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ABSTRACT

This note presents a model whose competitive equilibrium can be
consistent with the observation that current labor market condi-
tions affect the well-being of new entrants more than they do that
of senior workers. The model uses the notion that new entrants
are not around soon enough to participate in risk-sharing contin-
gent on the shocks that determine the equilibrium marginal prod-
ucts of first-period employment. This timing notion is formalized
using a stochastic overlapping generations model.
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Casual observation suggests that current labor market
conditions affect the well-being of new entrants and less senior
workers mich more than they do that of more senior workers. To g
degree, more senior workers seem to be insulated from current
labor market conditions. In this note, we describe a simple model
whose competitive equilibrium can be consistent with this obser-
vation. The crucial feature of the model is a timing assumpticn
that prevents new entrants from participating in some markets. We
assume that new entrants are not around soon enough to participate
in risk-sharing contingent on the shocks that determine the equi-
librium marginal products of first-period employment.

A simple way to formalize not-being-around-soon-enough
is to use an overlapping generations model. 1Indeed, stochastic
versions of such models require assumptions about when outcomes
get revealed relative to when new generations appear. As is well
known, both the nature of the competitive equilibria for such
models and the kind of welfare analysis that is appropriate for
them depend on those assumptions.

The particular model we use has exogenous and random
factor supplies--random labor supply and nonrandom land supply--
and a constant-returns-to-scale and random technology for produc-
ing a single consumption good at each date. In addition, there
can be enough intra-generation diversity of factor ownership to
produce nontrivial market risk sharing, particularly of the con-
sequences of the labor supply shock. An example shows that such
risk sharing is consistent with equilibria in which more senior

workers are insulated from current labor-market conditions.



The competitive equilibrium we study is one with com-
plete contingent markets, with participation limited only by the
timing assumption about when new generations appear. Because we
assume complete markets, we cannot explain observed contractual
arrangements, such as those between workers and firms. Partly for
that reason, we Jjudge whether more senior workers are insulated
from current labor market conditions on the basis of consumption

patterns, not wage rates.

I. An Overview of the Model

The model is a discrete-time, overlapping generations
model with the initial date labeled t = 1. There is a single,
nonstorable consumption good at each date. People derive utility
only from their own consumption of this good at the different
dates they are alive.

The amount of time t good available for the economy as a
whole is the output from a production process with labor and land
as inputs. Since labor and land are supplied perfectly inelas-
tically, total output of time t good is determined exogenously in
any equilibrium by total time t factor supplies and the production
process. The amount of time t labor, denoted L(t), is random in a
way to be described below, while the amount of land, denoted K, is
constant over time. In any equilibrium, output of time t good is
u(t)F(L(t),K), where u(t) is a productivity shock and F, a func-
tion, is homogeneous of degree one, and twice differentiable with

positive and diminishing marginal products.
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At any date t, three groups are present in the econ-
ony . There are N members of generation t - 1 who are in the
second and last period of their lives and who in the aggregate
supply N/2 units of time t labor; there are N two-period lived
members of generation t who in the aggregate supply N/2 units of
time t labor (and who will supply N/2 units of time t + 1 labor);
and there are n(t) one-period lived members of generation t who in
the aggregate supply n(t) units of time t labor only, where n(t)
is a random variable. Thus, the total supply of time t labor,
L(t), is N + n(t).

As noted above, there are K units of land in the econ-
omy. Some of the land, bK units, is marketable. It is owned at t
= 1, the first date, by the members of generation 0 who are pres-
ent at t = 1. By convention, this land is sold ex-dividend, after
the time t rental from it is obtained. The rest of the land, (1-
b)K units, is never sold; the time t rentals from it are part of
the endowments of the people alive at t. This splitting up of the
land serves two purposes. The presence of some marketable land
produces equilibrium interest rates that are sufficiently high to
insure optimality. The presence of some nonmarketable land, with
rentals assigned as endowments, allows us to have intra-generation
diversity of factor ownership in every generation.

