p(θ) . (18)

We explore the posterior P(θ|YT ) using a Metropolis-Hastings MCMC algorithm with

a random walk as a proposal density. In particular, the proposal density is a normal

N (θn−1, σ̄Σθ), where θn−1 is the last draw of the chain, Σθ has θ∗ = arg maxθ P (θ|YT ) in

its diagonal and zeros otherwise, and σ̄ is selected so that the rejection rate in the chain

is between 60 percent and 70 percent. We simulate 10 chains of length 125,000 each and

compute posteriors by pooling 1 out of every 10 draws from the last 100,000 observations

in each chain. Table 1 contains all posterior estimates.

Data are from The Conference Board Total Economy Database, and we used GDP

per capita in 2016 US$ (converted to 2016 price level with updated 2011 PPPs) as our

measure of output.

Different standard deviations across states We also estimate the endowment pro-

cess for the case in which the standard deviation of the temporary shock depends on

whether the economy is at the low-growth state, gt = gL, or high-growth state, gt = gH .

We denote the standard deviations in the low- and high-growth states by σL and σH ,
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Table 3: Prior and posterior distributions: different σ’s across growth states

gL gH pL pH σL σH

Prior distribution
U [−0.1, 0.1] U [−0.1, 0.1] U [0.1, 1.0] U [0.1, 1.0] U [10−3, 0.5] U [10−3, 0.5]

Posterior distribution
Countries (mean, and 5th to 95th percentile intervals)

Italy -0.014 0.026 0.654 0.766 0.020 0.011
[-0.022,-0.008] [0.019,0.030] [0.356,0.974] [0.523,0.990] [0.013,0.031] [0.006,0.020]

Portugal -0.002 0.048 0.790 0.703 0.020 0.018
[-0.011,0.003] [0.040,0.058] [0.503,0.976] [0.403,0.990] [0.012,0.029] [0.011,0.029]

Spain -0.017 0.035 0.608 0.810 0.019 0.015
[-0.025,-0.009] [0.027,0.040] [0.325,0.866] [0.618,0.978] [0.009,0.031] [0.009,0.025]

Argentina -0.027 0.072 0.776 0.570 0.046 0.013
[-0.043,-0.023] [0.057,0.076] [0.562,0.916] [0.344,0.783] [0.034,0.075] [0.008,0.024]

Brazil -0.032 0.029 0.605 0.790 0.022 0.019
[-0.071,-0.019] [0.026,0.032] [0.059,0.874] [0.619,0.926] [0.011,0.063] [0.014,0.026]

Note: For each country, we estimate an output process as: ∆ ln yt = gt + σtεt − σt−1εt−1, in which εt ∼ N(0, 1) and

gt ∈ {gL, gH}, with Pr(gt+1 = gL|gt = gL) = pL and Pr(gt+1 = gH |gt = gH) = pH . If gt = gL, then σt = σL, otherwise

σt = σH . The table reports the mean and the interval between the 5th and 95th percentiles of the posterior distributions

of each of the parameters for each country. The table also reports the prior distributions we used, which were chosen to

be the same across countries. For each country, we use data on GDP per capita in 2016 US$ (converted to 2016 price

level with updated 2011 PPPs) between 1980 and 2017 from The Conference Board Total Economy Database as the

measure of yt.

respectively. Table 3 shows the estimates for all countries. First, note that the mean of

the posterior distributions of the standard deviations is not very different across growth

states, except for the case of Argentina, and that the mean of σL is larger than the mean

of σH in all cases. In the case of Italy, the difference between σ’s is somewhat larger, but

the values are still within the interval analyzed in Figure 12a, which was shown to not

have significant implications for our results. Finally, Table 3 also shows that the posterior

distributions of the remaining parameters are very similar to their counterparts in Table

1.

34



C Algorithm

Since we are dealing with multiple interest rate schedules, the standard algorithm to

compute the recursive equilibrium in quantitative sovereign debt models (e.g., Arellano,

2008), which starts with a guess for the price/interest rate functions, is not suitable.

We develop a new algorithm that iterates only on the value function. In each iteration,

we construct the interest rate correspondence and select the high and low interest rate

schedules associated with the respective value function. The algorithm consists of the

following steps:

Step 1: Guess vnd,n (ω, g, s), increasing function in all arguments. We use a grid for

wealth, ω, consisting of 200 points evenly spaced between 0.01 and 1.5.

Step 2: For each growth state g, we construct the interest rate correspondence, that

is, the values of debt b′ and interest rates r such that lenders have an expected return

equal to R∗. While we know that for a given b′, we might have multiple R’s satisfying

this condition, we explore the fact that for a given R > R∗, there is a unique level of debt

such that the expected return is equal to R∗. We construct a grid with 500 interest rates

evenly spaced between R∗ = 1.2 and 4. For each r in the grid, we compute b′ such that

r =
R∗ − κ

1− Pr (vnd,n (g′eσε′ − rb′, g′, s′) < vd (b′))
+ κ.

We use the bisection method, with extreme values of b′ as starting points. We know

that for very high levels of debt, interest rates should tend to infinity and that, for very

low levels of debt, interest rates should be equal to the risk-free rate.

Remember that ε follows a standard normal distribution. For each b′, it is useful to

compute, for each one of the four combinations of (g′, s′), the thresholds ε(b′, g′, s′) such

that

vnd,n
(
g′eσε(b

′,g′,s′) − rb′, g′, s′
)

= vd (b′) .

