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1 Introduction

In most modern economies, central banks implement monetary policy indirectly, by interven-
ing in certain financial markets (e.g., in the United States, the federal funds market and the
market for treasury securities). The underlying idea is that the effects of those interventions
on asset prices are transmitted to the rest of the economy to help achieve the ultimate policy
objectives. Thus, the transmission mechanism of monetary policy to asset prices is important
for understanding how monetary policy actually operates.

In this paper, we conduct an empirical, theoretical, and quantitative study of the effects of
monetary policy on financial markets in general and the equity market in particular. We make
three contributions. First, we provide original empirical evidence of a novel channel through
which monetary policy influences financial markets: tight money increases the opportunity
cost of holding the nominal assets used routinely to settle financial transactions (e.g., bank
reserves, money balances), making these payment instruments scarcer. In turn, this scarcity
reduces the resalability of financial assets, and this increased illiquidity leads to a reduction in
price. We label this mechanism the turnover-liquidity (transmission) mechanism (of monetary
policy). Second, to gain a deeper understanding of this mechanism, we develop a theory of
trade in financial over-the-counter (OTC) markets (that nests the competitive benchmark as
a special case) in which money is used as a medium of exchange in financial transactions.
The model shows how the details of the market microstructure and the quantity of money
shape the performance of financial markets (e.g., as gauged by standard measures of market
liquidity), contribute to the determination of asset prices (e.g., through the resale option value
of assets), and—consistent with the evidence we document—offer a liquidity-based explanation
for the negative correlation between real stock returns and unexpected increases in the nominal
interest rate that is used to implement monetary policy. Third, we bring the theory to the
data. We calibrate a generalized version of the basic model and use it to conduct quantitative
theoretical exercises designed to assess the ability of the theory to match the empirical effects
of monetary policy on asset prices, both on policy announcement days and at longer horizons.

The rest of the paper is organized as follows. Section 2 presents the basic model. It
considers a setting in which a financial asset that yields a dividend flow of consumption goods
(e.g., an equity or a real bond) is demanded by investors who have time-varying heterogeneous

valuations for the dividend. To achieve the gains from trade that arise from their heterogeneous



valuations, investors participate in a bilateral market with random search that is intermediated
by specialized dealers who have access to a competitive interdealer market. In the dealer-
intermediated bilateral market, which has many of the stylized features of a typical OTC
market structure but also nests the perfectly competitive market structure as a special case,
investors and dealers seek to trade the financial asset using money as a means of payment.
Periodically, dealers and investors are also able to rebalance their portfolios in a conventional
Walrasian market. Equilibrium is characterized in Section 3. Section 4 presents the main
implications of the theory. Asset prices and conventional measures of financial liquidity (e.g.,
spreads, trade volume, and dealer supply of immediacy) are determined by the (real) quantity
of money and the details of the microstructure where the asset trades (e.g., the degree of market
power of dealers and the ease with which investors find counterparties). Generically, asset prices
in the monetary economy exhibit a speculative premium whose size varies systematically with
the market microstructure and the monetary policy stance. For example, a high anticipated
opportunity cost of holding money reduces equilibrium real balances and distorts the asset
allocation by causing too many assets to remain in the hands of investors with relatively low
valuations, which depresses real asset prices.

Section 5 is empirical. In it we revisit the finding, documented in previous empirical work,
that surprise increases in the nominal policy rate cause sizable reductions in real stock returns
on announcement days of the Federal Open Market Committee (FOMC). A 1 basis point
unexpected increase in the policy rate causes a decrease of between 5 and 11 basis points in
the stock market return on the day of the policy announcement. In addition, this section
contains two new empirical findings. First, we document that episodes of unexpected policy
tightening are also associated with large and persistent declines in stock turnover. Second, we
find evidence that the magnitude of the reduction in return caused by the policy tightening is
significantly larger for stocks that are normally traded more actively, e.g., stocks with higher
turnover rates. For example, in response to an unexpected increase in the policy rate, the

5% percentile of turnover rates is

announcement-day decline in the return of a stock in the 9
about 2.5 times larger than that of a stock in the 5" percentile. The empirical evidence in this
section suggests a mechanism whereby monetary policy affects asset prices through a reduction
in turnover liquidity.

In Section 6 we formulate, calibrate, and simulate a generalized version of the basic model

and use it to assess the ability of the theory to fit the empirical evidence on the effects of



monetary shocks on aggregate stock returns as well as the new cross-sectional evidence on
the turnover-liquidity transmission mechanism. Section 7 concludes. Appendix A contains
all proofs. Appendices B, C, D, and E, contain supplementary material. Appendix B covers
technical aspects of the data, estimation, and simulation. Appendix C contains additional
theoretical derivations and results. Appendix D verifies the robustness of the empirical and
quantitative findings. This paper is related to four areas of research: search-theoretic models
of money, search-theoretic models of financial trade in OTC markets, resale option theories of
asset price bubbles, and an extensive empirical literature that studies the effects of monetary

policy on asset prices. Appendix E places our contribution in the context of all these literatures.

2 Model

Time is represented by a sequence of periods indexed by t = 0,1,.... Each period is divided
into two subperiods where different activities take place. There is a continuum of infinitely
lived agents called investors, each identified with a point in the set Z = [0,1]. There is also a
continuum of infinitely lived agents called dealers, each identified with a point in the set D =
[0,1]. All agents discount payoffs across periods with the discount factor g =1/ (1 + r), where
r > 0 denotes the real interest rate. In every period, there is a continuum of active production
units with measure A® € Ry . Every active unit yields an exogenous dividend 3, € R4 of a
perishable consumption good at the end of the first subperiod of period ¢. (Each active unit
yields the same dividend as every other active unit, so y; A® is the aggregate dividend.) At the
beginning of every period, every active unit is subject to an independent idiosyncratic shock
that renders it permanently unproductive with probability 1 — ¢ € [0,1). If a production unit
remains active, its dividend in period ¢ is y; = vy;—1 Where 4 is a nonnegative random variable
with cumulative distribution function T, i.e., Pr(y <~) = I'(7), and mean 5 € (0, (36)"1).
The time t dividend becomes known to all agents at the beginning of period ¢, and at that
time each failed production unit is replaced by a new unit that yields dividend y; in the initial
period and follows the same stochastic process as other active units thereafter (the dividend of
the initial set of production units, y9 € R4y, is given at ¢ = 0). In the second subperiod of
every period, every agent has access to a linear production technology that transforms effort
into a perishable homogeneous consumption good.

For each active production unit, there is a durable and perfectly divisible equity share

that represents the bearer’s ownership of the production unit and confers him the right to



collect dividends. At the beginning of every period t > 1, each investor receives an endowment
of (1 —0) A® equity shares corresponding to the new production units. (When a production
unit fails, its equity share disappears.) There is a second financial instrument, money, that
is intrinsically useless (it is not an argument of any utility or production function, and unlike
equity, ownership of money does not constitute a right to collect any resources). The stock
of money at time ¢ is denoted Aj*. The initial stock of money, A7 € R4, is given and
Al = pAT, with g € Ry . A monetary authority injects or withdraws money via lump-sum
transfers or taxes to investors in the second subperiod of every period. At the beginning of
period t = 0, each investor is endowed with a portfolio of equity shares and money. All financial
instruments are perfectly recognizable, cannot be forged, and can be traded in every subperiod.

In the second subperiod of every period, all agents can trade the consumption good produced
in that subperiod, equity shares, and money in a spot Walrasian market. In the first subperiod
of every period, trading is organized as follows. Investors can trade equity shares and money
in a random bilateral OTC market with dealers, while dealers can also trade equity shares and
money with other dealers in a spot Walrasian interdealer market. We use a € [0, 1] to denote
the probability that an individual investor is able to make contact with a dealer in the OTC
market. (The probability that a dealer contacts an investor is also a.) Once a dealer and an
investor have contacted each other, the pair negotiates the quantity of equity shares and money
that the dealer will trade in the interdealer market on behalf of the investor and a fee for the
dealer’s intermediation services. We assume the terms of the trade between an investor and a
dealer in the OTC market are determined by Nash bargaining where 6 € [0, 1] is the investor’s
bargaining power. The timing is that the round of OTC trade takes place in the first subperiod
and ends before production units yield dividends. Hence equity is traded cum dividend in
the OTC market (and in the interdealer market) of the first subperiod and ex dividend in the
Walrasian market of the second subperiod.! Asset purchases in the OTC market cannot be
financed by borrowing (e.g., due to anonymity and lack of commitment and enforcement). This
assumption and the structure of preferences described below create the need for a medium of

exchange in the OTC market.

! As in previous search models of OTC markets, e.g., see Duffie et al. (2005) and Lagos and Rocheteau (2009),
an investor must own the equity share in order to consume the dividend.



An individual dealer’s preferences are represented by
(o]

ES> B (cat — hat),
t=0

where ¢y is his consumption of the homogeneous good that is produced, traded, and consumed
in the second subperiod of period ¢, and hg; is the utility cost from exerting hy; units of effort
to produce this good. The expectation operator Eg is with respect to the probability measure
induced by the dividend process and the random trading process in the OTC market. Dealers

get no utility from the dividend good.? An individual investor’s preferences are represented by

x
Eo Z B (eyit + cit — hat)
=0

where y;; is the quantity of the dividend good that investor ¢ consumes at the end of the first
subperiod of period t, ¢;; is his consumption of the homogeneous good that is produced, traded,
and consumed in the second subperiod of period t, and h;; is the utility cost from exerting h;;
units of effort to produce this good. The variable £;; denotes the realization of a valuation shock
that is distributed independently over time and across agents, with a differentiable cumulative
distribution function G on the support [er,en] C [0,00], and € = [edG (). Investor i learns
his realization € at the beginning of period ¢, before the OTC trading round. The expectation
operator [Eq is with respect to the probability measure induced by the dividend process, the
investor’s valuation shock, and the random trading process in the OTC market.?

Consider a social planner who wishes to maximize the sum of all agents’ expected discounted
utilities subject to the same meeting frictions that agents face in the decentralized formulation.
Specifically, in the first subperiod of every period, the planner can only reallocate assets among
all dealers and the measure « of investors who contact dealers at random. In Appendix C
(Proposition 11 in Section C.1), we prove the allocation that solves the planner’s problem is
characterized by the following two properties: (a) only dealers carry equity between periods,

and (b) dealers do not carry assets after the OTC round of trade, and among those investors

2This assumption implies that dealers have no direct consumption motive for holding the equity share. It is
easy to relax, but we adopt it because it is the standard benchmark in the search-based OTC literature, e.g., see
Duffie et al. (2005), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), and Weill (2007).

3The valuation shock stands in for the various idiosyncratic reasons why individual investors may wish to
hold different quantities of a certain asset at different points in time, such as differences in their liquidity
needs, financing or financial-distress costs, or hedging needs (e.g., correlation of asset returns with endowments).
Several papers that build on the work of Duffie et al. (2005) have formalized the “hedging needs” interpretation.
Examples include Duffie et al. (2007), Garleanu (2009), and Vayanos and Weill (2008).



who have a trading opportunity with a dealer in the OTC market, only those with the highest
valuation hold equity shares at the end of the first subperiod. The planner’s problem is useful
to highlight the two (re)allocation motives that will drive equilibrium outcomes in the following
section.* First, the planner implements an efficient allocation of assets in the OTC trading
round: Since an investor’s utility from the dividend good is linear, and dealers get no utility
from the dividend good, the efficient allocation requires that all the assets held by dealers at
the beginning of the period are reallocated to the set of investors with the highest valuation
for the dividend. Second, by allocating all assets to dealers at the end of every period, the
planner ensures that all assets can be reallocated to the set of highest valuation investors in
the following OTC trading round with probability one (notice that if instead a set of investors
were to enter the OTC round holding the asset, most of these investors would draw valuation
shocks strictly lower than £, and the planner would only be able to reallocate a fraction o < 1

of those assets to the highest valuation investors who contacted dealers).

3 Equilibrium

Consider the determination of the terms of trade in a bilateral meeting in the OTC round of
period ¢ between a dealer with portfolio a4 and an investor with portfolio a;; and valuation e.
Let a; = (a;*,a;) denote the investor’s post-trade portfolio and let k; denote the fee the dealer
charges for his intermediation services. The fee is expressed in terms of the second-subperiod
consumption good and paid by the investor in the second subperiod.®> We assume (@, k;) is
determined by the Nash bargaining solution where the investor has bargaining power 6 € [0, 1].
Let WtD (agt, ki) denote the maximum expected discounted payoff of a dealer with portfolio a4
and earned fee k; when he reallocates his portfolio in the interdealer market of period t. Let
W/ (a;, ki) denote the maximum expected discounted payoff at the beginning of the second sub-
period of period ¢ (after the production units have borne dividends) of an investor who is holding
portfolio a;; and has to pay a fee k;. For each ¢, define a pair of functions @} : Ri Xlep,eg] = Ry

for k = m, s and a function k; : R2 X [er,eq] — R, and let @; (ait,€) = (@ (ai, €) , @ (ai,€))

4Below we show that, under the Friedman rule, the decentralized monetary equilibrium implements the
planner’s allocation (see Corollary 1).

°In the working paper version of this model (Lagos and Zhang, 2015), we instead assume that the investor
must pay the intermediation fee on the spot, i.e., with money or equity. The alternative formulation we use
here makes the analysis and the exposition much simpler while the main economic mechanisms are essentially
unchanged.



for each (aj,¢) € Ri X ler,em]. We use [a; (@, €) , ki (@i, )] to represent the bargaining out-
come for a bilateral meeting at time ¢ between an investor with portfolio a;; and valuation ¢,
and a dealer with portfolio ag. That is, [@; (@i, €) , ki (@, €)] solves
_ _ 9 2 A _
D leyea; + W (@, k) — eyeal, — W/ (@i, 0)]” W (aar, ki) — WP (aar, 0)]' 7 (1)
Qat Rt X
" s.t. @ + pa < all + pas,
WP (@ar,0) < WP (aa, kr)
eyea; + Wi (@, 0) < eyea; + Wi (@, k),

where p; is the dollar price of an equity share in the interdealer market of period ¢.
Let W/ (a4, k;) denote the maximum expected discounted payoff of a dealer who has earned
fee k; in the OTC round of period t and, at the beginning of the second subperiod of period ¢,

is holding portfolio a;. Then the dealer’s value of trading in the interdealer market is

WtD (at, ]ﬂt) = Imax WtD (&t, kt) (2)

A 2
at€R+

s.t. a)* + pa; < ay' + pay,

where a; = (aJ", a3). For each t, define a pair of functions, af : Ri — Ry for k =m,s, and let
a: (ay) = (ay" (at) , ai (at)) denote the solution to (2).

Let V,” (a;) denote the maximum expected discounted payoff of a dealer who enters the
OTC round of period ¢ with portfolio a; = (a}*,a?). Let ¢, = (¢}, @), where ¢;" is the real
price of money and ¢; the real ex dividend price of equity in the second subperiod of period ¢
(both expressed in terms of the second subperiod consumption good). Then,

Wi (ae, k) = max e —hy + BEVE (ar41)] (3)
(Ct,ht,at+1)ERi

s.t. ¢+ a1 < hy + ke + ¢ay,

where @y11 = (afty,a5,4), ary1 = (@)%, a5, ), Eq is the conditional expectation over the next-
period realization of the dividend, and ¢,a: denotes the dot product of ¢, and a;. Similarly,
let VtI (at,e) denote the maximum expected discounted payoff of an investor with valuation e
and portfolio a; = (a}*, aj) at the beginning of the OTC round of period ¢. Then,
W/ (ay, ki) = max [Ct — hy + BE, / Vi1 (ais1,€) dG(e') (4)
(ct,he,@¢11)ERY

S.t. Ct —+ d)ta't'f‘l S ht — kt + ¢tat + ,_rt,



where a1 = (aj},0a;,, + (1 —9) A%) and T; € R is the real value of the time ¢ lump-sum
monetary transfer.
The value function of an investor who enters the OTC round of period ¢ with portfolio a;

and valuation ¢ is
Vi (as,¢) = a{eytaf(at,s) + Wi [@; (as,€) , ki (ag, e } +(1-a) [5ytat + Wi (at,O)] .
The value function of a dealer who enters the OTC round of period t with portfolio a; is
VP (a)) = a / WP ay, ki (ain.©)] dHre (ais,€) + (1 — a) WP (a,0)

where Hrp; is the joint cumulative distribution function over the portfolios and valuations of the
investors the dealer may contact in the OTC market of period ¢.

Let j € {D, I} denote the agent type, i.e., “D” for dealers and “I” for investors. Then for
je{D,I},let Am and As denote the quantities of money and equity shares, respectively, held
by all agents of type j at the beginning of the OTC round of period ¢ (after production units have
depreciated and been replaced). That is, AT} = [aj*dFj; (ay) and A%, = [ ajdFj; (a;), where
Fj; is the cumulative distribution function over portfolios a; = (aj", a}) held by agents of type j
at the beginning of the OTC round of period ¢. Let fl;rt‘ﬂ and fljtﬂ denote the total quantities
of money and shares held by all agents of type j at the end of period ¢, i.e., fllfjt 1= fD dé‘?t 14
and Aj, = [pafy,difor k € {s,m}, with AR, = AP, Aby g = 04%,, ATy = Af,
and A7, = 0A7, + (1 —6) A®. Let AT}, and A}, denote the quantities of money and shares
held after the OTC round of trade of period ¢ by all the dealers, and let A7} and Af, denote the
quantities of money and shares held after the OTC round of trade of period ¢ by all the investors
who are able to trade in the first subperiod. For asset k € {s,m}, A%, = [aF (a;) dFp; (a:)

and A%, = o [@f(as,e)dHi(ar,€). We are now ready to define an equilibrium.

Definition 1 An equilibrium is a sequence of prices, {1/pt, o}, ¥; 12, bilateral terms of trade
in the OTC market, {@y, kt}72, dealer portfolios, {{Gat, Qdi11, Qdt+1) gep Yico, and investor port-
folios, {{(@it11, @it11);e7}i0, such that for allt: (i) the bilateral terms of trade {ay, ki }32 solve
(1), (ii) taking prices and the bargaining protocol as given, the portfolios (Ggt, @gi+1, Gar+1) solve
the individual dealer’s optimization problems (2) and (3), and the portfolios (Gi+1, @ir+1) solve
the individual investor’s optimization problem (4), and (iii) prices, {1/ps, d7", @5 152, are such
that all Walrasian markets clear, i.e., ASDtH +A?t+1 = A% (the end-of-period t Walrasian mar-

ket for equity clears), ADtJr1 + Alt+1 = AlY, (the end-of-period t Walrasian market for money



clears), and fl’fjt + fl’ft = Alfjt + ozAII“t for k = s,m (the period t OTC interdealer markets for
equity and money clear). An equilibrium is “monetary” if ¢{* > 0 for all t and “nonmonetary”

otherwise.

The following result characterizes the equilibrium post-trade portfolios of dealers and in-

vestors in the OTC market, taking beginning-of-period portfolios as given.

Lemma 1 Define e = maﬁ;‘%dﬁ and
=1 ifef <e
x(he)d el ifef=c
=0 if e < ej.

Consider a bilateral meeting in the OTC round of period t between a dealer and an investor
with portfolio a; and valuation . The investor’s post-trade portfolio, [a}* (a;,€),a; (ar,¢€)], is

given by

a" (ar,e) = [L = x (&7, )] (¢f" + prag)

a; (ar,€) = x (g7,¢) (1/pe) (@] + pray)

and the intermediation fee charged by the dealer is
* * 1 m * S
ki (ar,e) = (1 —0) (e —&7) | x (57,€) P [1—x (et e)]af| w-

A dealer who enters the OTC market with portfolio agq exits the OTC market with portfolio

(07" (@ar) , i (aa)] = [@" (@ar, 0) , @ (@ar, 0)].