Because there is only one good at each date and because
factor supplies are exogenous, the model has a recursive struc-
ture; the competitive equilibrium spot-market factor rentals do
not depend on preferences or individual endowments. The per unit

rentals are simply the respective physical marginal products,
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u(t)F; (N+n(t) ,K) for labor and u(t)F,(N+n(t),K) for land, where F;
is the derivative of F with respect to its ith argument. We
exploit this structure in the next section, where we treat the
model as a pure exchange model, the endowments of which are to be
interpreted as the equilibrium factor rentals that arise from a
given pattern of factor service ownership.

We call the realization for the pair (u(t),n(t)) the
time t state and we assume a finite number of possible time t
states. Our crucial timing assumption is that the time t state is
revealed simultaneously with (or just prior to) the appearance of
generation t.

Factor markets aside, post-state at t, then, the follow-
ing actions occur in a competitive equilibrium. The members of
generation t - 1 fulfill previous (contingent) obligations and in
the aggregate supply DbK units of land perfectly inelastically.
The n(t) one-period lived members of generation t consume their
endowment, which is assumed to be the spot market rental of the
labor they supply. Only the N two-period lived members of genera-
tion t make choices. The endowment of any such person consists of
some time t good, the amount of which depends on the t state, and
a vector of time t + 1 goods indexed by the time t + 1 state.
This endowment is determined by the assumed underlying pattern of
factor service ownership. The person can trade claims on time t +
1 good contingent on the time t + 1 state and can purchase land,
which the person plans to sell at t + 1. In equilibrium, in
addition to the factor service markets, both the markets in con-

tingent claims and that in land must clear.
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IT. The Pure Exchange Equilibrium

Here we treat the model as one of pure exchange. We
describe equilibrium conditions and briefly discuss existence and
Pareto optimality of equilibrium. From now on, we use the term
equilibrium to refer to a perfect foresight (rational expecta-

tions), competitive equilibrium.

Choice and Demands

The budget set for a two-period lived member of genera-
tion t in state j can be written

kh

(1) c:(t,.j) < w:(t,J) -1 tJ

h
J.th(t+1,J')qtj(t+1,J')-P(t,J)

(2) Cil(t‘i'l,‘j') < W_ltl(t‘l‘l,.j') + qzj(t+1’3|) +
h ' . | -
ke  [P(641),00 1, (3)]5 0" = 1, 2, een 3

Here c:(t,J) (wZ(t,J)) is consumption (endowment) of
time t state j good of member h of generation s, q:d(t+l,3') is
contingent claims on time t+l1 state j' good purchased by h and
th(t+1,J') is the per unit price of such clainms, k:j is the
amount of land purchased by h and P(t,j) is its per unit price,
fa(j') is the spot factor market rental of land at t + 1 in state
j', and J is the number of possible time t + 1 states. HNote that
the w's are to be interpreted as the equilibrium spot market ren-
tals of the factor services (land and labor) owned by h.

Equation (1) says that first period consumption is no
greater than the first period endowment less expenditures on

assets, while equation (2) says that second period consumption in
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state j' is no greater than the corresponding endowment plus the
payoffs from the assets purchased earlier.
We write the utility function of h in generation t
h, h h h ; :
as ut(ct(t,j),ct(t+l)), where ct(t+l) is the J-element vector with

typical element ch(t+1,j'). We assume that u is twice differen-

t
tiable, quasiconcave and increasing in each of its arguments.
Person h chooses nonnegative consumption, nonnegative land pur-
chases, and q's, which are unrestricted as to sign, to maxi-
mize uil subject to (1) and (2).