In this case, we just need to compute b′ that satisfies

R− κ
R∗ − κ

=
1

1−
∑

s′
∑

g′ pg (g′|g) ps (s′|s) Φ (ε(b′, g′, s′))
,

where Φ is the standard normal cumulative distribution.

The procedure above allows us to compute the correspondence, that is, the pairs (r, b′)

that, given vnd,n (ω, g, s), imply an expected return equal to R∗.

Step 3: For each g, we use the respective interest rate correspondence to compute
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the high and low interest rate schedules associated with the bad and good sunspots, re-

spectively. We only consider the increasing schedules for reasons explained in the text.

Step 4: For each growth and sunspot states, (g, s), and for each level of wealth in the

grid, we compute the optimal choice of debt b′ given the interest rate schedule associated

with (g, s). We use a golden search method. We split the problem into two, optimal

choice of debt, b′ ≥ 0, and optimal choice of savings, −ω ≤ b′ ≤ 0, and select the one

that achieves higher utility. The reason is that for b′ ≤ 0, the interest rate is constant

and equal to R∗, which simplifies the problem. To compute the optimal choice of debt,

b′ ≥ 0, we further split the problem according to the number of continuous segments in

the respective interest rate schedule. Since there are discontinuities in the schedule, we

compute the optimal level of debt in each of the continuous segments and then compute

the optimal choice of debt among the selected candidates.

Step 5: Update vnd,n+1 (ω, g, s) and return to Step 1. Keep iterating until convergence

is achieved. We used 1.0e−6 as our convergence criterion.
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D Robustness

In this appendix, we complete the analysis of the robustness exercises in Section

3. There, we analyzed how the interest rate correspondences in the low-growth state

varied for different values of pL, σ, gH , gL, and κ. Here, we analyze how the interest rate

correspondences vary for changes in the remaining parameters pH , R∗, ε, γ, and β, and the

transition probabilities of the sunspot state, and show the interest rate correspondences

in the high-growth state for the cases analyzed in Section 3.

Figure 13: Robustness exercises: pH and R∗

(a) varying the persistence of the high-growth state pH

(b) varying the risk-free rate R∗

Figure 13a shows the interest rate correspondence in the low-growth (solid) and high-

growth (dotted) states for three different values of the persistence of the high-growth

state pH . Similar to the argument used for pL, illustrated in Figure 11a, the change in

pH only affects the higher interest rate of the high-growth schedules. The interest rate

schedules are unique in the high-growth state, that is, they do not depend on the sunspot

realization.19 The probability of default is based only on fundamentals. This implies

that, in the high-growth state, the interest rates associated with levels of debt in which

19In our quantitative model, it is possible to observe multiple interest rate schedules in the high-
growth state. But given our estimation of the endowment process, with relatively high values of pH , the
high-growth schedule happens to be unique.
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the borrower chooses to default in the low-growth state increase as we decrease pH . This

explains why the high-growth schedules shift upward and to the left as we decrease pH .

The higher persistence of the high-growth state also affects the values of default and

non-default in non-trivial ways. While lower persistence of the high-growth state reduces

the value of default, it also reduces the value of non-default. In this exercise, the second

effect dominates and we observe a shift to the left in both correspondences, with the

borrower being able to issue more debt as pH increases.

Figure 13b shows the interest rate correspondences for different values of the risk-

free rate R∗. Lower risk-free rates imply lower costs of servicing the debt in any given

state, which implies that probabilities of default are lower, and the borrower is able to

sustain higher levels of debt. That explains why both low-growth (solid) and high-growth

(dotted) interest rate correspondences shift to the right as we reduce R∗. In addition,

the size of the multiplicity region of the interest rate correspondence in the low-growth

state is virtually the same for the different values of the risk-free rate.

Figures 14a, 14b, and 14c show the interest rate correspondences for different values

of the default cost ε, coefficient of risk aversion γ, and discount factor β, respectively.

The figures show that the variations in those parameters only shift the correspondences

to the left and right, without changing the high interest rates and with very little (if any)

effect on the size of the multiplicity region. These shifts to the left or right reflect the

effect of different values of the parameters on the values of default and non-default. When

the value of default becomes relatively more attractive, the maximum amount of debt

that the borrower can issue decreases and the schedules shift to the left. The opposite

happens when the value of default becomes relatively less attractive.

Of course, default becomes less attractive for lower values of ε in Figure 14a, and we

observe that both correspondences shift to the right. Default also becomes relatively less

attractive when the borrower becomes less risk averse, with lower values of γ in Figure

14b, and when the borrower becomes more patient, with higher values of β in Figure 14c.

Finally, Figures 15 and 16 show the interest rate correspondences in the low-growth

state for the parameters analyzed in Section 3.
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Figure 14: Robustness exercises: ε and γ

(a) varying the cost of default ε

(b) varying the risk aversion γ

(c) varying the discount factor β
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Figure 15: Robustness exercises: pL and σ

(a) varying the persistence of the low-growth state pL

(b) varying the standard deviation of transitory shocks σ

40



Figure 16: Robustness exercises: gH , gL, and κ

(a) varying the high-growth rate gH

(b) varying the low-growth rate gL

(c) varying the recovery rate κ
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