Lemma, 1 offers a full characterization of the post-trade portfolios of investors and dealers in
the OTC market. First, the bargaining outcome depends on whether the investor’s valuation,
g, is above or below a cutoff, ¢;. If ¢} < ¢, the investor uses all his cash to buy equity. If ¢ < €7,
he sells all his equity holding for cash. The intermediation fee earned by the dealer is equal to
a share 1 — 0 of the investor’s gain from trade. The dealer’s post-trade portfolio is the same as
that of an investor with € = 0.

We focus the analysis on recursive equilibria, that is, equilibria in which aggregate equity
holdings are constant over time, i.e., A}, = A}, and A}, = A7 for all ¢, and real asset prices
are time-invariant linear functions of the aggregate dividend, i.e., ¢; = ¢%y;, pid" = ¢f = ¢*u,

O AT, = Zy, and ¢* AT, = Zpy:, where Z,Zp € Ry Hence, in a recursive equilibrium,

10



g = 455—¢S =¢", ¢f+1/¢f = q3§+1/q3f = Vt+1, @n/@% = f1/Yt+1, and pgy1/ps = p. Throughout
the analysis, we let 3 = $5 and maintain the assumption p > 3 (but we consider the limiting
case f1 — f3).

For the analysis that follows, it is convenient to define

o (1—ab) (1-56)(e—¢) o ab (1—B0) (e—er)
=611+ E ] and p=p0|1+ Bor+ (1— 3o) 1 (5)
where ¢ € [€,ep] is the unique solution to
5—é+a9/5(5—5)dc:(5)_0. (6)

Lemma 4 (in Appendix A) establishes that ji < fi. The following proposition characterizes the

equilibrium set.

Proposition 1 (i) A nonmonetary equilibrium exists for any parametrization. (ii) There is no
recursive monetary equilibrium if p > fi. (i11) In the nonmonetary equilibrium, A7 = A*— A}, =
A® (only investors hold equity shares), there is no trade in the OTC market, and the equity price

i the second subperiod is

1)
6t = S, with o° = T2z (")

(iv) If u € (B, 1), then there is one recursive monetary equilibrium; asset holdings of dealers

and investors at the beginning of the OTC round of period t are A}, = A" — A7} =0 and

= §A* ifB<p<pi
p=A"—A7q €10,04°%] ifu=p

=0 fp<p<p
and asset prices are
B ifB<p<p
6; = ¢y, with 6" = ¢ 10 o L (8)
ﬁ[a‘—l—a@fq(e —s)dG(e)} ifp<p<p
¢ = ¢°yr, with ¢* = " + ¢* (9)
m Yt
=72 1
¢ m
bt = ?At ) (11)

11



where
aG (e*) A7 + A

all — G (e%)]

and for any p € (B,/Z), e* € (er,em) is the unique solution to
(1—B6) [ (e —e*)dG(e) n-
e* 4+ 36 {5’ —c*+ab f;: (e* —¢) dG(&?)} I i) Sa

7 =

(" +¢%) (12)

f =0 (13)

(v) (a) As p — i, € — e, and ¢; — lf—%ééyt. (b) As u— B, e — ey and ¢ — %sHyt.

In the nonmonetary equilibrium, dealers are inactive and equity shares are held only by
investors. With no valued money, investors and dealers cannot exploit the gains from trade
that arise from the heterogeneity in investor valuations in the first subperiod, and the real asset
price is ¢° = %Ey, i.e., equal to the expected discounted value of the dividend stream since
the equity share is not traded. (Shares can be traded in the Walrasian market of the second
subperiod, but gains from trade at that stage are nil.) The recursive monetary equilibrium
exists only if the inflation rate is not too high, i.e., if u < g. In the monetary equilibrium,
the marginal valuation, €*, which according to Lemma 1 partitions the set of investors into
those who buy and those who sell the asset when they meet a dealer in the OTC market, is
characterized by (13) in part (iv) of Proposition 1. Unlike what happens in the nonmonetary
equilibrium, the OTC market is active in the monetary equilibrium, and it is easy to show
that the marginal valuation, €*, is strictly decreasing in the rate of inflation, i.e., %—i < 0 (see
Corollary 3 in Appendix A). Intuitively, the real value of money falls as u increases, so the
marginal investor valuation, £*, decreases, reflecting the fact that under the higher inflation rate,
the investor that was marginal under the lower inflation rate is no longer indifferent between
carrying cash and equity out of the OTC market—he prefers equity.

According to Proposition 1, 0 < e7, < €} in the monetary equilibrium, so Lemma 1 implies
that dealers hold no equity shares at the end of the OTC round: all equity is held by investors,
in particular, by those investors who carried equity into the period but were unable to contact
a dealer, and by those investors who purchased equity shares in bilateral trades with dealers.
After the round of OTC trade, all the money supply is held by the investors who carried cash
into the period but were unable to contact a dealer, by the investors who sold equity shares
through dealers, and by those dealers who carried equity into the OTC market.

A feature of the monetary equilibrium is that dealers never hold money overnight: at the

beginning of every period ¢, the money supply is all in the hands of investors, i.e., A7}, = 0 and

12



A7y = A", The reason is that access to the interdealer market allows dealers to intermediate
assets without cash. Whether it is investors or dealers who hold the equity shares overnight
depends on the inflation rate: if it is low, i.e., if u € (B, /1), then only dealers hold equity
overnight, that is, flj)t 41 = A% and fl‘}t 41 = 0 for all . Conversely, if the inflation rate is
high, i.e., if p € (fi, 1), then at the end of every period ¢, all equity shares are in the hands of
investors, i.e., ASDt 41 =0and fl?t 41 = A%, so strictly speaking, in this case dealers only provide
brokerage services in the OTC market. The intuition for this result is as follows.® For dealers,
the return from holding equity overnight is given by the resale price in the OTC market. If
inflation is low, ¢} is high (the asset is priced by relatively high valuation investors), and this
means the resale price in the OTC market is high. Since dealers are sure to trade in the OTC
market every period while investors only trade with effective probability «f, the former are
in a better position to reap the capital gains and end up holding all equity shares overnight.
Conversely, if inflation is high then &} is low, so the capital gain to a dealer from carrying the
asset to sell in the OTC market is small. The benefit to investors from holding equity includes
not only the resale value in the OTC market (which is small at high inflation) but also their
own expected valuation of the dividend good, so for high inflation, the return that investors

obtain from holding equity overnight is higher than it is for dealers. For example, as y — i we

have e — €1, so the dealer’s expected return from holding equity overnight is %&, while
the investor’s is %ﬁ

Given the marginal valuation, £*, part (iv) of Proposition 1 gives all asset prices in closed
form. The real ex dividend price of equity (in terms of the second subperiod consumption
good), ¢F, is given by (8). The cum dividend dollar price of equity in the OTC market, p, is
given by (11). The real price of money (in terms of the second subperiod consumption good),
@7, is given by (10). The real cum dividend price of equity (in terms of the second subperiod
consumption good) in the OTC market, p;¢}* = ¢°y;, is given by (9).

Finally, part (v)(a) states that as the rate of money creation increases toward [, €* ap-
proaches the lower bound of the distribution of valuations, €1, so no investor wishes to sell
equity in the OTC market, and as a result the allocations and prices of the monetary equilib-
rium approach those of the nonmonetary equilibrium. Part (v)(b) states that as u decreases
toward 3, e* increases toward the upper bound of the distribution of valuations, ez, so only

investors with the highest valuation purchase equity in the OTC market (all other investors

5See Lagos and Zhang (2015) for a more detailed discussion.
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wish to sell it). Moreover, since 3 < fi, as . — (3 only dealers hold equity overnight. Thus, we

have the following result.

Corollary 1 The allocation implemented by the recursive monetary equilibrium converges to

the efficient allocation as p — 5.

Let qt]?k denote the nominal price in the second subperiod of period ¢ of an N-period risk-
free pure discount nominal bond that matures in period ¢ + k, for £ = 0,1,2,..., N (so k is
the number of periods until the bond matures). Imagine the bond cannot be used as means of
payment in the first subperiod.” Then in a recursive monetary equilibrium, qfk = (B/p)*, and
i=p/B — 1 is the time ¢ nominal yield to maturity of the bond with k& periods until maturity.
Thus, the optimal monetary policy described in Corollary 1 and part (v)(b) of Proposition 1 in

which ¢ = (8 can be interpreted as a policy that implements the Friedman rule, i.e., i = 0 for

all contingencies at all dates. Since the (gross) inflation rate is ¢} /¢}}, = ,uy;yil =14 m41,
1 +i= /B is equivalent to

I+i=04+r)(1+m), (14)

-1
with 1 + 7 = [Etﬁ] = /7.

4 Implications

In this section, we discuss the main implications of the theory. Specifically, we show how asset
prices and trade volume are determined by monetary policy and the details of the microstructure
where the asset trades (e.g., the degree of market power of dealers and the ease with which

investors find counterparties).®

"Notice that even though the bond cannot be traded for equity in the OTC round of trade, it can be exchanged
(or redeemed) for money at the end of the period at no cost. Hence how “illiquid” we deem this bond depends
on the length of the model period. If, as in the quantitative analysis of Section 6, the model period corresponds
to one trading day, then the bond is in fact very liquid, or “very close to cash” according to the usual real-world
standards.

8We focus on trade volume as a measure of financial liquidity because it will be the relevant variable in
our empirical analysis. For completeness, in Appendix A (Section A.5) we show how conventional measures
of financial liquidity other than trade volume (e.g., spreads, and dealer supply of immediacy) are determined
by monetary policy and the details of the microstructure. In Appendix A (Section A.7) we also show that
generically, asset prices in the monetary economy exhibit a speculative premium whose size varies systematically
with monetary policy and the market microstructure.
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4.1 Asset prices

In this subsection, we study the asset-pricing implications of the theory. We focus on how the
asset price depends on monetary policy and on the degree of OTC frictions as captured by the
parameters that regulate trading frequency and the relative bargaining strengths of traders.”
The real price of equity in a monetary equilibrium is in part determined by the option
available to low-valuation investors to resell the equity to high-valuation investors. If the
growth rate of the money supply (and therefore the inflation rate) increases, equilibrium real
money balances decline and the marginal investor valuation, £*, decreases, reflecting the fact
that under the higher inflation rate, the investor valuation that was marginal under the lower
inflation rate is no longer indifferent between carrying cash and equity out of the OTC market—
he prefers equity. Since the marginal investor who prices equity in the OTC market has a lower
valuation, the value of the resale option is smaller, i.e., the turnover liquidity of the asset is
lower, which in turn makes the real equity price (both ¢* and ¢*) smaller. Naturally, the real
value of money, @7, is also decreasing in the growth rate of the money supply.!’ All this is

formalized in Proposition 2.

Proposition 2 In the recursive monetary equilibrium: (i) 0¢°/0p < 0, (ii) 0¢°/Ou < 0, (iii)
0Z/0p < 0 and 0¢7"/0u < 0.

Proposition 2 is useful for settings where monetary policy operates by changing the expected
inflation rate, i.e., settings where changes in i are associated exclusively with changes in 7 in
(14). The following result examines the behavior of real asset prices in settings where changes

in i are associated exclusively with changes in the real interest rate, r.!1

Proposition 3 In the recursive monetary equilibrium: (i) 0¢*/0r < 0, (i) 0Z/0r < 0 and
09y /or < 0.

°In Appendix A (Proposition 9) we also establish the effect of a mean-preserving spread in the distribution
of valuations on the equity price.

0The top row of Figure 8 (Appendix A) illustrates the typical time paths of the ex dividend equity price, ¢5,
real balances, ¢;* A}", and the price level, ¢, for different values of .

"The proof of Proposition 3 (Appendix A, Section A.4) is based on a continuous-time version of our discrete-
time economy. The continuous-time formulation can be interpreted as an approximation to our baseline discrete-
time model when the period length is small. Apart from allowing sharper analytical results, the continuous-time
formulation is useful since the model period in our quantitative implementation of the theory is very short
(specifically, a trading day; see Section 6.2 for details).
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In the OTC market, af is an investor’s effective bargaining power in negotiations with
dealers. A larger af implies a larger gain from trade for low-valuation investors when they sell
the asset to dealers. In turn, this makes investors more willing to hold equity shares in the
previous period, since they anticipate larger gains from selling the equity in case they were to
draw a relatively low valuation in the following OTC round. Hence, real equity prices, ¢° and
#°, are increasing in o and 0.'? If o increases, money becomes more valuable (both Z and
@ increase), provided we focus on a regime in which only investors carry equity overnight.!?

Proposition 4 formalizes these ideas.

Proposition 4 In the recursive monetary equilibrium: (i) 0¢*/0 (af) > 0, (ii) 9¢*/0 (ah) > 0,
(11i) 0Z/0a > 0 and 9P} /O > 0, for u € (fi, [1).

4.2 Trade volume

Trade volume is commonly used as a measure of market liquidity because it is a manifestation
of the ability of the market to reallocate assets across investors. According to Lemma 1, any
investor with ¢ < €f who has a trading opportunity in the OTC market sells all his equity
holding. Hence, in a recursive equilibrium, the quantity of assets sold by investors to dealers
in the OTC market is Q° = aG (¢*) A}. From Lemma 1, the quantity of assets purchased by
investors from dealers is Q® = a/[1 — G (¢*)] A7*/p;. Thus, the total quantity of equity shares
traded in the OTC market is V = Q° 4+ Q?, or equivalently'*

V = 2aG (%) A5 + A3, (15)

Trade volume, V, depends on the growth rate of the money supply, u, (or equivalently, expected
inflation), the real interest rate, r, and dealers’ market power € indirectly, through the general
equilibrium effect on €*. A decrease in y or r, or an increase in 6 increases the expected return
to holding money relative to equity, which makes more investors willing to sell equity for money

in the OTC market, i.e., £* increases and so does trade volume, provided G’ (¢*) > 0. In other

12This finding is consistent with the behavior of the illiquidity premia in response to variations in the measures
of liquidity documented by Ang et al. (2013).

13Real balances can actually fall with « for u € (3, ). The bottom row of Figure 8 (Appendix A) illustrates
the time paths of the ex dividend equity price, ¢;, real balances ¢;* A", and the price level, ¢7*, for two different
values of a.

1 To obtain (15) we used the clearing condition for the interdealer market, Q° = Q° + A%,. Also, note that V
is trade volume in the OTC market, but since every equity share traded in the first subperiod gets retraded in
the second subperiod, total trade volume in the whole time period equals 2V.
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words, the increase in turnover liquidity caused by a decrease in y or r, or an increase in 6
will manifest itself through an increase in trade volume provided the cumulative distribution
of investors is strictly increasing over the relevant range. The indirect positive effect on V
(through £*) of an increase in the investors’ trade probability « is similar to an increase in 6,
but in addition, o directly increases trade volume, since with a higher o more investors are able

to trade in the OTC market. These results are summarized in the following proposition.

Proposition 5 In the recursive monetary equilibrium, provided provided G'(¢*) > 0: (i)
oV/ou <0, (i) 0V/or <0, (iii) 0V /00 > 0 and 0V /0o > 0.

4.3 Discussion

In this section we explain the economic rationale behind Propositions 2 and 3. To streamline the
exposition, focus on a recursive monetary equilibrium in which investors carry equity overnight.

In this case, the Euler equations for money and equity are:

(e = €")Ytt1
) ptHdG(s)} (16)

m 1 m
o = mEt |:¢t+1 + 09/6

1
¢f = 70,

1+7 ’ (17)

E*
EYir1 + Opyq + 049/ (" =€) yr41dG(e)
er

(See Corollary 2 in Appendix A for details.) On the left side of (16), ¢;* represents the cost
(in terms of the second-subperiod consumption good) of purchasing an additional dollar in
the competitive market of the second subperiod of period t. On the right side of (16) is the
discounted expected value of the additional dollar in period ¢ + 1. This marginal value equals
the expected value from holding the dollar for a whole period (until the competitive trading
round at the end of period ¢ + 1), i.e., ¢{"}{, plus the expected value of the option to exchange
the dollar for equity shares in the OTC round at the beginning of period ¢ + 1. This option
is executed provided the investor gets access to the interdealer market (with probability «),
gets a share 6 of the gain from trade with the dealer, and gets a random valuation higher
than £*, so the expected gain from exchanging the dollar for equity is «f f;H %d(}(a).
Next, consider (17). On the left side, ¢§ represents the cost (in terms of the second-subperiod
consumption good) of purchasing an additional equity share in the competitive market of the

second subperiod of period t. On the right side is the discounted (net of depreciation) expected

value of the additional equity share in period ¢ + 1. This marginal value equals the expected
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cum-dividend value from holding the equity share for a whole period (until the competitive
trading round at the end of period ¢ + 1), i.e., &yiy1 + @7, plus the expected value of the
option to resell the asset in the OTC round at the beginning of period ¢ + 1. This resale option
is executed provided the investor gets access to the interdealer market (with probability «),
gets a share 6 of the gain from trade with the dealer, and gets a random valuation lower than
€*, so the expected value of the resale option is o f;: (e* —¢€) y4+1dG(e). This additional term
that makes the equilibrium real value of an equity share larger than the discounted expected
value of the dividend stream is reminiscent of the value of the resale option in Harrison and
Kreps (1978). The novelty here is that the value of this resale option depends on monetary
policy—through the effect that monetary policy has on asset reallocation and the determination
of the marginal investor valuation, €*, in the OTC round.

Given pi¢" = (" 4+ &°) ye, ¢ /071 = 1/ Ver1, Eeyerr = Eever1ye = Yyt and (14), the Euler

equation (16) can be written as

1 EH ¢ _ g*
1=—-—|1 0 . 1
1—1—@'[ + /6* E*_'_qbsdG(e)} (18)

The left side is the real cost of purchasing an additional unit of real money balances (1 unit of

the numeraire good). The right side is the discounted expected value of bringing an additional
unit of real money balances into the OTC round of the following period. Condition (18) makes
clear that an increase in the nominal rate, i, acts as a tax on real money balances: it reduces
the incentives to carry money, which in turn reduces the valuation of the marginal investor,
e*. As a result, the real equity price falls, as is clear from (17). Notice that this result holds
both, if the increase in the nominal rate is associated with an increase in expected inflation,
7, as in part (i) of Proposition 2, and if the increase in the nominal rate is associated with an
increase in the real interest rate, r, as in part (i) of Proposition 3. The intuitive reason why &*
falls in response to an increase in the nominal rate has to do with the fact that while in general
equilibrium a change in ¢ affects investors’ valuations of both equity and money, it affects the
incentive to hold money relatively more.

To understand this, first suppose the increase in ¢ is associated with an increase in expected
inflation, 7, or equivalently, the money growth rate, u. The pricing equation (18) indicates that
the first-order (partial equilibrium) effect of 7 is to reduce the real value of a dollar, and that
this is achieved by a reduction in €*, i.e., a reduction in the equilibrium cum-dividend value

of an equity share that money is used to buy. The Euler equation for equity, (17) does not
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depend on 7 directly; only indirectly through the general equilibrium effect of 7 on real money
balances. The direct effect of expected inflation on the real value of money is larger than the
indirect effect on the price of equity, and the marginal investor valuation, €*, decreases as the
investor that was marginal under the lower inflation rate tilts his portfolio away from money
toward equity in an attempt to avoid the inflation tax.