Because the q's are unrestricted as to sign, (1) and (2)
constrain consumption bundles exactly as does the single con-

straint obtained by solving each equation of (2) for qu(t+l,j')

and substituting the result into (1). This constraint is
h h h h
(3) e (t,3) + ptj(t+1)ct(t+l) < w (£,3) + ptj(t+l)wt(t+l)
h ;
- ktJ{P(t,J) - ptj(t+1J[P(t+1) $:8,]}

where w_}tl(t+1), ptj(t-l-l), P(t+1) and f, are the obvious J-element
vectors. It follows that the coefficient of k:;],j in (3) must be

zero in any equilibrium or that prices mst satisfy the present

value formula

(4) P(£,3) = py; (6+1)[P(t+1) + £,]

in any equilibrium. If (4) does not hold, then (3) implies that
the demand for land is either zero or infinity, neither of which
is consistent with equilibrium.

Since we need demands only at prices that can poten-

tially be equilibria, we face h only with prices that satisfy
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(k)e It follows from (3) that h's consumption demands at such
prices can be obtained by constraining consumption choices by

o

(5) +

h(t,j) + ptj(t+l)c:(t+l) < w

. h
cy t,5) + ptj(t+1)wt(t+1)

Maximization of ui subject to (5) gives rise to unique
demands in the usual way. We write the demand vector for cz(t+1)
as dzj[ptj(t+l)} and the summation of these demands over the N

two-period lived members of generation t as Dtj[ptj(t+l)].

Equilibrium

In terms of Dtj’ a condition for equilibrium is
(6) Dtj[ptj(t+l)] - Wy (t+1) = bK[P(t+1)+1,]

where W, (t+1) is the sum of wB(t+1) over the N two-period lived

t
members of generation t. An equilibrium, then, consists of non-
negative sequences for contingent claims prices and land prices
that satisfy (4) and (6) for all t » 1.

One way to prove that an equilibrium exists is to wmimic
the proof in Wallace [1981]. The idea is to use (4) and (6) to
define a mapping from land prices at t + 1 to land prices at t and
to show, using properties of that mapping, that there exists at
least one sequence of land prices with the property that every
pair of adjoining terms and an associated set of contingent claims
prices satisfy (L) and (6). Here is an outline of the ingredients
of the argument.

First define a compact set to serve as the domain for
bKP(t). One possible choice is the set of nonnegative vectors

bounded above by W, (t) = Ehwi(t) this being the vector of aggre-

2
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gate endowments of time t good of the two-period lived members of
generation t. Call this set A;. One can choose this set, or
something bigger, because W (t) is an upper bound on equilibrium
bKP(t). To see this, sum equation (1) over h and use the fact
that the sum of the q's is zero in equilibrium.

Next, for any P(t+l) in Ai 41, define a composite mapping
to P(t) in two steps. First, associate with any P(t+1) in Apyr
one or more Ptj(t+1) vectors that satisfy (6). Second, use (4) to
associate a set of P(t)'s with the given P(t+1) and the set of
ptj(t+l) vectors given by the first step. In order to apply the
procedure used in Wallace (1981), one mst prove that this com-
posite mapping is such that nonempty compact subsets of A ., are
mapped into nonempty compact subsets of Ay. Since (4) gives P(t)
as an explicit continuous function of ptj(t+l) and P(t+1), one has
to show only that the first step has the requisite properties.

To do this, it suffices to show that for any P(t+l) in
At+l there exists at least one ptj(t+l) vector satisfying (6) and
that the correspondence from P(t+l) to Aptj(t+1) so defined is
upper semi-continuous. The upper semi-continuity is trivial since
the demands, the Dtj(-), are continuous functions of ptj(t+1]. A
proof of existence may be constructed by considering a corre-
sponding pure-exchange economy consisting of the N two-period
lived members of generation t and one other person who has the RHS
of (6) as an endowment and who wants to consume only time t
good. The existence of a strictly positive equilibrium price-
vector for this (j+l1)-good pure exchange economy is immediate,

because it satisfies standard assumptions.