For another angle on this logic, suppose the background monetary policy is the Friedman
rule, as in Corollary 1. In this case the opportunity cost of holding money is zero, i.e., i = 0,
so investors are willing to hold enough real money balances to satiate their random demand for
liquidity in the OTC round, i.e., (18) implies ¢* = ey if i = 0. Intuitively, this means that the
highest valuation investors (those with valuations equal to ef) who contact dealers are able to
absorb the whole supply of equity shares in the interdealer market, and the equilibrium equity
price reflects only their valuation. If the inflation rate is higher than the target level prescribed
by the Friedman rule, then the opportunity cost of holding money is positive, and therefore the
highest valuation investors are budget contrained in the OTC round as they no longer choose
to hold enough real money balances to be financially unconstrained for every realization of the
next-period valuation (formally, (18) implies ¢* < e if i > 0). Since investors with valuation ey
are no longer able to absorb the whole asset supply traded in the interdealer market, investors
with lower valuations are now able to purchase some equity shares, and therefore the marginal
investor who prices equity has valuation €* < ep. In sum, as 7 increases, aggregate real balances
fall, investors with relatively high valuations become less able to express their valuations, and
as a result, the asset is held—and priced—Dby investors with lower valuations.

To conclude, suppose the increase in ¢ is associated with an increase in the real rate, r. In
this case we have shown that £* also falls, again reflecting the fact that an increase in the real
rate reduces the value of money relatively more than the value of an equity share. The reason
is that, since equity dominates money in terms of rate of return (equity yields a real dividend
and money does not), an equilibrium with valued money necessarily requires that money be a
relatively better store of value than equity (formally, ;1 < z). This means that while an increase
in r reduces investors’ valuations of both equity and money, it has a relatively smaller effect
on the incentive to hold equity—which necessarily has a more “front-loaded” payoff structure

than money in the monetary equilibrium.
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5 Empirical analysis

According to the theory, the real asset price decreases in response to an entirely unanticipated
and permanent increase in the nominal interest rate (part (i) of Proposition 2 and part (i) of
Proposition 3, together with (14)). The mechanism through which the increase in the nominal
rate is transmitted to the asset price is a reduction in turnover liquidity, i.e., a reduction in
the resale option value, accompanied by a nonpositive change in trade volume (parts (i) and
(#i) of Proposition 5). These two theoretical results suggest two hypotheses that can be tested
with price and turnover data: (a) surprise increases in the nominal rate reduce the marketwide
stock return (and possibly trade volume), and (b) the strength of the mechanism depends on
the turnover liquidity of the stocks (e.g., as proxied for by the turnover rate of the stock). The
following proposition (based on a generalization of the theory with multiple assets indexed by
s €{1,2,..., N} that differ in terms of the trading frequency, a®) provides a formal theoretical
basis for these two hypotheses.

Proposition 6 In the recursive monetary equilibrium, (i) 0log ¢®/0m < 0, (i) dlog ¢ /Or < 0,
(iii) 9% log ¢°/ (0adT) < 0, (iv) 0*log ¢*/ (Dadr) < 0.

Thus, theory predicts a negative semi-elasticity of the real equity price with respect to the
nominal interest rate, regardless of whether the increase in the nominal rate is associated with
an increase in the expected inflation rate, 7, or an increase in the real rate, r (parts (i) and
(i1) of Proposition 6). Moreover, since turnover is an increasing function of o®, theory predicts
that the magnitude of this semi-elasticity is larger for stocks with higher turnover (parts (4ii)

and (iv) of Proposition 6).

5.1 Data

We use daily time series for all individual common stocks in the New York Stock Exchange
(NYSE) from the Center for Research in Security Prices (CRSP).!> The daily stock return
from CRSP takes into account changes in prices and accrued dividend payment, i.e., the return
of stock s on day t is R} = <% — 1) x 100, where Py is the ex dividend dollar price of
stock s on day t, and D; denotes the dollar dividend paid per share of stock s on day t. As a

measure of trade volume for each stock, we construct the daily turnover rate from CRSP, i.e.,

15We report results for NASDAQ stocks in Appendix D (Section D.3).
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T2 = V7 /Af, where V;} is the trade volume of stock s on day ¢ (measured as the total number
of shares traded) and A{ is the number of outstanding shares of stock s on day t. Whenever
we use an average, e.g., of equity returns or turnover rates across a set of stocks, we use the
arithmetic average, e.g., R} = %Z’;:l R¢ and T, = %ZZZI 7,° are the average return and the
average turnover rate for the universe of n common stocks listed in the NYSE.!6

As a proxy for the policy (nominal interest) rate, we use the rate on the nearest Eurodollar
futures contract due to mature after the FOMC policy announcement, as in Rigobon and Sack
(2004).17 Specifically, we use the 3-month Eurodollar futures rate produced by the Chicago
Mercantile Exchange Group (CME Group) and supplied by Datastream. In some of our empir-
ical estimations, we use the tick-by-tick nominal interest rate implied by 30-day federal funds
futures and consider a high-frequency measure of the unexpected change in the nominal policy
rate in a narrow 30-minute time window around the FOMC announcement. The sample we
analyze runs from January 3, 1994 to December 31, 2007.'® The sample includes between 1300
and 1800 stocks (depending on the time period) and 133 FOMC announcement dates.'?

'5We report results for value-weighted returns in Appendix D (Section D.4).

Y Eurodollar futures are based on a $1 million face value 3-month maturity Eurodollar time deposit. These
futures contracts mature during the conventional IMM (International Monetary Market) dates in the months of
March, June, September, or December, extending outward 10 years into the future. In addition, at any point
in time, there are so-called 3-month Eurodollar serial contracts extending 4 months into the future that mature
in months that are not conventional IMM dates. For example, at the beginning of January 2016, there are
contracts maturing in mid-March, mid-June, mid-September, and mid-December of 2016, through 2025. There
are also serial contracts maturing in mid-January, mid-February, mid-April, and mid-May of 2016. Thus, de-
pending on the timing of the FOMC announcement, the nearest contract to mature may expire between zero and
30 days after the announcement. Current quotes are available at http://www.cmegroup.com/trading/interest-
rates/stir/eurodollar_quotes_settlements futures.html. An advantage of using a futures rate as a proxy for the
“policy rate” is that its movement on dates of FOMC policy announcements reflects policy surprises only and
does not reflect anticipated policy changes. The importance of focusing on the surprise component of policy
announcements (rather than on the anticipated component) in order to identify the response of asset prices to
monetary policy was originally pointed out by Kuttner (2001) and has been emphasized by the literature since
then, e.g., Bernanke and Kuttner (2005) and Rigobon and Sack (2004). Giirkaynak et al. (2007) offer empirical
evidence supporting the use of futures contracts as an effective proxy for policy expectations and discuss their
use to define policy shocks.

18We start our sample period in 1994 because prior to 1994, policy changes in the federal funds target were
unannounced and frequently occurred between FOMC meetings. From 1994 onward, all changes are announced
and most coincided with FOMC meetings, so as policy announcement dates we use the dates of FOMC meetings
obtained from the website of the Board of Governors of the Federal Reserve System. The web address is
http://www.federalreserve.gov/monetarypolicy /fomccalendars.htm. See Bernanke and Kuttner (2005) for more
discussion on the exact timing of policy announcements.

90ur full sample contains 135 policy dates. We discard two dates: 9/13/2001 and 9/17/2001 (the two atypical
FOMC announcements in the immediate aftermath of 9/11/2001). One of our estimation procedures requires
data involving first differences in variables on the policy day and on the day preceding the policy day. In that
case, we follow Rigobon and Sack (2004) and discard three additional policy dates because they are preceded by
either one or two holidays in financial markets. Another of our estimation procedures relies on high-frequency
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In the following subsections, we use the data described above to estimate the sign and
magnitude of the effect of monetary policy on stock returns and turnover. In Subsection 5.2, we
estimate these effects for FOMC announcement days for a broad index of stocks. In Subsection
5.3, we document that the strength of the effect of monetary policy on stock returns differs
systematically with the turnover liquidity of the stock. In Subsection 5.4, we go a step further

and estimate the dynamic effects of the policy announcement on returns and turnover.

5.2 Aggregate announcement-day effects

The empirical literature has followed several approaches to estimate the impact of monetary
policy on the stock market. A popular one, known as event-study analysis, consists of estimating
the market reaction to monetary policy surprises on a subsample of trading days consisting
exclusively of the days of FOMC announcements (we denote this subsample S7). Let i; denote
the day t “policy rate” (in our case, the CME Group 3-month Eurodollar future with closest
expiration date at or after day ¢, expressed in percentage terms) and define Aiy = iy — i4—1.

The event-study analysis consists of running the following regression:
YV = a4+ bAis + ¢ (19)

for t € Sy, with V! = R!, where ¢ is an exogenous shock to the asset price.?’ We refer to the
estimator b as the event-study estimator (or “E-based” estimator, for short).

A concern with (19) is that it does not take into account the fact that the policy rate on
the right side may itself be reacting to asset prices (a simultaneity bias) and that a number
of other variables (e.g., news about economic outlook) are likely to have an impact on both
the policy rate and asset prices (an omitted variables bias). This concern motivates us to also
consider two other estimators: the heteroskedasticity-based estimator (“H-based” estimator,
for short) proposed by Rigobon and Sack (2004), and a version of the event-study estimator
that relies on an instrumental variable identification strategy that uses intraday high-frequency

tick-by-tick interest rate data. The H-based estimator identifies the response of asset prices

market activity in a narrow time interval around the exact time of the monetary policy announcement. In this
case, we use the data from Gorodnichenko and Weber (2016) that consists of 118 scheduled policy dates. For
each trading day, we discard observations whose return or turnover rate on that given day is in the top or bottom
1 percentile.

20Tn the context of monetary policy, this approach was originally used by Cook and Hahn (1989) and has been
followed by a large number of papers, e.g., Bernanke and Kuttner (2005), Cochrane and Piazzesi (2002), Kuttner
(2001), and Thorbecke (1997).
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based on the heteroskedasticity of monetary policy shocks. The high-frequency instrumental
variable estimator (“HFIV” estimator, for short) addresses the omitted variable bias and the
concern that the Eurodollar futures rate may itself respond to market conditions on policy
announcement days, by focusing on changes in a proxy for the policy rate in a very narrow
30-minute window around the time of the FOMC announcement.?!

Table 1 presents the baseline results. The first column corresponds to the event-based
estimation, the second column corresponds to the heteroskedasticity-based estimation, and the
third column corresponds to the high-frequency instrumental variable estimation. Returns
are expressed in percentage terms. The first row presents estimates of the reaction of the
marketwide NYSE return to monetary policy. The point estimate for b in (19) is —5.47. This
means that a 1 basis point (bp) increase in the policy rate causes a decrease of 5.47 basis points
(bps) in the stock market return on the day of the policy announcement.?? The analogous
H-based point estimate is —11.31. These results are in line with those reported in previous
studies.?® The HFIV point estimate is —9.38, implying that a 25 bp surprise increase in the
policy rate causes a decrease in the stock market return of 2.34 percentage points (pps) on the
day of the policy announcement.?* Figure 1 shows a scatterplot with the unexpected change
in the policy rate (measure by the high-frequency change in the fed funds future rate) on the
horizontal axis, and the announcement-day marketwide stock return on the vertical axis, both
expressed in bps. The negative relationship between stock returns and fed funds rate suprises
is readily visible from the fitted line.

Previous studies have not clearly identified the specific economic mechanism that transmits
monetary policy shocks to the stock market. Conventional asset-pricing theory suggests three
broad immediate reasons why an unexpected policy nominal rate increase may lead to a decline
in stock prices. It may be associated with a decrease in expected dividend growth, with a rise

in the future real interest rates used to discount dividends, or with an increase in the expected

2'Tn Appendix B we discuss the derivation of the H-based estimator (Section B.1) and describe the construction
of the HFIV estimator (Section B.2).

22The R? indicates that 14 percent of the variance of equity prices in days of FOMC policy announcements is
associated with news about monetary policy.

23The comparable event-based estimates in Bernanke and Kuttner (2005), who focus on a different sample
period and measure stock returns using the value-weighted return from CRSP, range between —2.55 and —4.68.
The comparable heteroskedasticity-based estimates in Rigobon and Sack (2004), who use a different series for the
Eurodollar forward rate, are —6.81 for the S&P 500 index, —6.5 for the WIL5000 index, —9.42 for the NASDAQ),
and —4.85 for the DJTA.

24In comparing the E-based, H-based, and HFIV estimates, one should bear in mind that the number of policy
dates varies slightly between the three estimation methods, as explained in footnote 19.
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excess returns (i.e., equity premia) associated with holding stocks. Our theory formalizes a new
mechanism: the reduction in turnover liquidity caused by the increase in the opportunity cost
of holding the nominal assets that are routinely used to settle financial transactions. To begin
assessing this mechanism, we again estimate b in (19), and the analogous H-based and HFIV
estimates, but with Y/ = ’7;[ - 7;1_ 1, 1.e., we use the change in the daily turnover rate averaged
over all traded stocks as the dependent variable.

The estimated effects of monetary policy announcements on the daily marketwide NYSE
turnover rate are reported in the second row of Table 1. According to the E-based estimate, a
100 bp increase in the policy rate causes a change in the level of the marketwide turnover rate
on the day of the policy announcement equal to —.0021.2% The daily marketwide turnover rate
for our sample period is .0048 (i.e., on average, stocks turn over 1.22 times during a typical
year composed of 252 trading days), which means that according to the E-based estimate, an
increase in the policy rate of 25 bps causes a reduction in the marketwide turnover rate on the
day of the policy announcement of about 10 percent of its typical level. The HFIV estimate for
a 100 bp increase in the policy rate is —.0052, implying that a 25 bp increase in the policy rate

causes a reduction in the marketwide turnover rate of about 27 percent of its typical level.

5.3 Disaggregative announcement-day effects

Another way to inspect the turnover-liquidity transmission mechanism of monetary policy is
to exploit the cross-sectional variation in turnover rates that exists across stocks. Our theory
implies that the magnitude of the change in the stock return induced by a change in the policy
rate will depend on the turnover liquidity of the stock (e.g., as measured by the turnover rate
of the stock). To test this prediction, we sort stocks into portfolios according to their turnover
liquidity, as follows. For each FOMC announcement date, ¢, we calculate 7,° as the average
turnover rate of an individual stock s over all trading days during the four weeks prior to the
day of the policy announcement. We then sort all stocks into 20 portfolios by assigning stocks
with 7;* ranked between the [5 (i — 1)]"™ percentile and (5i)™ percentile to the i* portfolio,
for ¢ = 1,...,20. Hence, the average turnover rate over the four-week period prior to the
announcement date for a stock in the i*" portfolio is at least as large as that of a stock in the

(i — 1)™ portfolio. In Table 2, the column labeled “Turnover” reports the annual turnover rate

25The R? indicates that 3 percent of the variance of the daily turnover rate in days of FOMC policy announce-
ments is associated with unexpected changes in monetary policy.
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(based on 252 trading days per year) corresponding to each of the 20 portfolios. For example,
portfolio 1 turns over .17 times per year while portfolio 20 turns over 3.57 times per year.26

For each of the 20 portfolios, Table 2 reports the E-based, H-based, and HFIV estimates of
the annuncement-day responses of the return to a 1 percentage point (pp) increase in the policy
rate. All the estimates are negative, as predicted by the theory. Also, the magnitude of the
(statistically significant) estimates increases with the turnover liquidity of the portfolio. For
example, according to the HFIV estimates, a 1 bp increase in the policy rate causes a decrease
of 6.44 bps in the return of portfolio 1 and a decrease of 16.40 bps in the return of portfolio
20. For all three estimation methods, the relative differences in responses across portfolios are
of similar magnitude. For example, the response of the return of the most liquid portfolio is
about 2.5 times larger than the response of the least liquid portfolio.?” Figure 2 shows the
announcement-day returns of portfolio 1 (the crosses) and portfolio 20 (the circles), along with
their respective fitted lines. The larger magnitude of the response of the more liquid portfolio
is evident.

As an alternative way to estimate the heterogeneous responses of returns to monetary policy
shocks for stocks with different turnover liquidity, we ran an event-study regression of individual
stock returns (for the universe of stocks listed in the NYSE) on changes in the policy rate, an
interaction term between the change in the policy rate and individual stock daily turnover rate,
and several controls. As before, A¢; denotes the monetary policy shock on policy announcement
day t (measured by the change between day ¢ and day ¢ — 1 in the 3-month Eurodollar futures
contract with nearest expiration after the day ¢t FOMC policy announcement), and 7;° is the
average turnover rate of the individual stock s over all the trading days during the four weeks
prior to the day of the policy announcement of day ¢t. Let Ai and T denote the sample averages
of Aiy and T;*, respectively, and define 7° = (7,° — T) and Ai; = (Ai; — Ai). The regression

260ur motivation for constructing these liquidity-based portfolios is twofold. First, at a daily frequency,
individual stock returns are extremely noisy; by grouping stocks into portfolios based on some characteristic(s)
related to returns, it becomes possible to see average return differences. Second, stock-specific turnover measures
are time-varying, i.e., the turnover rate of a particular stock may change over time. Bernanke and Kuttner
(2005) also examine the responses of more disaggregated indices to monetary policy shocks. Specifically, they
estimate the responses of 10 industry portfolios constructed from CRSP returns as in Fama and French (1988)
but find that the precision of their estimates is not sufficient to reject the hypothesis of an equal reaction for all
10 industries.

2"In Appendix B (Section B.3), we report similar results from an alternative procedure that sorts stocks into
portfolios according to the strength of individual stock returns to changes in an aggregate (marketwide) measure
of turnover. This alternative sorting criterion allows us to control for other differences across stocks, such as the
conventional risk factors used in empirical asset-pricing models.
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we fit is

RE = Bo + B1Air + BT + BsT® x Ay
+ Dy + Dy + By (Aig)* + B5 (T7) + eut (20)

where D, is a stock fixed effect, D, is a quarterly time dummy, and e4 is the error term
corresponding to stock s on policy announcement day ¢. The time dummies control for omitted
variables that may affect the return of all stocks in the NYSE over time. The stock fixed
effects control for the effects that permanent stock characteristics not included explicitly in the
regression may have on individual stock returns. We include the interaction term 7,° x Ai;
to estimate how the effect of changes in the policy rate on individual stock returns varies
across stocks with different turnover liquidity. The coefficient of interest is fs3, i.e., we want
to test whether changes in the policy rate affect individual stock returns through the stock-
specific turnover-liquidity channel. The estimate of 3 can help us evaluate whether increases
(reductions) in the policy rate cause larger reductions (increases) in returns of stocks with a
larger turnover rate, i.e., whether £3 < 0.

Table 3 reports the results from estimating nine different specifications based on (20). Spec-
ification (I) excludes D, Dy, the interaction term, 7 x Aiy, and the squared terms, (Aé;)* and
(T7)%. Specification (II) adds the interaction term to specification (I). Specification (III) adds
D, to specification (II). Specification (IV) adds D, to specification (II). Specification (V) adds
D to specification (IV). Specifications (VI), (VII), (VIII), and (IX) each add the squared terms
(Aiy)* and (T;)* to specifications (II), (III), (IV), and (V), respectively. In all specifications,
all estimates are significant at 1 percent level.

The estimates of 1 lie near —5.5 in all specifications, implying that a 1 bp increase in the
policy rate reduces the return of a stock with average turnover by about 5.5 bps on the day of the
policy announcement.?® The estimate of interest, 33, is large and negative in all specifications.
The negative and statistically significant estimates of (3 indicate that the magnitude of the
negative effect of unexptected changes in the policy rate on announcement-day equity returns
is larger for stocks with higher turnover liquidity. To interpret the magnitude of the estimates,
consider a stock A with a daily turnover rate equal to .014 (i.e., a stock in liquidity portfolio
20) and an equity B with an annual turnover rate equal to .0007 (i.e., a stock in liquidity

portfolio 1). Then, for example, according to specification (IX), the estimate of 33 is —487,

28Recall the average daily turnover in our sample is .0048.

26



implying that a 1 bp increase in the policy rate reduces the announcement-day return by
B1+ 284 + B3 (7;‘4 —T) ~ —10 bps for equity A and by 81 + 284 + B3 (T, = T) ~ —3 bps
for equity B. These estimates are quite close to the E-based estimates for portfolio 20 and
for portfolio 1 reported in Table 2. Together with the findings reported in Table 1 and Table
2, the results in Table 3 provide additional evidence that turnover liquidity is a quantitatively

important channel that transmits monetary policy shocks to asset prices.?

5.4 Dynamic effects

In the previous section we documented the effect of monetary policy shocks on equity returns
and turnover on the day the policy announcement takes place. While the turnover liquidity
channel highlighted by our theory can generate the effects on announcement days documented
in the previous section, the theoretical channel is eminently dynamic. In the theory, persistent
changes in the nominal rate affect stock returns because they imply persistent changes in the
future resale value of the stock. To study the dynamic effects of monetary policy on prices and
turnover rates, we conduct a vector autoregression (VAR) analysis on the sample consisting of
all trading days between January 3, 1994 and December 31, 2007.

The baseline VAR we estimate consists of three variables, i.e., {it,Rf VT }, where iz, RI,
and ’7;[ are the daily measures of the policy rate, the stock return, and turnover described
in Section 5.1 and Section 5.2.3° The lag length is set to 10.3! To identify the effects of
monetary policy shocks, we apply an identification scheme based on an external high-frequency

instrument.32

#Tn Appendix 5.2 (Section D.2) we show that our estimates of B3 based on (20) are robust to including
a number of additional controls, such as sensitivity to the three most common Fama-French factors, industry
dummies, and a firm-specific measure of leverage (reliance on bank debt).

30In Section 5.2, we used the change in the 3-month Eurodollar futures rate on the day of the FOMC an-
nouncement as a proxy for the unexpected component of the change in the true policy rate, i.e., the effective
federal funds rate. In this section, we instead regard the 3-month Furodollar futures rate as the policy rate itself.
We do this because, at a daily frequency, the effective federal funds rate is very volatile for much of our sample,
e.g., due to institutional considerations, such as “settlement Wednesdays.” The path of the 3-month Eurodollar
futures rate is quite similar to the effective federal funds rate, but it does not display the large regulation-induced
weekly swings. In any case, we have also performed the estimation in this section using the daily effective federal
funds rate instead of the Eurodolar futures rate, and the results for returns and turnover are quite similar.

31The Akaike information criterion (AIC) suggests 10 lags, while Schwarz’s Bayesian information criterion
(SBIC) and the Hannan and Quinn information criterion (HQIC) suggest 5 lags. We adopted the formulation
with 10 lags, but both formulations deliver similar estimates.

32Gee Appendix B (Section B.4.1) for details. The basic idea of structural vector autoregression (SVAR)
identification using instruments external to the VAR can be traced back to Romer and Romer (1989) and has
been adopted in a number of more recent papers, including Cochrane and Piazzesi (2002), Hamilton (2003),
Kilian (2008a, 2008b), Stock and Watson (2012), Mertens and Ravn (2013), and Gertler and Karadi (2015).
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Figure 3 reports the impulse responses of the policy rate, the average cumulative stock return
between day t and day t 4 j defined by 72{775 4 = ngl RI 1> and the average turnover rate,
to a 1 bp increase in the policy rate.3® The 99 percent confidence intervals for {z’t,R{ VT }
are computed using a recursive wild bootstrap based on 10,000 replications.?* The top and
bottom rows show responses for forecast horizons of 30 days and 120 days, respectively. The
path of the policy rate is very persistent (it remains significantly above the level prevailing
prior to the shock for about 18 months). The middle panels in Figure 3 show the response of
daily cumulative stock returns. On impact, in response to the 1 bp unexpected increase in the
nominal rate, the stock return falls by about 9.4 bps. The magnitude of this response on the day
of the policy shock is basically the same as the HFIV point estimate reported in Table 1. The
negative effect on the stock price is persistent (the upper bound of the 99 percent confidence
remains below zero for about 30 days). The right panels in Figure 3 show the response of the
level of the daily turnover rate. On impact, a 1 bp surprise increase in the nominal rate causes
a change in the level of the turnover rate equal to —.00005, which is the same as the HFIV point
estimate reported in Table 1. According to the estimated impulse response, it takes about 1
day for the turnover rate to recover half of the initial drop. However, beyond that point, the
negative effect of the increase in the policy rate on turnover is persistent (e.g., it takes 43 days
for it to become statistically insignificant).

In order to inspect the turnover-liquidity transmission mechanism further, we exploit the
cross-sectional variation in turnover rates across stocks and carry out the same VAR analysis
of this section but individually on each of 20 liquidity portfolios of stocks, sorted on turnover
liquidity.?® Figure 4 shows the estimated impulse responses (to a 1 bp unexpected increase in
the policy rate) of the cumulative returns of each of the twenty liquidity portfolios for a forecast

horizon of 30 days. In the figure, the darker impulse responses correspond to the portfolios with

33The impulse response for the cumulative return illustrates the path of {ﬁ{l,j,l}, where j = 1,2, ... indexes
the number of days after the policy announcement.

34The procedure is described in Appendix B (Section B.4.2). See Congalves and Kilian (2004) for a formal
econometric analysis of this method. We compute the confindence bands for {ﬁ{’tﬂ} by compounding the
confidence bands of the return response {R{} (i.e., in the same way we compute {R{,;} from {R{}).

35In Section 5.3 we re-sorted stocks into liquidity portfolios for each day in our sample of FOMC announcement
dates (based on the average daily turnover rate over the four weeks prior to each FOMC announcement). For
the high-frequency VAR that we estimate in this section, stocks are resorted into one of 20 liquidity portfolios
every day. On days with no FOMC announcement, the sorting is based on daily turnover rate. On FOMC
announcement days, stocks are sorted based on their turnover rate two days prior to the announcement. Since
the ranking of a given stock in terms of turnover tends to be quite persistent, all the sorting schemes described
here deliver similar results.
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higher turnover liquidity (e.g., the lightest impulse response is for portfolio 1 and the darkest,
for portfolio 20). To further illustrate the results, Figure 5 reports the impulse responses and
the corresponding 99 percent confidence intervals of the cumulative portfolio return to a 1 bp
unexpected increase in the policy rate for a forecast horizon of 30 days, for portfolios 1, 10,
and 20. Notice that the announcement-day portfolio-by-portfolio responses estimated by the
VAR line up well with the portfolio-by-portfolio HFTV estimates reported in Table 2. As in
Section 5.3, we again find that on the announcement day, the negative responses of returns
to an unexpected increase in the nominal rate tend to be larger in magnitude for portfolios
with higher turnover liquidity. However, here these responses appear to be estimated much
more precisely than in Table 2.36 Also, notice that—as will be the case in the quantitative
theory—the price responses of the portfolios with larger turnover liquidity are not only larger
in magnitude on impact, but also tend to be more persistent.?”

In this section we have provided empirical evidence consistent with the turnover-liquidity
transmission mechanism of monetary policy: a persistent increase in the nominal rate reduces
the resale value of stocks, and this reduction in turnover liquidity is reflected in a persistent

price reduction and higher future stock returns.?®

6 Quantitative analysis

The theoretical results we used to motivate the empirical analysis of Section 5 (e.g., part (7) of

Proposition 2, part (i) of Proposition 3, and parts (i) and (i) of Proposition 5) correspond to

36 Aside from the fact that the VAR specification is more flexible than (19), our VAR estimation also relies on
the HFIV identification scheme. In fact, notice that even for the simple specification (19), Table 1 and Table 2
show that in general, the HFIV identification strategy by itself already delivers estimates that are more precise
and more statistically significant than the E-based and H-based estimates.

3"Based on the announcement-day evidence alone, one might conjecture that the differential return response
on impact across liquidity portfolios may simply reflect that the prices of stocks with lower turnover liquidity
take longer to react to the FOMC shock. This conjecture, however, does not seem to be supported by the VAR
evidence in Figure 4 and Figure 5. The conjecture is also not supported by the additional regression analysis we
carry out in Appendix D (Section D.1), where we estimate the effect of an unexpected policy shock on day t on
7@{_”4_1, i.e., the cumulative stock return for the two-day horizon after the policy announcement.

38Bernanke and Kuttner (2005) is one of a few papers that has tried to identify the economic forces behind the
negative effect of nominal rate increases on stock returns. They use a VAR to decompose excess equity returns
into components attributable to news about dividends, real interest rates, and future excess returns. They
find the component associated with future excess returns accounts for the largest part of the response, i.e., an
increase in the policy rate lowers stock prices mostly by increasing the expected equity premium. Bernanke and
Kuttner speculate this could come about via some unspecified mechanism through which tight money increases
the riskiness of stocks (or decreases the investor’s willingness to bear risk). The turnover-liquidity mechanism
we have identified is consistent with Bernanke and Kuttner’s decomposition.
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a permanent, unanticipated increase in the nominal rate, which while suggestive, is somewhat
different from the policy shocks underlying the empirical estimates of Section 5. Thus in order to
assess the predictions and quantitative performance of the theory, in this section we formulate,
calibrate, and simulate a generalized version of the model of Section 2.

We generalize the model along three dimensions. First, we incorporate aggregate uncertainty
in the path of monetary policy, represented by changes in the nominal interest rate implemented
via open-market operations. This extension allows us to consider theoretical experiments that
resemble more closely what goes on in financial markets, in the sense that while investors may
be surprised by the timing and size of changes in the nominal rate, they take into account
a probability distribution over future paths of the monetary policy so these changes are not
entirely unexpected. Second, we extend the model so that the innovations to the nominal policy
rate may be associated with innovations to the expected inflation rate (as in the propositions
of Section 4), as well as with innovations to the real interest rate. This extension allows us
to quantify the turnover-liquidity mechanism for settings where changes in the nominal rate
may be associated with changes in the expected inflation rate as well as with changes in the
real rate. Third, we extend the model to the case of multiple equity classes that differ in their
liquidity properties. This extension allows us to provide additional evidence for the turnover-
liquidity mechanism by exploiting the cross-sectional heterogeneity and using it to assess the

quantitative theoretical effects of monetary policy on the cross section of equity returns.

6.1 Generalized model

There are N equity classes, each indexed by s € N = {1,2,..., N}. The outstanding quantity
of equity shares of class s is A®. Since the focus is on the implication of liquidity differences
across equity classes, we assume each class gives the same dividend y;, which follows the same
stochastic process described in the one-asset model of Section 2. An investor’s period ¢ valuation
of the dividend of any equity is distributed independently over time and across investors, with
cumulative distribution function G, just as in the one-asset setup.

We model liquidity differences as follows. In each round of OTC trade, each investor can
trade equity class s € N with probability o® € [0,1]. The event that the investor is able to
trade equity class s is independent of the event that he is able to trade any other equity class
n € N. We interpret o® as the probability that an individual investor contacts a dealer with

whom he can trade equity class s. This captures the idea that dealers are specialized in trading
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a particular equity class.3? In the OTC trading round there is a competitive interdealer market
for each equity class. These markets are segmented in the following sense: (i) in the OTC
trading round, equity s can only be traded in market s, and (i) at the beginning of the period,
investors partition the money they will use for trading stocks in the first subperiod into a cash

ms

portfolio with N components, i.e., {a}**} where a*® is the amount of money the investor

seNy
chooses to have available to trade equity class s in the OTC market of period ¢. Each investor
makes this cash rebalancing decision after having observed the realization of the aggregate
state, but before learning which equity classes he will be able to trade, and before learning
his individual valuation of the dividend (the last two assumptions keep the ex post number of
investor types to a minimum). For simplicity, in this section we assume dealers do not hold
asset inventories overnight (and without loss, also that they do not hold money overnight).

In Section 2, we assumed a constant growth rate of the money supply, i.e., A}l = pA®",
where p € Ry4. In this section we broaden the analysis of monetary policy along three
dimensions: (a) We allow the monetary authority to inject or withdraw money not only with
lump sum taxes, but also via open-market operations. This is a more realistic implementation
of monetary policy, and makes the theory more flexible in that it can encompass a wider range
of responses to monetary policy shocks. (b) We model monetary policy as a stochastic process.
This allows the theory to exhibit monetary policy shocks that resemble the policy surprises in
the empirical analysis of Section 5. (¢) We allow monetary policy to affect market outcomes
by influencing the nominal rate through both of its components: the expected inflation rate,
and the real interest rate. This allows us to assess the robustness of the turnover-liquidity
mechanism to different degrees of passthrough from nominal rates to real rates. In summary,
we will consider general monetary policy processes that consist of three components: an open-
market operation, a change in expected inflation, and a change in the real rate. Each of these
components of the monetary policy process is modeled as follows.

In the first subperiod, each investor can always trade in a competitive market where the

3%In the theory, differences in «, 6, or G all give rise to differences in turnover across assets. We focus on
differences in o because it is conceptually the simplest and analytically the most direct way to construct asset
classes that differ in turnover liquidity. However, one could carry out the theoretical analysis by constructing asset
classes based on differences in G and 6. Differences in G work similarly to differences in « (see the equivalence
result proved in Proposition 10, Appendix A). With regard to differences in 0, in a large class of models that
includes this one, Duffie et al. (2005) and Lagos and Rocheteau (2009), the equilibrium asset price does not
depend on « and 0 independently, but on their product, af. Thus, for asset-pricing purposes, differences in a can
be interpreted as capturing differences in the trading probability or in the bargaining power. The quantitative
response of turnover to money shocks will typically depend on whether assets differ in « or 6, however.
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monetary authority sells B; one-period risk-free pure-discount nominal bonds. A bond issued
in the first subperiod of ¢ yields one dollar with certainty in the following subperiod. The
dollar price of a bond in this market is denoted ¢;. The bond market is segmented in the same
way as the markets for equity shares, i.e., at the beginning of period ¢, having observed the
realization of the monetary policy variables (but before knowing which equity classes he will be
able to trade or his dividend valuation), each investor chooses a partition of his money holdings,
{a**} . cn, where N = NU {b}, and a]"® denotes the amount of money the investor chooses to
have available to trade bonds in the first subperiod of ¢. The size of the bond issue, By, relative
to the size of the beginning-of-period money supply, A}, is denoted w;. That is, if there are
A} dollars outstanding at the beginning of period ¢, in the bond market of the first subperiod
t the government sells claims to By = w; A" dollars payable in the following subperiod.

The beginning-of-period money supply evolves according to A7}, = [1 + (1 — q¢) we] e Af",
where iy € R4 denotes the growth rate of the money supply between the end of period ¢ and
the beginning of period ¢ + 1 (implemented via lump-sum transfers in the second subperiod of
t). The monetary authority can implement any arbitrary process for the growth rate of the
beginning-of-period money supply, i.e., can set, A}t = pu AP for any positive path {s},-;,
despite the random changes in the money supply induced by the open-market operations.*’
Finally, to allow for the possibility that monetary policy can affect outcomes by influencing the
real rate as well as expected inflation, we generalize the constant interest rate r of Section 2 to
a stochastic process {r}o- ;.

To summarize, we model monetary policy as a stochastic process {T:},o;, where 7, =
(wt, e, 7¢). This formulation is general enough to encompass situations where monetary policy
amounts to changing expected inflation (as in monetarist models) as well as settings where
monetary policy amounts to directly influencing real rates (as in New Keynesian models). We
assume {7;};°, follows a Markov chain with transition matrix o;; = Pr (7441 = 7|7 = 74),
where 7; = (wj, i) € R, and 7 = (wj,py,7;) € RY, for i,j € M = {1,...,M}. The
realization of 7 is known at the beginning of period t.

We specialize the analysis to recursive equilibria in which prices and portfolio decisions are
time-invariant functions of an aggregate state vector that follows a time-invariant law of motion.

The state vector is @; = (A", y;, T1) € R‘Z’r. Asset prices in a recursive equilibrium will be

“OSpecifically, fie = pe/ [1 + (1 — q) we] implies A% = peAf” for any {u¢};°,. The government budget con-
straint is By + T3 /¢ = AV — (AT — ¢ Bt), so the real lump-sum transfer (expressed in terms of the second-
subperiod consumption good) needed to implement A7, = pe A" is Ty = [(pe — 1) — (1 — q¢) we] 7 AL
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denoted ¢ = ¢° (x), 3 = 6° (1), O = ™ (1), pf = p° (1), @ = (1), and ef* = £ (1),
Let A"* denote the amount of money that investors have available to trade asset k € N at the
beginning of period t (i.e., the bond, if k = b, or equity, if £ € N). The laws of motion for the
state variables A7, 1, and T, are exogenous (as described above), while A7"* = U* (x;) for
k € N, where the decision rule ¥* is determined in equilibrium. Suppose x; = (A}, y;, ;) and
focus on a recursive equilibrium with the property that real prices are linear functions of the
aggregate dividend, and W* (x;) = AFAP for all k € N, where A{ € [0, 1] denotes the fraction of
the beginning-of-period money holdings that investors have chosen to have available to trade
asset class k in the OTC round of period t. Then, ¢° (x¢) = ¢Sy, ¢° (z1) = p° (x1) P™ (T1) =
Oy, O () AT = Zige, q (4) = g3, and €% (20) = [0° (20) — ¢° (®0)] /90 = 65 — ¢F = &

In Appendix C (Section C.3), we show that an equilibrium is characterized by a vec-
tor {¢7,e7", Zi, Aj Yiemsen of M (3N +2) unknowns that solves the following system with

M (3N + 2) independent equations:

S ’75 = S S E;* S*k
0 = S e g et [ (e~ G (21)
tjeM 22
ol €H 6—{5;*
(1+Ti)ﬂij§ﬂ ! e &5 +¢j !

ey _ 5%
max(wi/AL, 1) = 1+ % / S dG(E) forall (i) € M x N (23)
esr <4 i

G (i) A°

ZN = 7= iz & + 1) forall (ivs) € M 24

A 1_(;(8?*)(5@ + ¢5) for all (i,s) € M x N (24)

1A= "X forall i € M. (25)
seN

In the following subsections, we calibrate and simulate this model to assess the ability of the
theory to account for the empirical findings reported in Section 5. Before doing so, it is useful
to define the theoretical analogues of the variables we studied in the empirical section.

The return of stock s at date t +11is R}, ; = q@fﬂ/gbf — 1, where ¢ = pd* = ¢ + ey is
the cum dividend price of equity at date t defined in Section 3. The real return from holding a
dollar between the end of period ¢ and the end of period t+1is ¢} /¢ = (1 + 7rt+1)_1, where

741 denotes the (net) inflation rate between ¢ and ¢ + 1. In a recursive equilibrium, suppose
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the state is @y = (A", ys, 75) at t, and @¢ 1 = (AP, yeg1, Tr) at t + 1, then

Lt e i

! fl o Yt
J
Zj y
Ltm 1_721]9‘%7 ilu

So far we have implicitly assumed that A® i.e., all outstanding equity shares of class s,
are actively traded every day. In actual markets, however, a fraction of the outstanding equity
shares are seldom traded (stocks held in 401(k) accounts, for example). Our theory remains
unchanged if we replace A° with kA® for some x € [0, 1] that represents the proportion of the
universe of outstanding stocks that are actively traded, and think of the remaining (1 — ) A®
as being held by nontraders outside the model. In an equilibrium in which dealers do not
hold assets (as is the case in this section), trade volume for asset class s at date ¢t is V} =
20°G (e§*) kA®. A conventional measure of trade volume is the turnover rate used in the

empirical work of Section 5.1. According to the theory, the turnover rate on date ¢ is
TZ =V /A* =20°G (") k.

Naturally, a nonzero fraction of inactive stocks (i.e., x < 1) lowers the measured level of the
turnover rate.*! In a recursive equilibrium, suppose the state at date t is x; = (A7, y¢, Tj), then
the turnover rate can be written as 7° = 2a°G (ej*)/{. In the theory as in our empirical work,
whenever we use an average, e.g., of equity returns or turnover rates across a set of stocks, we
use the arithmetic average, e.g., R} = % > sen Ri and T = % Y sen T are the average return
and the average turnover rate for the universe of stocks in the theory.