Optimality

From the point of view of optimality questions, our
model so closely resembles others in the literature that only a
few summary remarks are called for (see in particular, Peled
(1982), and also Muench (1977) and Cass and Shell (1981)). There
are two potential sources of nonoptimality of the equilibria of
our model: insufficient risk-sharing and interest rates that are
too low. We have already noted that the presence of marketable
land rules out the second.

As regards risk sharing, our timing assumption is such
that there is no inter-generation risk sharing in equilibrium. If
one Jjudges the equilibria using a criterion of individual well-
being which calls for such risk-sharing, then one will conclude
that they are nonoptimal. One such criterion is the expected

value of uh

£ the expectation being taken over the time t states.

If, alternatively, one uses ug itself as a criterion of individual
well-being, then our conjecture--a well-founded conjecture given
Peled's result--is that our equilibria are Pareto optimal.

The use of uh can be defended on several grounds. For

t
us, the most convincing is that ulg is what h maximizes in a com-
petitive equilibrium. One would not expect an equilibrium to be
Pareto-optimal if one Jjudges individual well-being according to a
criterion that is different from the one the individual attempts
to maximize. Finally, note that use of uz as a criterion of
individual well-being implies that many allocations are Pareto-
optimal. In particular, many that are characterized by more

inter-generation sharing of risks than occurs in our competitive

equilibrium are optimal.
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ITI. An Example

Let there be M + N two-period lived members of each
generation, M land owners and N identical workers. The former are
endowed only with the rentals of the nonmarketed land, the frac-
tion l1-a when young and the fraction "a" when old; the latter are
endowed only with labor. We assume that each such person of

generation t maximizes

(1) cllt,3) + Zj'ej.v[c:(tﬂ,.j')l

where GJ, is the probability that state j' occurs at t + 1 and
where v 1is twice differentiable, strictly increasing, and concave
and satisfies -xv"(x)/v'(x) < 1.

If v and endowments are such that c:(t,J) > 0, a condi-
tion which is easy to satisfy, then the following first-order
conditions for a maximum of (7) subject to (5) hold in equilib-

rium:

(8) (t+1,3') + 8 v'[cz(t+l,J')] = 0, for each j'.

ptj 3!

It follows that in equilibrium, c:(t+l,3') does not depend on h

and, hence, by (6) satisfies

(9) (e)e 2 (841,3) = W, (6+41,3') + BK[P(t+1,5") + £,(3")]
where
(10) W, (t+1,3') = (N/Q)uJ,Fl(anJ,,K)+a(l-b)KuJ,F2(N+n3, K)
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Substituting the solution for ptj(t+1,J') from (8) into the RHS of

(4), we have

(11) P(t,j) =) o ,v'rch(t+l,3')1
Jl J t

Using the assumptions about v and the fact that W, (t+1,j') depends

only on j', it can be shown that the unique solution of (9) and

(11) for land prices is
(12) P(t,j) = P* for all (t,j)

It follows from (9) and (10), then, that second period

consumption at date t is given by

h

(13) s 1

(t,j) = {bKP* + (N/2)qul(N+n K) +

J

uJK[h+a(1-h) lFe(NﬂnJ JK) /()

We will compare the variation of ch (t,J) across states

t-1
J at t to that of the consumption of workers who are young at t.
By (9) and (12), cZ(t+l,J') does not depend on the state
at t. It follows, therefore, from (8) that ptj(t+l,J') does not
depend on the state at t. But, then from (5), if j and k are two

alternative time t states,
h h _.h h
(14) ct(t,j) - ct(t,k) = wt(t,j) - wt(t,k)

Then, with all workers equally endowed--each with 1/2 unit of
labor in each period--the first-period consumption of each worker

varies across states according to

(15)  cf(t,d) = cl(t,k) = [wF

; 1(N+nj,K)—ukFl(N+nk,K)]/2
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We compare this with the difference c:-l(t’j) -

c:_l(t,k) implied by (13) by examining
o = |[ep_q(8.0)=el L (6,1)] /[el(t,0)=(e,10)]|

We say that consumption of old workers fluctuates less than con-
sumption of young workers if Pk < 1.
For states j and k that differ only with regard to labor

supply (uj=uk,nj*nk), we find, using the mean value theorem, that

(16) pyx(n) = [N/(N#)] | 1 - 2[(w+n)/n] [b+a(1-b)] |

where n is a point intermediate between ny and nk-—]-‘-/ If n is
small relative to N, then we are virtually guaranteed that pjk(n)
< 1.