The (net) nominal rate on the government bond in state x; = (A", y;, 75) is ¢ () ' —1=
max(wj/)\?, 1) —1 =4;. Then (22) and (23) imply the Fisher equation (the generalization of

(14))

1+
1= S0, _ (26)
k%ﬂ P ry) (14 7n)

where 7, = pu;Z;/(7Zx) — 1 is the average inflation rate between state x; = (A", v, 7;) and

state o141 = (ujA?%ym, T)-

“IThe first column labeled “Turnover” in Table 2 reports the annual turnover rates corresponding to each of
the 20 portfolios we studied in Section 5.3. Notice that the turnover rates appear to be quite low: even the top
5 percent most traded stocks are only traded about 3 times per year, on average, which suggests that the model
should allow for the possibility of x < 1.
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6.2 Calibration

We think of one model period as being one day. We set § = 1 in our baseline and abstract from
micro-level pricing frictions induced by bargaining. The dividend growth rate is independently
lognormally distributed over time, with mean .04 and standard deviation .12 per annum (e.g.,
as documented in Lettau and Ludvigson (2005), Table 1). That is, y;4+1 = €™y, with x4y ~
N (7 —1,%2), where ¥ — 1 = E (log yr+1 — logy) = .04/365 and ¥ = SD (log ys41 — logy) =
.12/4/365. The parameter & can be taken as a proxy of the riskiness of stocks; a relatively low
value ensures the monetary equilibrium exists even at relatively high inflation rates. We choose
0= (.7)1/ 365, i.e., a productive unit has a 70 percent probability of remaining productive each
year. The number of outstanding shares of stocks of every class is normalized to 1, i.e., A® =
for all s € N. We set N = 20 so the number of asset classes in the theory matches the number
of synthetic liquidity portfolios considered in the cross-sectional analysis of Section 5.3.

We normalize o?° = 1 and calibrate {a* }igzl so that the long-run time-average (under the
invariant distribution of monetary policy shocks) of the equilibrium turnover rate of portfolio
s € {1,...,19} relative to portfolio 20 (i.e., 7°/T%°, where T° = limz_,00 = Zthl T,°) matches
the ratio of the average turnover rate of the s** and the 20" synthetic liquidity portfolio
in our sample. Idiosyncratic valuation shocks are drawn from a lognormal distribution. The
parameters of the lognormal and the fraction of actively traded stocks, x, are chosen so that
under the baseline monetary policy process, in response to an unexpected innovation to the
policy rate, the theory generates: (i) a marketwide stock return (i.e., R{) on the day of the
policy change that matches the corresponding empirical HFIV estimate documented in Table
1, and (7i) a change in the marketwide turnover rate (i.e., 7;') on the fifth day after the policy
change that matches the corresponding empirical estimate from the VAR in Section 5.4.42

We estimate the stochastic process for the nominal policy rate, {2:}{2, using data for the
rate on the 3-month Eurodollar future contract. We formulate that the logarithm of the policy
rate follows an AR(1) process, we estimate this process at a daily frequency for every trading
day between January 3, 1994, and December 31, 2007, and approximate it with a 7-state Markov

chain, {i;, [c}jk]};k:r‘lg We then use this estimated policy process to calibrate the theoretical

“2This procedure delivers x = .016, Ine; ~ N (—0.2332,1.5705), o' = .1218, o? = .1707, o® = .1972,
at =.2224, o = 2438, a® = 2590, o7 = 2748, o® = 2939, ° = .3121, o' = .3306, o' = .3492, a'? = .3679,
a'® = 3899, o't = 4149, o'® = 0.4445, o'® = 4821, o!" = 5284, a'® = 6011, o' = .7151.

43Qpecifically, the process we estimate is Ini; = (1 —-&)Inio + &Iniz—1 + €, where €; is Gaussian white noise.
With i; denominated in bps, the estimates are £ = .9996695, E (Ini;) = Inig = 5.990701, and +/E () =
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monetary policy process, ((wj, 1tj:75), [0jk]) ; pepys as follows. We set [o;] = [6k], and choose the
process of open-market operations, {w;} jem, that implements an aggregate real value of money
that is constant across states, i.e., Z; = Z for all j € M.%* Then (26) implies ¢}, = rj + 7 for all
k € M, where ¢, = ) jeM Okj (1 + ;) is the expected one-period-ahead nominal rate conditional
on the current state x; = (A}, yt, Tx), and 7, = /7 — 1 is the average inflation rate between
state ®y = (A", y;, Tr) and any state x;41. Let 7, 7, and 7, denote the empirical means of
the nominal policy rate, the real interest rate, and the inflation rate, respectively. Over the
sample period 1994-2007, the average nominal policy rate was .0447 and the average inflation
rate was .0269, so (14) implies a real rate of .0178 per annum.*> Hence, 1 +7 = (1.0447)1/365,
147 = (1.0178)"/3% and 1 + & = (1.0269)'/%%. For each k € M, we set r, = 7 + wij), and
mp =7 + (1 — w) Mg, where 7 = i — 7, and w € [0, 1] indexes the degree of passthrough from
nominal rates to real rates. We use w = .8 as baseline, which implies a 100 bp increase in
the nominal rate is associated with a 80 bp increase in the real rate and a 20 bp increase in

expected inflation.*6

6.3 Simulation

In this section we conduct two experiments to assess the ability of the theory to match the

evidence documented in Section 5. In both experiments, we simulate the calibrated model as

.0114289. Hence the estimated mean and standard deviation of the nominal rate, i;, are E (i;) = 441 and

VVar (is) = 4/ ]f(fg; = 206.2516. The estimated AR(1) process is very persistent so, as suggested by Galindev
and Lkhagvasuren (2010), we use the Rouwenhorst method to compute the approximating Markov matrix and
states. The code for the Rouwenhorst method is also from Galindev and Lkhagvasuren (2010).

“4The precise process of open-market operations is described in Appendix C (Proposition 12 in Section C.3).
This policy implies the real price of money does not change at the times when monetary policy switches
states. Consider a state x: = (A", y+, T:). The relevant nominal prices in the model are the dollar price
of the second-subperiod consumption good, 1/¢™ (x¢) = A"/ (Z;y:), and the dollar price of an equity share,
p°(ze) = A7 (5" + ¢7) ye/ (Ziye). Under the policy {w;},c), that implements Z; = Z for all j € M, ¢™ () is
invariant to monetary policy surprises on impact, and p® (z:) responds only if the policy surprise has an effect on
the real cum-divided equity price. Thus this process of open-market operations makes our flexible-price model
consistent with the fact that nominal prices in the data typically do not jump when there is a surprise change in
the nominal policy rate, even when the policy shock may imply a change in the path of expected inflation.

% As in Section, 5.1 for the policy rate we use the 3-month Eurodollar futures rate (series IEDCS00 pro-
duced by the CME Group available via Datastream). The annual average inflation rate is imputed as
[CPI(January-2008)/CPI(January-1994)]"/** — 1, where C PI(Month_Year) is monthly CPI index available
from FRED at https://fred.stlouisfed.org/series/ CPIAUCSL.

40This choice is guided by the passthrough estimates in Gertler and Karadi (2015) at a two-year horizon. As a
robustness check, we have also set w = 1 and recalibrated the model to fit the same data targets as the baseline
calibration, and found that the quantitative performance of the theory is very similar to the case with w = .8.
In Appendix D (Section D.6) we report results for the case with w = 0.
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follows. First, compute the equilibrium functions characterized by (21)-(25). Second, simulate
1,000 samples of the dividend, each of length equal to our data sample. Then set the path of
the nominal rate in the model equal to the actual empirical path of the policy rate used in our
empirical work. Finally, compute the equilibrium path of the model 1,000 times (one for each
realization of the simulated dividend path), and for each simulated equilibrium path, compute

the average daily equity return for each asset class.

6.3.1 Experiment 1: Disaggregative announcement-day effects

The first experiment is the model analogue of the cross-sectional analysis of Section 5.2. For
each of the 20 asset classes, we run an event-study regression for announcement-day returns
1,000 times (one for each of the 1,000 simulated equilibrium paths for daily stock return for
that particular asset class). The results are illustrated in Figure 6, which reports the empirical
HFIV estimates from Table 2 along with the regression estimates from the simulated model.
For each theoretical portfolio, the value displayed in Figure 6 is the average E-based estimate
over the model 1,000 simulations. The 99% confidence intervals for the theoretical estimates
are constructed using the distribution of estimates from the 1,000 model simulations. The 99
percent confidence intervals for the empirical estimates are from the HFIV regressions from
Section 5.3. The model was calibrated so that the marketwide response to the policy shock on
the announcement day matches the empirical HFTV estimate of Table 1. We are interested in
whether the theory can account for the profile of returns across stocks with different turnover
liquidity—the hallmark of the turnover-liquidity transmission mechanism. Figure 6 shows the
theory is able to generate most of the announcement-day tilting in cross-sectional returns. The
fit is excellent for the first fourteen liquidity portfolios. For the six most liquid portfolios, the
model predicts a bit less tilting than the data.

6.3.2 Experiment 2: Impulse responses

The second experiment is the model analogue of the VAR analysis of Section 5.4. Figure 7
reports the model-generated impulse responses for the policy rate, the cumulative marketwide
stock return, and the average turnover rate to a 1 bp increase in the policy rate, along with

the corresponding empirical impulse responses and 99 percent confidence intervals estimated

17Since the monetary policy is exogenous in the model, the E-based estimates based on the synthetic data are
not subject to the biases discussed in Section 5.2. For this reason, here we use the HFIV empirical estimates as
a benchmark for comparison.
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from actual data (those described in Section 5.4). The top and bottom panels show responses
for forecast horizons of 30 days and 120 days, respectively. The path of the policy rate from
the model is quite close to the empirical path. The middle panels show the response of the
daily cumulative stock return. On impact, in response to the 1 bp unexpected increase in the
nominal rate, the model stock return falls by 9.38 bps—the same as the HFIV estimate of Table
1, as targeted by the calibration. Since persistence (of the policy shock and turnover liquidity)
is an essential element of the theoretical mechanism, we are interested in whether the model
can account for the dynamics of the response of the cumulative return. The theoretical and
empirical impulse responses for subsequent days after the policy shock remain quite close. For
example, the theoretical impulse response can account for over 80% of the empirical response
for the first 30 days, and for at least 66% of the empirical response for the subsequent 90 days.*®

The right panels of Figure 7 show the response of the level of the daily turnover rate.
The model was calibrated so that the response of turnover on day 5 after the announcement
matches the empirical estimate. On impact, in response to a 1 bp unexpected increase in the
nominal rate, the turnover rate falls by —6.8502 x 10~% in the model. The model response for
turnover is about seven times smaller than the empirical estimate (—4.8692 x 10~ according to
the empirical impulse response). However, although the model response for turnover is much
smaller on impact, it is very persistent and remains relatively close to the empirical response at
longer horizons. For example, the difference between the empirical path for the turnover rate
and the theoretical path becomes statistically insignificant for all days after day 3. Both the
empirical and the theoretical responses are quite persistent. This persistent effect of policy on
the turnover rate is consistent with a response in return that is quantitatively in line with the

data, even though the announcement-day effect on turnover is much smaller than in the data.

7 Conclusion

We conclude by mentioning what we think are three promising avenues for future work. First,
in the model we have presented, all asset purchases are paid for with outside money. In other
words, the theory focuses on the relevant margin for settings, transactions, or traders for which
credit limits have become binding. While arguably stark, we think this formulation is a useful

benchmark to contrast with the traditional asset-pricing literature that abstracts from the role

“8The simulated theoretical cumulative return is -8.7 bp on day 30, and -7.7 bp on day 120. The estimated
empirical cumulative return is -11.0 bp on day 30, and -11.7 bp on day 120.
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of costly or scarce payment instruments. Having said this, we think it would be useful to extend
the theory to allow for credit arrangements. The possibility of buying on margin, for example,
is likely to interact with the monetary mechanisms we have emphasized here in interesting
ways (see Lagos and Zhang (2019) for work along these lines). Second, given that trading
frictions in the exchange process are at the center of the analysis (e.g., the likelihood of finding
a counterparty, or the market power of dealers who intermediate transactions), it would be
interesting to endogenize them (see Lagos and Zhang (2015) for work in this direction). Third,
while we have focused on stocks in our empirical work, the transmission mechanism we have
identified is likely to be operative—and possibly even more conspicuous—in markets for other
assets, such as Treasury securities and assets that trade in more frictional over-the-counter

markets.
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A Supplementary material: Proofs
A.1 Portfolio problems

Proof of Lemma 1. Notice that (3) implies
WP (ar, ki) = ¢yar + ky + WP,
where
WP = max [~ + BEVE, (@14, 0a5,,)]
G’H‘leRi

so (2) implies

WtD (ag, ky) = ke + WtD + max ¢,a
at€

+
s.t. at + pea; < ai* + pra;.
Hence,
= ai" + pai it 0 <ef
a (ar) ¢ €10,a" +praj] if 0 =gy
=0 if e <0,
a; (ar) = (1/p) laf" + prai — @i (ar)],
and

A

Also, notice that (4) implies
WtI (at, k) = pray — ki + th’

where

Wl =T, + max [—qstam + BE, / ViAo [ayy, a5, + (1 —6) A% e] dG(e) | -

~ 2
Qi1 €R+

With (28) and (29), (1) can be written as

0

* — 1 -
o (6= ) @~ ) S ]
ay" ki Dt
* —m m 1
st. 0 <k < (ef —¢)(ay" —aj}) ;yt
¢
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W (ar, k) = max (¢}", 65 /pe) (af + praf) + ke + WP.

(27)

(28)

(29)

(30)



with @f = a3, + (1/pt) (al} —@}"). Hence,

= ajy + prag; if e <egf
ay’ (ai,e) ¢ €10,a} +paly] ife=ef
=0 if ef <,

@ (air,€) = ajy + (1/pe) [aif —@" (@i, €)],
and
. 1
ki (@i, e) = (1 —0) (e — &) H{e§<e};ta?; — Leeryaiy | ve-

This concludes the proof. m

Lemma 2 Let (d3%+1,d§t+1) and (&?;H,dftﬂ) denote the portfolios chosen by a dealer and

an investor, respectively, in the second subperiod of period t. These portfolios must satisfy the

following first-order necessary and sufficient conditions:

¢t > BE;max (¢, ¢ 1 /pes1) , with “= 7 if alj >0

¢f > BOE; max (Pt+1¢ﬁ1a ¢f+1) , with “= " f &Zu—l >0

EH 1 B
d);n 2 ﬂ]Et qb?j_l + 049/ (E: — 52(4_1) yt+1dG(5)] , with “="7" 'Lf ait—‘rl >0
et Pt+1
S = S 6r+1 * N 114 P2 ed
@7 > BOE: |Eyr1 + Oy + b (541 — &) Yr11dG(e) | , with “= " if a5q > 0.
eL

Proof. With Lemma 1, we can write V,! (as,¢) as
Vi a12) = [ab (e = ) T carn + 0|
+{[e+ a0 (et = ) Lecy] e + 01 p ai + WY
and VP (a;) as

VP (a)) = Oé/kt (ait,e) dHp (@i, ) + max (67", ¢f /pe) (a]" + pray) + WE.

(35)

Since ¢ is i.i.d. over time, the portfolio that each investor chooses to carry into period ¢ + 1 is

independent of €. Therefore, we can write dHp, (at,€) = dFp (at) dG (¢), where Fp, is the joint

cumulative distribution function of investors’ money and equity holdings at the beginning of

the OTC round of period t. Thus,
VP (ar) = max (61", 67 /pt) (af" + pray) + Vi (0),
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where

. 1 s ]
VtD (0) =a(l-90) / (e —¢f) [H{E;Q}ptAlt - H{s<z—:;‘}A1t dG () yt + WtD~

From (36) we have
Vtgl (a?}&-lv 5df+1) = max (#11, ¢f+1/pt+1) (dﬁ1 + pt+15&f+1) + Vtg-)l (0) )

and from (35) we have

[ Vil a8 4% 4G @)

~m
Ai41

e . 1
069/ (5 — Et—l—l) dG(E)Tyt-l-l + ¢Z|L-1
€

o t+1
+5{

where (411 = {[§+ ad [ (sjﬂ — 5) H{ngﬂ}d(}’ (5)} Y1 + gbe} (1—96)A%+ Wt[+1' Thus, the

necessary and sufficient first-order conditions corresponding to the maximization problems in

€1
E+ / ab (g7, —€) dG(e)

€L

Yt+1 + ¢f+1} agy 1+ Gy,

(27) and (30) are as in the statement of the lemma. =

A.2 Market clearing in the OTC market

Lemma 3 In period t, the interdealer market-clearing condition for equity is
{a[l =G ()] AT + x (e7,0) ’Bﬁ; = aG () Af + [1 = x (e7,0)] Ay (37)
Proof. Recall A%, = [ af (a;) dFp (a;), so from Lemma 1, we have
Apy = x(7,0) (ADy + APy /) -
Similarly, A3, = o [ @} (ay,€)dHp(ar, €), so from Lemma 1, we have
A =all = G(e))] (Af + AR /pr) -

With these expressions, the market-clearing condition for equity in the interdealer market of

period t, i.e., fl‘})t + Aft = A}, + A3, can be written as in the statement of the lemma. =
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A.3 Equilibrium characterization

Corollary 2 A sequence of prices, {1/ps, ¢§*, $;}72,, together with bilateral terms of trade in
the OTC market, {ay, k:}72, dealer portfolios, {(@at, @dt+1, Qdr+1) gep fiog, and investor port-

folios, {{Qit11,@it1);c7}i20, constitute an equilibrium if and only if they satisfy the following
conditions for all t:

(i) Intermediation fee and optimal post-trade portfolios in OTC market

ki (ane) = (1—0) (e — &) |x () plta;n— 1—x (o) af | u
a (are) = [1 - x ()] (a" + pua)
@i (ar€) = x (e5,€) (1/p1) (@ + pa)

dt (at) =aq (at, 0) .
(ii) Interdealer market clearing
* m * m ]‘ * S * S
{al =G )] AL +x (e, 0) ABi} - = G (1) AL + [1 = x (&, 0)] Abe,

where ATy = [ ai*dFj (ar) and A% = [ ajdFj (ay) for j € {D,I}.
(iii) Optimal end-of-period portfolios:

o > BE;max (o1, ¢711/Pe+1)
¢7 > BOE; max (pry197t1, ¢741)

oft > PE

ey 1
Pit1 + b (e —ert1) dG(5)pyt+1]

E:—&-l t+1

€i41
¢ > BOE, [Eytﬂ + ¢+ a0/ (et41—¢) f‘/t+1dG(€)]
Er

with

[d’t — BE; max (¢t+17 ¢t+1/pt+1)] adt+1 =0
[¢7 — BOE; max (pt+1¢t+1a $+1)] @ =0

eH
{Qﬁn — BE: |1 + 09/ (e —efy1) dG(e yt+1] } aipq =0

€41

S = s EI_H *
@] — BOE; |Eyry1 + ¢y + 0‘9/ (5t+1 € yt+1dG zt+1 =0
er
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foralld € D and alli € Z, and

aﬂﬂ = dﬁﬂ
@G = 0G5 1 + Ljery (1—6) A°

a§t+1 € R, fork e {s,m}

forallj e DUT.
(iv) End-of-period market clearing

1s 18 A4S
D1+ A = A

im im _AmMm
Di+1 T ATt = A

where Ak, .\ = [pak,,  dx and Ak, | = [;ak, dx for k€ {s,m}.
Proof. Follows immediately from Definition 1 together with Lemma 1, Lemma 2, and

Lemma 3. =
Lemma 4 Consider i and i as defined in (5). Then i < [i.

Proof of Lemma 4. Define Y (¢) : R = Rby Y ({) = 8 [1 + af(1 — B5)(]. Let (= %

and ¢ = @Séf(z%ﬁé)q’ so that i = Y(C) and i = Y (). Since Y is strictly increasing, i < ji if

and only if ¢ < ¢. With (6) and the fact that & = [Z7 edG () = ey — [ G (¢) de,

JEM 1 — G (e)]de

£

¢= A :
E+ab [0 Gl(e)de

so clearly,

o JID-GEME ooy

9 9

Hence, it < [i. m

Proof of Proposition 1. In an equilibrium with no money (or no valued money), there is no
trade in the OTC market. From Lemma 2, the first-order conditions for a dealer d € D and an

investor ¢ € Z in the time ¢ Walrasian market are

¢f = BOEsdyty, “ =" i ajiq4 > 0

¢f > BOE: (Eyrn + ¢71) , “ =" if afyq; > 0.
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In a recursive equilibrium, E¢(¢7,,/¢f) = 7, and 805 < 1 is a maintained assumption, so
no dealer holds equity. The Walrasian market for equity can only clear if ¢°* = 1?—%55. This
establishes parts (i) and (4i¢) in the statement of the proposition.

Next, we turn to monetary equilibria. In a recursive equilibrium, the Euler equations (31)-

(34) become

p>pB, “="ifagy,, >0 (38)

¢° > Bod®, “="ifaj >0 (39)
ﬁ_[ af /EH . ] e~

1>=(1+ e—e")dG(e)|, “="1ifaj >0 40
e 2Ss [ e-enace) 2 (40)

S /35 = E* * . ~8

¢° > — £+ ab (6" —€)dG(e)|, “="ifaj,,; > 0. (41)
1_B5 €L

(We have used the fact that, as will become clear below, ¢* = ¢* + ¢° > e, + ¢° > ¢° in any
equilibrium.) Under our maintained assumption 8 < g, (38) implies a7 41 = Zp =0, so (40)
must hold with equality for some investor in a monetary equilibrium. Thus, in order to find a
monetary equilibrium, there are three possible equilibrium configurations to consider depending
on the binding patterns of the complementary slackness conditions associated with (39) and
(41). The interdealer market-clearing condition, A%, + A%, = A%, + «aA$,, must hold for all
three configurations. Lemma 3 shows that this condition is equivalent to (37) and in a recursive
equilibrium (37) reduces to

e + ¢°

= i cE {aG () A7 +[1 — x(e%,0)] Ap}.

This condition in turn reduces to (12) if, as shown below, the equilibrium has 0 < £*. The rest
of the proof proceeds in three steps.
Step 1: Try to construct a recursive monetary equilibrium with aj, ; = 0 for all d € D and

ag; ., > 0 for some i € Z. The equilibrium conditions for this case are (12) together with

_ E af €H e
-2 [1+6*+¢S / (c—e )dG(e)} (43)
P = 1?555 £+ ab /Ei (" —e)dG(e) (44)

61



and

am,, =0foralldeD (45)
ajgyq > 0, with “> 7 for some i € Z (46)
gy = 0 for alld € D (47)
aj,q > 0, with “ > " for some i € 7. (48)

Conditions (43) and (44) are to be solved for the two unknowns ¢* and ¢°*. Substitute (44) into
(43) to obtain

P} E*H ok dG
S P - Jo" (e 583 ) (49)
jz 5*—1—1_755 [§+O‘9fq (e* —e)dG(e)
which is a single equation in €*. Define
(e —2)dG -5
Py = EEDI00 4P 0
with
T () Ze‘—x—l—aﬁ/ ( — £)dG(e), (51)
er

and notice that ¢* solves (49) if and only if it satisfies T'(¢*) = 0. T is a continuous real-valued

function on [er, ], with

E—€L w—

T(€L): 2 I ;
6L+1€7%§§ Bab
T(gH) = _Mﬁ;eﬁ <0,

d _ _
o _[l—G(m)]{x—i- Bs [e-+a9f;L G(a)ds]}—i—[f;H[l—G(s)]ds]{l—i-lf%éaGG(z)}

T/ — 1-36 _
(@) {z-s-lf%a [5+a9 Iz G(e)ds] }2

< 0.

Hence, if T' (1) > 0, or equivalently, if ;1 < i (with @ is as defined in (5)), then there exists a
unique ¢* € (er,epm) that satisfies T'(¢*) = 0 (and €* | €1, as p T ). Once we know e*, ¢° is
given by (44). Given * and ¢*, the values of Z, ¢°, ¢/, and p; are obtained using (12) (with
A7 = A% and A}, = 0), (9), (10), and (11). To conclude this step, notice that for this case
to be an equilibrium, (42) must hold, or equivalently, using ¢* = £* + ¢° and (44), it must be

that 7' (*) > 0, where T' is the continuous function on [e1,ep] defined in (51). Notice that

62



T (z) = — [1 — abG (x)] < 0, andT(eH) =—(1—ab) (e —&) <0< é—ep =T (e), so there
exists a unique € € (er, ) such that T (¢) = 0. (Since 7' (€) > 0, and T’ < 0, it follows that
£ < &) Then T’ (z) < 0 implies T (¢*) > 0 if and only if e* < &, with “=” for e* = &. With
(50), we know that * < ¢ if and only if T'(¢) < 0 =T (¢*), i.e., if and only if

_ (1—B6)ab [Z (e — &) dG(e)

B {1+ Z < W

Since T () = — (1 — af) (€ — &) + b JE" (e =€) dG(e) = 0, this last condition is equivalent to
i < p, where 1 is as defined in (5). The allocations and asset prices described in this step
correspond to those in the statement of the proposition for p € (f, f1).

Step 2: Try to construct a recursive monetary equilibrium with a3, > 0 for some d € D
and aj,,; = 0 for all i € Z. The equilibrium conditions are (12), (43), (45), and (46), together
with

¢° = Bog* (52)
S /56 = 6* * ¢ 3 ~S
¢° > — £+ ad (6" —€)dG(e)|, “="ifaj,, > 0. (53)
1- 66 €L
g1 > 0, with > for some d € D (54)
agy,.1 =0, forallieT. (55)

The conditions (43) and (52) are to be solved for £* and ¢°. First use ¢° = £* + ¢° in (52) to
obtain

¢t = 20 o (56)

Substitute (56) in (43) to obtain

1= é 14+ af (1 - B9) fa*h; (e —€%)dG(e) 7 -
K €
which is a single equation in €*. Define
R(zy= =P " (- 2)dGE) p—p (58)

63



and notice that * solves (57) if and only if it satisfies R (¢*) = 0. R is a continuous real-valued

function on [er,eg], with

(1-88)(E—er) p-p

R(er) = = -
R(en) = _MB;HB
and y
R (2) = — [1—-G ()] %ﬂu ~GEld
1-55

Hence, if R (e1,) > 0, or equivalently, if

_ 0(1—p38) (g —
n<p 1+Oé( /BEL)(‘S £L) =10,

then there exists a unique £* € (¢, ) that satisfies R (¢*) = 0 (and €* | e, as p T u°). Having
solved for €*, ¢ is obtained from (56). Given ¢* and ¢°, the values of Z, ¢°, ¢, and p; are
obtained using (12) (with A}, = A% — A} = §A%), (9), (10), and (11). Notice that for this case to
be an equilibrium (53) must hold, or equivalently, using (56), it must be that T (e*) < 0, which
in turn is equivalent to £ < £*. With (58), we know that £ < ¢* if and only if R (¢*) =0 < R (¢),
i.e., if and only if

ab (1 —B6) [ (e — &) dG(e)

)

w<pB 1+ -
€

which using T () = 0 can be written as p < fi. To summarize, the prices and allocations con-
structed in this step constitute a recursive monetary equilibrium provided p € (3, min (fi, u°)).
To conclude this step, we show that g < i < u°, which together with the previous step will
mean that there is no recursive monetary equilibrium for p > f (thus establishing part (i7) in
the statement of the proposition). It is clear that i < p°, and we know that i < i from Lemma
4. Therefore, the allocations and asset prices described in this step correspond to those in the
statement of the proposition for the case with p € (8, min (1, u°)) = (8, fi).

Step 3: Try to construct a recursive monetary equilibrium with a3, > 0 for some d € D
and a3, ; > 0 for some i € Z. The equilibrium conditions are (12), (43), (44), (45), (46), and
(52) with

ajq > 0 and ag,q > 0, with “ > " for some i € Z or some d € Z.
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Notice that ¢* and ¢® are obtained as in Step 2. Now, however, (44) must also hold, which
together with (56) implies we must have T (e*) = 0, or equivalently, ¢* = £. In other words,
this condition requires R (£) = T (é), or equivalently, we must have p = fi. As before, the
market-clearing condition (12) is used to obtain Z, while (9), (10), and (11) imply ¢*, ¢, and
P, respectively. The allocations and asset prices described in this step correspond to those in
the statement of the proposition for the case with u = ji.

Combined, Steps 1, 2, and 3 prove part (7v) in the statement of the proposition. Part (v)(a)

is immediate from (44) and (50), and part (v)(b) from (56) and (58). m

Corollary 3 The marginal valuation, €*, characterized in Proposition 1 is strictly decreasing

in the rate of inflation, i.e., %—i < 0 both for u € (B, 1) and for u € (i, fi).

Proof. For p € (B, 1), implicitly differentiate R (¢*) = 0 (with R given by (58)), and for
i € (f1, @), implicitly differentiate 7' (¢*) = 0 (with T" given by (50)) to obtain
J—— — e* =
Oe* Babd(1-B5)[1-G(*)]+u—B
o ) - Bad [“H[1-G(e)]de
S e N

ifB<pu<in

ifag<p<p.
Clearly, 9¢*/0u < 0 for € (B, 1) and for p € (1, 7). ™
A.4 Positive implications: asset prices

A.4.1 Monetary policy

Proof of Proposition 2. Recall that 0e*/0u < 0 (Corollary 3). (i) From (8),

205 B6 RE

(i) Condition (9) implies 0¢°/Ou = Oe*/Ou + 0¢*/Ou < 0. (iii) From (12) it is clear that
0Z/0e* > 0, 80 0Z/0p = (0Z/0<*)(0e*/0p) < 0. From (10), 0¢}" /O = (yi /A7) 0Z /0 < 0. m

For Proposition 3 we consider a formulation of the model where the length of the time period
becomes arbitrarily short. This limiting economy can be interpreted as an approximation to
a continuous-time version of our discrete-time economy.*® To this end, generalize the baseline

discrete-time model by allowing the period length to be an arbitrary constant, and then take

49This formulation is useful since the model period in our quantitative implementation of the theory is very
short (a trading day).
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the limit as this constant becomes arbitrarily small. Let A denote the length of the model
period, and define the discount rate, r, the expected dividend growth rate, g, the depreciation
rate, d, and the money growth rate, m, as 3 = (1 4+ rA)"L, 7 = 1+ gA, § = 1 — dA,
= 14+ mA. Over a time period of length A, the dividend is A, and consumption of the
dividend good is ey A. In this context we focus on recursive equilibria where, as A — 0,
real asset prices are time-invariant linear functions of the dividend rate, y;. Specifically, let
o7 (A) and P7* (A) A" denote the real equity price and the real aggregate money balance,
respectively, in the discrete-time economy with time periods of length A. We look for recursive
equilibria of this discrete-time economy such that ®; (A) = ®° (A) g A, &5 (A) = &° (A) y, A,
and ®7* (A) AT = Z (A) y: A, where ®° (A), ®° (A), and Z(A) are time-invariant functions with
the property that lima_,o ®* (A) A = ¢, lima_,0 ®* (A) A = ¢°, and lima 0 Z (A) A = Z, with
¢°, Z € R.°0 The thresholds in (5) now generalize to i = 1 4+ mA and i = 1 + mA, where
(I1—ab)(é—&)(r—g+4d)

m= z —(r—9)
mga@(é—sL)g(r—g—i-d) Cr—g).

Also, if we relabel p = 8, we now have y = 1 + mA, where m = g — r. Then from part (i)
of Proposition 1, we know that a stationary monetary equilibrium exists if m € [m,m). Notice
that m < d, so m < d in any monetary equilibrium. The monetary equilibrium, i.e., (8), (9),
(10), (12), and (13), generalize to

o7 (A) = 0% (A) A

1+gA)(1—dA « ) A
% (A) = 1+T(A—?XZ§A)((11AJ¢1A)€ ifm<m<m
N 1 1- = o x PN B
1+T(A—_F?1_2;A)(1_)dA) [5 +af [Z (e*—e)dG(e)| ifm<m<m

B3 (A) = B° (A) A, with &° (A) = £* + &° (A)

aG () A3 + A3
Z (A)y A\ = A+ D7 (A
( )yt Oé[l—G(E*)] [gyt + t( )]
and
J27 (e — %) dG(e) [amA) (48— a+rd) 1

(11gA)(1—dA) [[FrA=(T+gA)(1-dA)](1+98) of —

s ey, [5 —e* 4 af f;; (e* =€) dG(e) | Lpamy

50The discrete-time formulation we laid out previously, corresponds to a special case of this formulation with
A=1,07 (1) =¢f, 27" (1) = ¢1*, 2° (1) = ¢°, and Z(1) = Z.
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As A — 0, these conditions become

s s ith ¢° r—517+d6* ifm <m<m
P O with 7= = [é+ af [7 (e — <) dG(e)| if i <m <m (59)
¢ = o (60)
w  Z
Py = @yt (61)
aG (e%) A7 + A7,
Z= ’ 62
ai-GE) ¢ (62
0= af [T (e — ) dG(e) r—g+tm )

6*+[<€_—€*+a9f;: (e* =€) dG(e) | Ipamy r—g+d’

where ¢§ = lima_,0 @5 (A), ¢f = lima o0 ®§ (A), and ¢* = lima_o D1 (A).

Corollary 4 In any monetary equilibrium of the continuous-time economy, 0c*/0r < 0.

Proof. From (63), it is clear that de*/0m < 0, and
de*  d—m O¢*

or  r—g+dom’

In any monetary equilibrium, m < m < d, so de*/0r < 0 in any monetary equilibrium. m

Proof of Proposition 3. (i) From (59),
0¢° 1 Oe*
or = r—o+d g+d {_¢s + []I{m<m§ﬁ1} + H{m<m<m}a9G (g*)] or } <0,
where the inequality follows from Corollary 4. (i) From (62) it is clear that 0Z/Je* > 0, so

D20 = (Z/9*)(9* 9r) < 0. From (61), I /dr = (yi/AP) DZ/Or < 0. m

A.4.2 OTC frictions: trading delays and market power

Proof of Proposition 4. From condition (13),
Oe* _ “a;gg[f* + B6 (g —&*) I pe )] S
d(at)  Pab(l—po6)[1—G )]+ (u—B) {1+ B [abG () — 10}
(i) From (),

0.  (64)

a(;ss _ %78?;*9) >0 if /B <p< /Ajf
0 (ab) % [f;L G (¢) de + afG (%) 85()2;)} >0 ifg<p<p.
(i) From (9), 06°/0 (af) = 0c*/0 (af) + 0¢°/0 (af) > 0. (iii) For u € (ji, 1)

, (12) implies
0Z/0a = (0Z/0e*) (0e* /0cr) > 0 and therefore 0¢}" /0 = (0Z/0cx) (y+ /A7) > 0. m
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A.5 Positive implications: financial liquidity

In this section, we use the theory to study the determinants of standard measures of market

liquidity: liquidity provision by dealers, trade volume, and bid-ask spreads.

A.5.1 Liquidity provision by dealers

Broker-dealers in financial markets provide liquidity (immediacy) to investors by finding them
counterparties for trade, or by trading with them out of their own account, effectively becoming
their counterparty. The following result characterizes the effect of inflation on dealers’ provision

of liquidity by accumulating assets.

Proposition 7 In the recursive monetary equilibrium: (i) dealers’ provision of liquidity by
accumulating assets, i.e., A}y, is nonincreasing in the inflation rate. (ii) For any p close to B,
dealers’ provision of liquidity by accumulating assets is nonmonotonic in ab, i.e., A5, = 0 for

ab close to 0 and close to 1, but A}, > 0 for intermediate values of af.

Proof. (i) The result is immediate from the expression for A}, in Proposition 1. (i) From
o

(5) and (6), )
se =7 1)\ gz /G =)

Notice that 9f1/0 (af) approaches a positive value as o — 0 and a negative value as af — 1.

Also, i — (3 both when af — 0 and when o — 1. Hence, > § = limag_o ft = limag_s1 ji for
a range of values of af close to 0 and a range of values of af close to 1. For those ranges of
values of afl, A7, = 0. In between those ranges there must exist values of af such that u < f,

which implies A7) > 0. =

Part (i) of Proposition 7 is related to the discussion that followed Proposition 1. The expected
return from holding equity is larger for investors than for dealers with high inflation (u > )
because in that case the expected resale value of equity in the OTC market is relatively low
and dealers only buy equity to resell in the OTC market, while investors also buy it with
the expectation of getting utility from the dividend flow. For low inflation (u < fi), dealers
value equity more than investors because the OTC resale value is high and they have a higher
probability of making capital gains from reselling than investors, and this trading advantage

more than compensates for the fact that investors enjoy the additional utility from the dividend
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flow. Part (i7) of Proposition 7 states that given a low enough rate of inflation, dealers’ incentive
to hold equity inventories overnight is nonmonotonic in the degree of OTC frictions as measured
by af. In particular, dealers will not hold inventories if af is either very small or very large. If
af is close to zero, few investors contact the interdealer market, and this makes the equity price
in the OTC market very low, which in turn implies too small a capital gain to induce dealers to
hold equity overnight. Conversely, if af is close to one, a dealer has no trading advantage over
an investor in the OTC market and since the investor gets utility from the dividend while the
dealer does not, the willingness to pay for the asset in the centralized market is higher for the
investor than for the dealer, and therefore it is investors and not dealers who carry the asset

overnight into the OTC market.

A.5.2 Trade volume

Proof of Proposition 5. (i) Differentiate (15) to get

oy * s As
T 2aG" (%) (A% — 0 A4%)

oe*
o

<0,

where the inequality follows from Corollary 3. (i) Differentiate (15) to get

oe*

A—f:2aG%5ﬁ(A5—5A%)8T

or

<0,

where the inequality follows from Corollary 4. (iii) From (15),

) oy as s s Oe*

ov N ;s 0gF
870472 G(e")+ oG (s)aa

(A% —6A3),
and both are positive since 0¢*/0 (af) > 0 (see (64)). m

A.5.3 Bid-ask spreads

Bid-ask spreads and intermediation fees are a popular measure of market liquidity as they
constitute the main out-of-pocket transaction cost that investors bear in OTC markets. Lemma,
1 shows that when dealers execute trades on behalf of their investors, they charge a fee k; (a¢, €)
that is linear in the trade size. This means that when an investor with ¢ > &f wants to
buy equity, the dealer charges him an ask price, pf (¢) = pi¢i”* + (1 — 0) (¢ — €f) y per share.

When an investor with € < ef wants to sell, the dealer pays him a bid price, pfg (e) = prop}* —
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(1 —0) (ef —e)y: per share. Define Sf () = % and S (¢) = Z%Tﬁ(a), i.e., the ask

spread and bid spread, respectively, expressed as fractions of the price of the asset in the

interdealer market. Then in a recursive equilibrium, the ask spread earned by a dealer when

1—-6)(e—e*)

trading with an investor with ¢ > ¢* is §%(¢) = ( =14+ and the bid spread earned by a

dealer when trading with an investor with e < £* is S (¢) = %. The average real spread
earned by dealers is § = [ [S8%(¢) Ijercey + S () Ie<ery ] dG (€). The change S in response to
changes in p or « is ambiguous in general.?!