For states j and k that differ only with regard to
factor neutral productivity {uj#uk,nj=nk=n), we have directly

from (13) and (15) that
(17) Py (u) = [(v/ (W) ] {142 [b+al1-b) ] (K/N)(F, /7, )}

Letting a = KF,(N+n,K)/(N+n)F,(N+n,K), land's share relative to

labor's share, we have
(18) pjk(u) = [N/(N+M) ] {1+2[b+a(1-b) Ja (N+n) /N}

Clearly, there is no presumption that ka(u) < s

Since the labor supply shock, n, generates a negative
correlation between the marginal products of labor and land and
the factor neutral productivity shock, u, generates a positive

correlation between them, it is not surprising that for most
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parameter values (16) implies pjk(n)—l < 0, while (18) says noth-
ing about the sign of pjk(u) - 1. What may be surprising is that
the difference in the origins of the shocks does not show up in a
simpler way in (16) and (18). The reason for this is that more
than static risk-sharing is occurring in these equilibria; there

is also intertemporal trade.
IV. Concluding Remarks

As noted at the outset, our model is silent as regards
the nature of contractual arrangements. For example, it makes no
predictions relating features of the physical environment--for
example, the kind of shocks present--to features of wage con-
tracts. It does make predictions relating features of the physi-
cal environment to consumption allocations. If the model does
well explaining consumption allocations, then its failure to
explain contractual arrangements does not seem important.

A desirable feature of our set-up is that we are sure
that the equilibrium allocation exhausts all the feasible and
beneficial possibilities for trade. In set-ups with general
diversity among agents, it would seem difficult to formulate
"labor contracts'" that by themselves accomplish this. If labor
contracts do not exhaust all the possibilities for beneficial
trade, then one must decide which asset markets to include. If a
rich set 1is included, then contractual indeterminacy will be
implied. If a rich set is not allowed, then, unless features of
the environment imply the set of markets, one is left ruling out
seemingly feasible and beneficial trades. In our set-up, the
assumptions about when new generations and new shocks appear

rationalize the market structure.



Footnotes

/g get (16), we use the mean value theorem and the
homogeneity of ¥ to express F2 as a function of Fl. Define @ and

X; by Fl(N+nj,K) = Fl[(N+nJ)/K,1] = m[(N+nJ)/K] = xy.  Then,

FQ(N"'nJ‘ :K) = FQ(N"'nkaK) = F2[¢_l(xJ)sl] = F2[¢-l(xk)31] =

(xj-xk)Fgl(ﬁ"l)', where the last equality uses the mean value the-
orem. But (xj-xk)Fgl(w'l)‘ = (xj—xk)Flg(ﬁ'l)' = (xj—xk}Fl2/Fll
= -(xj-xk)(NJE)/K z -[Fl(N+nj,K)—Fl(N+nk,K)](N¥E)/K, where(N+n) /K
corresponds to the point, say ;; between X5 and x, at which the
derivative, Felfﬁ_l)', is evaluated--i.e., (N+n)/K = ¢~1(%)--and
where Fi,/Fy; = -(N+n) /K is a consequence of the homogeneity of

F. Upon substituting this expression for F2(N+nj,K) - Fé(N+nk,K)

(t,k) implied by (13), we

into the expression for ¢, _(t,j) - C:—l

t-1
can factor out the difference, Fl(N+nJ,K) - Fl(N+nk,K), which also

appears in (15). In this way, we obtain (16).
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