A.6 Testable implications

Proof of Proposition 6. We start with the general model described in Section 6.1, which
nests the model of Section 2 provided dealers do not hold asset inventories (the model of
Section 6.1 considers an environment where dealers cannot hold inventories). The equilibrium
conditions for the model of Section 6.1 for the case of no policy uncertainty (as is the case in the
model of Section 2) are reported in Proposition 13 (Appendix C, Section C.3). Even without
policy uncertainty, the model of Section 6.1 is more general than the model of Section 2 in that
the former has multiple assets indexed by s € {1,2,..., N} that differ in terms of the trading
probability, ®. Consider the equilibrium conditions (120) and (121), that determine ¢* and £%*
for asset of type s. By following steps similar to those that preceeded the proof of Proposition
3 in Section A.4, in the continuous-time limit of the discrete-time economy, conditions (120)
and (121) become

¢° (65)

b — 6—%049/@ (¥ —e)dG(e)

a0 [ (e — %) dGe) r—g+m
E+as0 [T (e —e)dG(e) T—g+d

(66)

Notice that (65) and (66), i.e., the equilibrium conditions that determine ¢* and £* for each
asset s in the multiple-asset model are identical to the corresponding conditions (59) and (63)
for the continuous-time approximation to the single-asset model of Section 2 (again, provided
dealers are assumed to hold no assets, e.g., as would be the case if they either cannot, or if they

can, but m < m).

5!The reason is that the spread S* (¢) charged to buyers is decreasing in ¢* while the spread S? (¢) charged to
sellers may be increasing in ¢*. For example, if pu € (3, 1), it is easy to show 9S® (¢) /0e* = —dS® (¢) /0™ < 0.

70



For any z € [er,ep], define

and notice that I'; () = — [1 — G (z)] and Ig () = G (z), so a first-order Taylor approximation
around xg € (e1,ep) gives
IB (fL‘) ~ IB (330) - [1 - G(l’o)] (m - 1,‘0)

~ I (z0) + G (20) (z — @0) .

Let e%* = &% (r,m,a®) € (e,em) denote the value of £°* that solves (66) for given (r,m, a®),

and let ef* = €°* (19, mo, f) € (er,em) for some (rg, mo, af)). Use the Taylor approximation to

get
(r—g+d)¢*~e+a0[ls(ef) + G (f") (€7 —ep)] (67)
r—g+m _ Ip(ef) = [1- G ()] (€ — <) 5)
r—g+d ﬁﬂs(ea*HG(sS*)(eS* —&")
Condition (68) implies
maty o B ED O G - (52 [55 + Is (e7) — G (o) 7]
e (r,m,a’) =
(5=5) G (i) + 1= G ()
and a first-order Taylor approximation gives
s s o 0% (1o, mo, of 0e%* (rg, mg, o
e (rom, o) m e OO OR) )y OO0 000
0e%* (ro, mg, o s s
U070 08) (05— (69)
where
0% (r,m,a®) g5 HIs (e8] [ N+ 15 ()G () d—m (70)
o - - m 2 - 2
’” {(r%id)G i S
0 (r,m, ) G(e§") Ip(5") +[1 = G (e8°)] [55 + Is (€8Y)] (71)
8 B r— m CES S% 2
" (r—g+d){(5553) G ) + 1 -Gl
r—g+m g
0" (rym,0) () am (72)
O (5=23) G (e) + 1 - G )

71



Conditions (67) and (69) imply

log ¢° ~ —log (r — g + d)

a Sk S 8 S*x S
+log e+ a’0|Is () + G (57) ( e™ (ro, mo, ap) (r—mo) + e (ro, mo, ap) (m —my)
or om
0 (ro, mo, o) , s
+ Do 0% (a® — a0)> .
Without loss of generality, let m = mg; then
0log ¢*° 1 050G (es+) 22" (romo.a8)
Oaigb - _7‘ — g+ d + Bsf*GV(EEOm) as) o 855*(r m as) (73)
9H D sraro 1s(ep) ) 050 o 2708 ) )|
and
Plog¢* 06 (=) [~ (0% 06 (cp) = Cgaro-2bl | 22 Lgmosed)

S - S* S 5% S 2 (74)
80[ 5)7“ {E+a39 |:]S(€8*)+G(58*) <8€(T%M(TTO)+BE(T§QW(QSQS)>:| }

From (70), we see that in any monetary equilibrium, 9e** (rg, mo, of)) /Or < 0 (since m < m < d,
in any monetary equilibrium), so it is clear from (73) that dlog¢®/0r < 0. This establishes
part (ii) in the statement of the proposition. By using (72), we know that

0e** (ro, mo, o)) 1—-G(g5)

das - (v;:ggﬁ) G (e5") +[1— G (5]

£—(")?0G ()

£>0. (75)

With this inequality and 0e* (1o, mg, o) /Or < 0, it is clear from (74) that 9% log ¢°*/ (a®dr) <
0. This establishes part (iv) in the statement of the proposition.
Without loss of generality, let r = rg; then

dlog ¢® aSQG(ag*)ass*(rg;:L”O’a(s)) (76)
om etash IS(ES*)+G<68*)<W(m_mO)+W(O‘S_a(s))>:|
and
92 log ¢* 06 (<) o~ (a* 06 (ep) 2 Cgpo-2B) | 227 Lgamo-ei)

(77)

p— 2 )
oo {8+ase Is(e5*)+G(=5%) (WM(W_WHW(QLQS))} }

In Section 3, we defined 1 + m = /7 for our baseline model. In the generalized discrete-

1+mA
1+gA >

time formulation with period of length A, this definition generalizes to 1 + 7A =
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which for A small implies 7 ~ m — g. Hence it is clear that keeping g constant, dlog ¢*/0m
and 02 log ¢*/ (0a®dm) have the same sign as 0log ¢*/d1 and 9% log ¢*/ (0a0), respectively.
From (71), we see that in any monetary equilibrium, 0e%* (rg, mo, o)) /Om < 0, so it is clear
from (76) that dlog ¢®/Om < 0. This establishes part (¢) in the statement of the proposition.
With (75) and de%* (1o, mo, o) /Om < 0, it is clear from (77) that 82 log ¢*/ (da*dm) < 0. This

establishes part (i) in the statement of the proposition. m

A.7 Speculative premium

According to Proposition 1, in a monetary equilibrium the equity price, ¢°, is larger than
the expected present discounted value that any agent assigns to the dividend stream, i.e.,
b5 = [B6/(1 — B6)] €ys. We follow Harrison and Kreps (1978) and call the equilibrium value of
the asset in excess of the expected present discounted value of the dividend, i.e., ¢; — Af , the
speculative premium that investors are willing to pay in anticipation of the capital gains they
will reap when reselling the asset to investors with higher valuations in the future.®> Thus, we
say investors exhibit speculative behavior if the prospect of reselling a stock makes them willing
to pay more for it than they would if they were obliged to hold it forever. Investors exhibit
speculative behavior in the sense that they buy with the expectation to resell, and naturally
the asset price incorporates the value of this option to resell.

The speculative premium in a monetary equilibrium is P, = Py, where

o | EmE -9 if 5 <<
%aef;c;(e)ds if i < p < fi.

The speculative premium is nonnegative in any monetary equilibrium, i.e., Py > 0, with “="

only if 4 = . Since 0¢*/0u < 0 (see Corollary 3), it is immediate that the speculative

premium is decreasing in the rate of inflation. Intuitively, anticipated inflation reduces the

521t is commonplace to define the fundamental value of the asset as the expected present discounted value of
the dividend stream and to call any transaction value in excess of this benchmark a bubble. In fact, our notion
of speculative premium corresponds to the notion of speculative bubble that is used in the modern literature on
bubbles. See, e.g., Barlevy (2007), Brunnermeier (2008), Scheinkman and Xiong (2003a, 2003b), Scheinkman
(2013), and Xiong (2013), who discuss Harrison and Kreps (1978) in the context of what is generally known
as the resale option theory of bubbles. One could argue, of course, that the relevant notion of “fundamental
value” should be calculated through market aggregation of diverse investor valuations and taking into account
the monetary policy stance as well as all the details of the market structure in which the asset is traded (such
as the frequency of trading opportunities and the degree of market power of financial intermediaries), which
ultimately also factor into the asset price in equilibrium. We adopt the terminology used by Harrison and Kreps
(1978) to avoid semantic controversies.
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real money balances used to finance asset trading, which limits the ability of high-valuation
traders to purchase the asset from low-valuation traders. As a result, the speculative premium is
decreasing in p. Since 9e*/0 (af) > 0 (see the proof of Proposition 4), the speculative premium
is increasing in « and 6. Intuitively, the speculative premium is the value of the option to resell
the equity to a higher valuation investor in the future, and the value of this resale option to
the investor increases with the probability « that the investor gets a trading opportunity in
an OTC trading round and with the probability 6 that he can capture the gains from trade in
those trades. So in low-inflation regimes, the model predicts large trade volume and a large

speculative premium. The following proposition summarizes these results.
Proposition 8 In the recursive monetary equilibrium: (i) OP/0u < 0, (ii) OP/0 (af) > 0.

Proof. (i) For 8 < p < i, OP/0pu = [B6/(1 — Bd)] (0e*/0u) < 0, and for fi < p <
i, OP/op = [B6/(1— B6)] abG (¢*) (9*/Op) < 0. (ii) For B < p < fi, OP/O(af) =
[B6/(1 — Bb)] (8e* /0 (b)) > 0, and for i < p < i, OP /O = [B/(1 — B6)] {abG (e*) [0e* /O (ab)]+
f;: G(e)de} > 0. m

Together, Proposition 5 and Proposition 8 imply that changes in the trading probability will
generate a positive correlation between trade volume and the size of the speculative premium.

The same is true of changes in the bargaining power.%

Proposition 9 Assume G (¢;0) is a differentiable function of the parameter o that indezes a
family of mean-preserving spreads, so that for any o < o', G (+;0') is a mean-preserving spread

of G (-;0). Then in the recursive monetary equilibrium, 0¢°/0c > 0 and 0¢*/do > 0.

Proof of Proposition 9. From the definition of the mean-preserving spread, for any A > 0,

/ G (e:0 4+ A) = G (5:0)] de > 0 for all @ € (e1,m) |

e
with “=" if x € {e,en}, and therefore
T . A) — . T
lim Gleo+A) G(S’J)]dsz/ Gy (g;0)de > 0 for all x € (ep,eq),
A—0 [, A el

53The positive correlation between trade volume and the size of the speculative premium is a feature of historical
episodes that are usually regarded as “bubbles”—a point emphasized by Scheinkman and Xiong (2003a, 2003b)
and Scheinkman (2013).
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with “=" if ¢ € {er,en}, where G, (g;0) = 0G,, (¢;0) /0. With this notation, the equilibrium
mapping (13) is

1755 EH o . -
T(l"U): 1=Bolpcpy f [1 G(a,o)] de _ ,U_B
’ Aol B ' —
m+% |:5+049f€xLG(5,0')d6:| Ba
and the equilibrium &* satisfies T' (¢*;0) = 0. By implicitly differentiating this condition, we
get ]
08 1— 5(5
oe* o I—E?Hm < {p<p} — ) fEL Gs 5 O‘) de
do 1+_0‘¢[G(€*.0)5HA -G (e )]—75_}
1-B0L ey ’ {a<p} %

Ql

If € (B, 1), then 9e* /9o > 0 since (1 —B6) / (n—B) — ey = (1-
w € (fi, 1), then 9e* /0o > 0 since

6B)/ (u—B) >0. If

Bo(1—af)e+ [1—B0(1—ab)]eg

ﬁée‘ (1 — ﬁ(S) €L
implies — [6 — (1= B6) / (k—B)] = (1 —6p)/ (u—B) > 0. Given that de*/do > 0 for all
we (B, ﬁ), (8) and (9) imply 0¢°/dc > 0 and d¢* /0o > 0, respectively. m

Sp<op=1-(1-p6) <1

The following proposition shows there is a certain equivalence between o and G as funda-

mental determinants of trading activity.

Proposition 10 Consider Economy A with contact probability o and distribution of valuations
G on [ep,eqg] and Economy B with contact probability & and distribution of valuations G on
[€L,€n] (and all other primitives of Economy B are as in Economy A). Let €* and £*denote
the equilibrium marginal valuation for Economy A and Economy B, respectively. Then for any
a > «a, there erists a G such that
o — B5H;{ﬂ<u} (1 - ) E+ [1 _ Béﬂ_{ﬂw} (1 - %)
1= 530 (1= Ticuy) 1= 530 (1= Ticuy)

and moreover, trade volume in Economy B is the same as in Economy A.

[o}l[e}

*

Proof of Proposition 10. In Economy A the marginal investor valuation, £*, is characterized

by (13), while in Economy B the marginal investor valuation is the £* that solves

B

(1—66)d9f5H — G (e))de o

=0.

(1= Bo) & + Bo | 5" edG (=) + af [Z G (=) de| Tjucyy

= |
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Define
for e < ¢y,

Gle—co)+(1-2) Lfercey forép <e<épy (78)
for ég < e

G(e) =

Qe ©

with €, =ep +c¢, ég =eg + c and

TR oy
0t () ) "

a
With (78) and (79), the equilibrium mapping for Economy B becomes

(1-po)ad [27, 1 - §G (2) = (1 = §) Ly d2 o
(1-80) (" =)+ B3 e +a0 [ °{2G (=) + (1= 2) [ c} 2] Ty

CcC =

B

=0.

I |

If we replace £ = £* +c¢ in this last expression, it reduces to (13), a condition that holds because
£* is the equilibrium marginal valuation for Economy A. Hence, £* = £*+ ¢ with ¢ given by (79)
is the equilibrium marginal valuation for Economy B. Notice that aG (%) = aG (¢* +¢) =

aG (%), so (15) implies that trade volume in Economy B is the same as in Economy A. m
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B Supplementary material: Data, estimation, and simulation
B.1 Heteroskedasticity-based estimator

In this section we explain the H-based estimator used in Section 5.2. Rigobon and Sack (2004)
show that the response of asset prices to changes in monetary policy can be identified based
on the increase in the variance of policy shocks that occurs on days of FOMC announcements.
They argue that this approach tends to be more reliable than the event-study approach based
on daily data because identification relies on a weaker set of conditions.

The idea behind the heteroskedasticity-based estimator of Rigobon and Sack (2004) is as
follows. Suppose the change in the policy rate, Ai;, and Y; (where Y; could be the stock market

return, R{, or the turnover rate, 7,7) are jointly determined by

Aty = kY, + oz + € (80)
Y, = pAiy + xy + 1, (81)

where €; is a monetary policy shock and 7; is a shock to the asset price. To fix ideas, suppose
Y; = R,{ . Then equation (80) represents the monetary policy reaction to asset returns and
possibly other variables represented by x;. Equation (81) represents the reaction of asset prices
to the policy rate and x;. The disturbances ¢; and 7; are assumed to have no serial correlation
and to be uncorrelated with each other and with x;. We are interested in estimating the
parameter p. Let X, denote the variance of some variable v. If (80) and (81) were the true model
and one were to run an OLS regression on an equation like (19), there would be a simultaneity
bias if £ # 0 and X,, > 0, and an omitted variable bias if @ # 0 and £, > 0. Conditions (80) and
(81) can be solved for Ai; = 1jpn et + ke + (k + @) 2] and Y, = 1 [per +me + (1 + pw) 4.

1—pr
Divide the data sample into two subsamples: one consisting of FOMC policy announcement

days and another consisting of the trading days immediately before the policy announcement
days. In what follows we refer to these subsamples as S; and Sy, respectively. Let Q¥ denote

the covariance matrix of Ai; and R} for t € Sy, for k € {0,1}. Then

S
(l—pn)Q 05 Q5 |7

where QF = ¥F + KQZf] + (k+w)? sk Ok, =k = puk + /{Ef] +(k+@) (14 pw) Tk, O, =

p?xk + Z’; + (14 pw)? 2k, and T denotes the variance of variable z in subsample Sy, for
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k € {0,1}. Provided ¥} = ¥ and %, = X,

Ol 00— De — X¢ [1 P ]
(1—pr)? Lp P
Hence, if ! — 3% > 0, then p can be identified from the difference in the covariance matrices of
the two subsamples. This suggests a natural way to estimate p. Replace Q' and Q° with their
sample estimates, denoted Q! and Q°. Define 2 = Q! — Q9 and use Qij to denote the (i, )
clement of . Then p can be estimated by 5/ = p. Rigobon and Sack (2004) show that
this estimate can be obtained by regressing R/ on Ai; over the combined sample Sy U S; using
a standard instrumental variables regression.

The standard deviation of Ai; is 4.37 basis points (bps) in subsample Sy and 6.29 bps in
subsample Si. The standard deviation of R} is 86.10 bps in subsample Sy and 92.96 bps in
subsample S;. The correlation between Aid; and R{ is 0.057 in subsample Sy and —0.37 in
subsample 5. Stock returns are more volatile on the days of monetary policy announcements
than on other days, which is consistent with policy actions inducing some reaction in the
stock market. The relatively large negative correlation between the policy rate and stock
returns for announcement days contrasts with the much smaller and positive correlation for
non-announcement days, suggesting that the negative effect of surprise increases in the nominal
rate on stock prices that has been documented in the empirical literature (e.g., Bernanke and

Kuttner, 2005, Rigobon and Sack, 2004).

B.2 High-frequency IV estimator

In this section we consider a version of the event-study estimator that, instead of daily changes
in the interest rate, uses intraday high-frequency tick-by-tick interest rate data to isolate the
change in the interest rate that takes place over a narrow window around each policy an-
nouncement. We refer to this as the high-frequency instrumental variable estimator (or “HFIV”
estimator, for short).

Specifically, the HFIV estimator is obtained by estimating (19), where instead of directly
using the daily change in the 3-month Eurodollar future rate, we instrument for it using the daily
imputed change in the 30-day federal funds futures rate from the level it has 20 minutes after the

FOMC announcement and the level it has 10 minutes before the FOMC announcement.® By

54 By “daily imputed” we mean that in order to interpret the change in the federal funds futures rate as the
surprise component of the change in the daily policy rate, it is adjusted for the fact that the federal funds futures
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focusing on changes in a proxy for the policy rate in a very narrow 30-minute window around the
time of the policy announcement, the resulting HFIV estimator addresses the omitted variable
bias and the concern that the Eurodollar futures rate may itself respond to market conditions
on policy announcement days.

The data for the high-frequency interest change are constructed as follows. For each an-
nouncement day ¢ € S1, we define 2; = it s 120 —¢,m7 10, Where i ,, denotes the (daily imputed)
30-day federal funds futures rate on minute m of day ¢, and for any ¢t € S7, m; denotes the time
of day (measured in minutes) when the FOMC announcement was made.”> We then estimate b
in (19) using the following two-stage least squares (2SLS) procedure. Define Az'fd = ifd — ifﬂl,
where i¢¢ denotes the rate implied (for day t) by the 3-month Eurodollar futures contract with
closest expiration date at or after day ¢t. First, run the regression Az’fd = Ko + Kzt + 1 on
sample S7 (where 7; is an error term) to obtain the OLS estimates of k¢ and k, namely &g and
k. Second, construct the fitted values 2, = kg + kz; and run the event-study regression (19)

setting Aiy = ;.

B.3 More on disaggregative announcement-day effects

In Section 5.3 and Section B.2, we sorted stocks into 20 portfolios according to the level of
turnover of each individual stock and found that changes in the nominal rate affect stocks with
different turnover liquidity differently, with more liquid stocks responding more than less liquid
stocks. In this section, we complement that analysis by using an alternative procedure to sort
stocks into portfolios. Specifically, in this section we sort stocks according to the sensitivity
of their individual return to changes in an aggregate (marketwide) measure of turnover. This
alternative criterion is useful for two reasons. First, it will allow us to control for some differences
across stocks, such as the conventional risk factors used in empirical asset-pricing models.
Second, this sorting criterion emphasizes the responsiveness of the individual stock return to
changes in an aggregate measure of turnover, which is another manifestation of the transmission

mechanism that operates in the theory. To construct the portfolios, we proceed as follows.

contracts settle on the effective federal funds rate averaged over the month covered by the contract. See Section
B.4.3 for details.

5%We use the data set constructed by Gorodnichenko and Weber (2016) with tick-by-tick data of the federal
funds futures trading on the CME Globex electronic trading platform (as opposed to the open-outcry market).
The variable we denote as z; is the same variable that Gorodnichenko and Weber denote as v;. The data are
available at http://faculty.chicagobooth.edu/michael.weber /research/data/replication_dataset_gw.xlsx.
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For each individual stock s in our sample, we use daily time-series data to run

K
R =a + BT+ Bifiu+ei, (82)
j=1

where €7 is an error term, Rj is the daily stock return (between day ¢ and day ¢ — 1), T, is
the aggregate (marketwide) turnover rate on day ¢, and { fj,t}le are K pricing factors. We
set K = 3, with fi; = MKT;, fay = HMLy, and f3; = SM By, where MKT, is a broad
measure of the market excess return, HM L, is the return of a portfolio of stocks with high
book-to-market value minus the return of a portfolio of stocks with low book-to-market value,
and SM B; is the return of a portfolio of small-cap stocks minus the return of a portfolio of
large-cap stocks. That is, M KT; is the typical CAPM factor, while HM L; and SM B; are
the long-short spreads constructed by sorting stocks according to book-to-market value and
market capitalization, respectively, as in the Fama and French (1993) three-factor model.%® Let
t1, denote the day of the £ policy announcement (we use 133 policy announcement days from
our sample period 1994-2007). For each stock s, regression (82) is run 133 times, once for each
policy announcement day, each time using the sample of all trading days between day tx_1
and day t,. Thus, for each stock s we obtain 532 estimates, {{3; (k) ;’-:0}};’:31, where 37 (k)
denotes the estimate for the beta corresponding to factor j for stock s, estimated on the sample
consisting of all trading days between the policy announcement days t;_1 and ;. For each
policy announcement day, tx, we sort all NYSE stocks into 20 portfolios by assigning stocks
with /3§ (k) ranked between the [5 (i — 1)]* percentile and (5i)™ percentile to the i*" portfolio,
for i = 1,...,20. For each portfolio i € {1,...,20} constructed in this manner, we compute the
daily return, R}, and the daily change in the turnover rate, 7;' — 7," ;, and run the event-study

regression (19) portfolio-by-portfolio, first with Y} = R? and then with Y = T,/ — 7, {, as in

56In order to construct the Fama-French factors HML, and SM B:, stocks are sorted into six port-
folios obtained from the intersections of two portfolios formed on size (as measured by market capital-
ization and labeled “Small” and “Big”) and three portfolios formed on the ratio of book value to mar-
ket value (labeled “Value,” “Neutral,” and “Growth”). Then SMB, = (1/3) (Rfc + RN + Rtsv) —
(1/3) (REC + RPN +RPY) and HML, = (1/2) (R{Y + RPY) — (1/2) (R{C + RPY), where RPC denotes
the return on portfolio “Big-Growth,” “R;{V” denotes the return on portfolio “Small-Value,” and so on.
For a detailed description of the breakpoints used to define the six portfolios, see Kenneth French’s web-
site, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library /six_portfolios. The CAPM factor,
MKT,, is a broad measure of the market excess return, specifically, the value-weighted return of all CRSP firms
incorporated in the United States and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code
of 10 or 11 at the beginning of month ¢, good shares and price data at the beginning of ¢, and good return data
for t minus the one-month Treasury bill rate (from Ibbotson Associates). The data for the three Fama-French
factors were obtained from Wharton Research Data Services (WRDS).
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Section 5.3.

For each of the 20 portfolios, Table 4 reports estimates of the responses (on the day of the
policy announcement) of the return of the portfolio to a 1 pp increase in the policy rate. Esti-
mates are negative, as predicted by the theory. Also as predicted by the theory, the magnitude
of the estimates tends to be larger for portfolios with higher indices. From these estimates we
learn that stocks whose returns are more sensitive to aggregate measures of aggregate market
turnover tend to experience larger declines in returns in response to unexpected increases in
the nominal rate. This finding is in line with the turnover-liquidity channel of monetary policy.

Notice that by sorting portfolios on the fy’s estimated from (82), we are controlling for the
three standard Fama-French factors. To explore how the portfolios sorted in this manner vary
in terms of the three standard Fama-French factors, we construct the series of monthly return
for each of the 20 portfolios for the period 1994-2007, {(Ri)?il}, and run (82) to estimate the
vector of betas, {{ B;- }1221}?:0. The estimated betas corresponding to each portfolio are displayed
in Figure 9.7 Notice that there is no correlation between the turnover-liquidity betas, {Bé}?ﬁl,
and the CAPM betas, { B }?21. To get a sense of whether the different cross-portfolio responses
of returns to policy shocks documented in Table 4 can be accounted for by the standard CAPM,
consider the following back-of-the-envelope calculation. Let b denote the effect of a 1 bp increase
in the policy rate on the marketwide stock return on the day of the policy announcement (e.g.,
the E-based estimate obtained from running (19) with Y}/ = R/). Then according to the basic
CAPM model, the effect on portfolio i € {1, ..., 20} would be b’ = Bt x b, where {ﬁ{}fﬁl is the
vector of betas estimated on monthly data for each of the 20 portfolios sorted on ﬁé (plotted in
Figure 9). Figure 10 plots {(4, 5‘) 20, and {(i,b%)}2%,, where {bi}?gl corresponds to the E-based

estimates for the effect of monetary policy on returns reported in Table 4.

B.4 VAR estimation
B.4.1 Identification

We conjecture that the data, {Y;} with Y; € R™, correspond to an equilibrium that can be

approximated by a structural vector autoregression (SVAR),

J
KYi=) CjYij+e, (83)
j=1

5TThe vector {85}72; shown in the figure has been normalized by dividing it by }B(ﬂ.
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where K and Cj are n X n matrices, J > 1 is an integer that denotes the maximum number of
lags, and e; € R™ is a vector of structural shocks, with E (¢;) =0, E (g,6}) = I, and E (g4,) = 0
for s # t, where 0 is a conformable matrix of zeroes and I denotes the n-dimensional identity.

If K is invertible, (83) can be represented by the reduced-form VAR

J
Y, =Y BYij+u, (84)
j=1
where B; = K‘le and
uy = K tey (85)
is an error term with
E=E (wuy) =K 'KV (86)

The reduced-form VAR (84) can be estimated to obtain the matrices {Bj}jzl, and the
residuals {u;} from the estimation can be used to calculate =. From (85), we know that the
disturbances of the reduced-form VAR (84) are linear combinations of the structural shocks,
€¢, s0 in order to use (84) and the estimates {B; }3.]:1 to compute the impulse responses to the
structural shocks, it is necessary to find the n? elements of the matrix K~!. However, given
the known covariance matrix =, (86) only provides n(n + 1)/2 independent equations involving
the elements of K~!, so n(n — 1) /2 additional independent conditions would be necessary to
find all elements of K—!. This is the well-known identification problem of the SVAR (83).
Only three specific elements of K~! are relevant for our analysis. To find them, we use an
identification scheme that relies on external instruments.?®

The VAR we estimate consists of three variables, i.e., Y; = (it, RET! ),, where i;, R}, and
7, are the measures of the policy rate, the stock return, and turnover described in Sections 5.1

; / ; !/
and 5.2. Denote ¢; = (5@,5;{2,@7) , Up = (ui,u?uf) , and

ki kF k]
K't= |k, kR k
k- kR KL
Then u; = K ~'e; can be written as
ul kil 38 k]
uf | = | ke e+ | KR | e+ | kL | €l (87)
ul k- kR k-

*8The identification methodology has been used by Mertens and Ravn (2013), Stock and Watson (2012),
Gertler and Karadi (2015), Hamilton (2003), and Kilian (2008a, 2008b), among others.
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Since we are only interested in the impulse responses for the monetary shock, €%, it suffices
to find the first column of K~!. The identification problem we face, of course, stems from
the fact that the structural shocks, (ai, EZQ, 5?), are unobservable and some of the elements of
K~1 are unknown (three elements are unknown in this 3 x 3 case). Suppose we had data on
{5;} Then we could run the regression ul = kle! + n; to estimate !, where 7 is an error
term. From (87) we have n, = kel + kel , so E (ejn:) = E [} (kRFef + kel )] = 0 (since
we are assuming E(ge}) = I), and thus the estimate of ! could be used to identify k! (up to
a constant) via the population regression of u} onto ei. Since €! is unobservable, one natural
alternative is to find a proxy (instrumental) variable for it. Suppose there is a variable z; such
that

E (ztezz) =E (ztaf) =0<E (ztsl’;) = v for all ¢.

Then
A =E(zou) = K E(zer) = (K, b, k) v, (88)

Since A = (A1, A2, A3)" is a known (3x1) vector, we can identify the coefficients of interest,

(k:f, %2, le) up to the sign of the scalar v. To see this, notice (88) implies

vkl = Ay (89)
’Uk)%g = AQ (90)
vkl = A3 (91)
with
v? = E(zpu) E B (20ue). (92)

Since the sign of v is unknown, we could look for restrictions that do not involve v, and in this
case these conditions only provide two additional restrictions on (k‘f, kL, kir), i.e., combining
(89) with (90), and (89) with (91), yields

K, A
i ——— 93
= (93)
ki As
— = . 94

Thus, k% and k:’T are identified. From (89), k! is also identified but up to the sign of v.
Notice that if we run a 2SLS regression of u* on ui using z; as an instrument for u}, then

the estimate of the slope coefficient on this regression is Ay/A;. Similarly, Az/A; corresponds
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to the instrumental variable estimate of the slope coefficient of a regression of u]/ on u} using
2 as an instrument for ut.

In our application, as an instrument for the structural monetary policy shock, i, we use the
(daily imputed) change in the 30-day federal funds futures from the level it has 10 minutes before
the FOMC announcement and the level it has 20 minutes after the FOMC announcement.””
That is, we restrict our sample to ¢ € S; and set {z} = {it,m;+20 - it,m;‘—lo}, where iz,
denotes the (daily imputed) 30-day federal funds futures rate on minute m of day ¢, and for any
t € S1, m; denotes the time of day (measured in minutes) when the FOMC announcement was
made.%® All this leads to the following procedure, used by Mertens and Ravn (2013), Stock and
Watson (2012), and Gertler and Karadi (2015), to identify the coefficients needed to estimate

the empirical impulse responses to a monetary policy shock:

Step 1: Estimate the reduced-form VAR by least squares over the whole sample of all trading
days to obtain the coefficients {B; }3]:1 and the residuals {u;}.

Step 2: Run the regression u} = ko + k'2; + 7; on sample S; to obtain the OLS estimates of

ko and k', namely &¢ and A’, and construct the fitted values 4} = &g + A’z

Step 3: Run the regressions ul® = kg + £~ +1; and u] = ko + k7 4} + 7 on sample Sy to

obtain the OLS estimates of k® and 7, namely 2% and 7. Since % = A /A1 and
#T = As/A1, (93) and (94) imply & = ki, /k! and &7 = k% /K.

For the purpose of getting impulse responses with respect to the shock €%, the scale and sign

of k:j are irrelevant since the shock &! is typically normalized to have any desired impact on a

61

given variable.* For example, in our impulse responses we normalize the shock ¢} so that it

5By “daily imputed” we mean that in order to interpret the change in the federal funds futures rate as the
surprise component of the change in the daily policy rate, it is adjusted for the fact that the federal funds futures
contracts settle on the effective federal funds rate averaged over the month covered by the contract. See Section
B.4.3 for details.

50%WWe use the data set constructed by Gorodnichenko and Weber (2016) with tick-by-tick data of the federal
funds futures trading on the CME Globex electronic trading platform (as opposed to the open-outcry market).
The variable we call z; is the same variable that Gorodnichenko and Weber denote as v;. Their data are
available at http://faculty.chicagobooth.edu/michael.weber /research/data/replication_dataset_gw.xlsx. We have
also performed the estimations using a different instrument for the high-frequency external identification scheme,
namely the 3-month Eurodollar rate (on the nearest futures contract to expire after the FOMC announcement)
from the level it has 10 minutes before the FOMC announcement and the level it has 20 minutes after the FOMC
announcement. That is, we restrict our sample to ¢t € S; and set {z:} = {ifffn; 420 — ifint*,lo}, where i{%, denotes
the 3-month Eurodollar futures rate on minute m of day ¢, and for any ¢t € Si, m; denotes the time of day
(measured in minutes) when the FOMC announcement was made. The results were essentially the same.

51 Alternatively, (89) and (92) can be combined to get k! = Ay /v, which is then identified up to the sign of v.
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induces a 1 pp increase in the level of the policy rate i; on impact. To see this, consider (87)
with e} = ¢/ = 0. Then for any k!, the shock that induces an x pp increase in the level of the
policy rate on impact (e.g., at ¢ = 0) is €} = (2/100)/k¢ = (2/100)/(A1/v).

B.4.2 Confidence intervals for impulse responses

The 95 percent confidence intervals for the impulse response coefficients estimated from the data
are computed using a recursive wild bootstrap using 10,000 replications, as in Gongalves and
Kilian (2004) and Mertens and Ravn (2013). The procedure is as follows. Given the estimates
of the reduced-form VAR, {B] }3-]:1, and the residual, {u;}, we generate bootstrap draws, {Y;b},
recursively, by Y} = Z}']:1 Bjﬁ_j + €Yy, where € is the realization of a scalar random variable
taking values of —1 or 1, each with probability 1/2. Our identification procedure also requires us
to generate bootstrap draws for the proxy variable, {zf?}, so following Mertens and Ravn (2013),
we generate random draws for the proxy variable via 2z = elz;. We then use the bootstrap
samples {Ytb} and {zg’} to reestimate the VAR coefficients and compute the associated impulse
responses (applying the covariance restrictions implied by the bootstrapped instrument z?).
This gives one bootstrap estimate of the impulse response coefficients. The confidence intervals
are the percentile intervals of the distribution of 10,000 bootstrap estimates for the impulse

response coefficients.

B.4.3 Changes in federal funds future rate and unexpected policy rate changes

Fix a month, s, and let the intervals {[¢, ¢ + 1]};[:1 denote the 7" days of the month. Let {fgt}thl
denote the market prices of the federal funds futures contract at the end of day t of month s.
The superscript “0” indicates that the contract corresponds to the current month, .52 Let
{rt}z;l be the (average) daily fededral funds rate calculated at the end of day t. Finally, for
j=1,..,T —t, let Eyryy; denote the expectation of the spot federal funds rate on day ¢ + j
conditional on the information available at the end of day ¢t. Then, since federal funds futures

contracts settle on the average daily rate of the month, we have

1 t T
0 _ ‘ | -
st [Zizln t Zi:t_HEth] yfort=1,...,T.

52Contracts can range from 1 to 5 months. For example, ff,t would be the price of the 5-month forward on
day t of month s.
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Hence, fort =1,...,T,

1 1 1T 1T
for = for1 = 7't~ TEt—th + TzithEt” - Tzi:tHEt—l?%

where fg,o = fsl—l,T' Assume the federal funds rate changes at most once during the month,
and suppose it is known that the announcement takes place at the beginning of day ¢ > 1.6

Then

Eyri=ryfori=t,..T

Ey yri=FE qryfori=t+1,..T.

Thus, the change in the forward rate at the time of the announcement, i.e., t =1,...;7T, is

T'+1-t

fg,t - fso,t—l = T (re — Ey—qry) (95)

where r, — E;_1r4 is the surprise change in the federal funds rate on day ¢ (the day of the
policy announcement). If we know the daily change in the forward rate at the time of the
announcement, fgt - fg’tfl, then from (95) we can recover the unexpected change in the federal
funds rate on the day of the FOMC announcement, ¢, as follows:

T

ﬁ(J{g{m—f;{t) fort =0,..,T — 1. (96)

rep1 — Eyirg =

This condition is the same as condition (7) in Kuttner (2001), which is the convention used by
the event-study literature to map the change in the 30-day federal funds futures rate on the day
of the FOMC policy announcement into the surprise change in the daily policy rate on the day
of the announcement. In terms of the notation for our high-frequency instrument introduced
in Section B.4.1, we set z; = %( QHI — fg,t) = Gtmr+20 — Gt,my—10, where fg,t+1 - fgt is
measured (using high-frequency data) as the change in the 30-day federal funds futures rate

over a 30-minute window around the FOMC announcement that takes place on day t.

531f r, were the actual target federal funds rate, then the assumption that it changes at most once in the month
would be exactly true for most of our sample; see, e.g., footnote 16 in Gorodnichenko and Weber (2016). In
general this has to be regarded as an approximation, since on any given day the effective federal funds rate, r¢,
can and does deviate somewhat from the announced federal funds rate target rate (see Afonso and Lagos, 2014).
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C Supplementary material: Theory

C.1 Efficiency

Consider a social planner who wishes to maximize the sum of all agents’ expected discounted
utilities subject to the same meeting frictions that agents face in the decentralized formulation.
Specifically, in the first subperiod of every period, the planner can only reallocate assets among
all dealers and the measure « of investors who contact dealers at random. We restrict attention
to symmetric allocations (identical agents receive equal treatment). Let cp; and hp; denote
a dealer’s consumption and production of the homogeneous consumption good in the second
subperiod of period t. Let c¢;; and hj; denote an investor’s consumption and production of
the homogeneous consumption good in the second subperiod of period t. Let ap; denote the
beginning-of-period ¢ (before depreciation) equity holding of a dealer, and let a/,, denote the
equity holding of a dealer at the end of the first subperiod of period ¢ (after OTC trade). Let
ar; denote the beginning-of-period ¢ (before depreciation and endowment) asset holding of an
investor. Finally, let a’, denote a measure on F ([er,, ex]), the Borel o-field defined on [er, ep].
The measure af, is interpreted as the distribution of post-OTC-trade asset holdings among
investors with different valuations who contacted a dealer in the first subperiod of period ¢.
With this notation, the planner’s problem consists of choosing a nonnegative allocation,
o, )

{ (@1, @ cjts Bt sy }t:O )

to maximize
0 EH €H
Eo Z Bt [04/ eyray, (de) + (1 — a) / eyraredG (€) + cpy + e — hpe — by
t=0 €L €L

(the expectation operator Eq is with respect to the probability measure induced by the dividend

process) subject to

apt +ap < A° (97)
€
a’py + a/ ay, (de) < aps + aap (98)
e
cpt+cre < hpe + hpe (99)
apt = 5th (].OO)
ap = day + (1 — (S) A%, (101)
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According to Proposition 11, the efficient allocation is characterized by the following two
properties: (a) only dealers carry equity between periods, and (b) among those investors who
have a trading opportunity with a dealer, only those with the highest valuation hold equity
shares at the end of the first subperiod.

Proposition 11 The efficient allocation satisfies the following two conditions for every t: (a)
apt = A® —ap = A® and (b) af, (E) = liepemy [0+ (1 —0)] A%/a, where Iy, cpy is an
indicator function that takes the value 1 if ez € E, and 0 otherwise, for any E € F ([er,em]).

Proof of Proposition 11. The choice variable a’,, does not appear in the planner’s objective
function, so a’,, = 0 at an optimum. Also, (99) must bind for every ¢ at an optimum, so the

planner’s problem is equivalent to

{&Dt ,art @lh}toio

%) e
max Eo Z B {a/ ealy (de) + (1 — ) ap | vt
t=0 EL

€H
s.t. (97), (100), (101), and a / dy, (d2) < ape + aan.

€L

Let W* denote the maximum value of this problem. Then clearly, W* < W*, where

W*= max_ EoY B'[en (apt + adn) + (1 - o)&an sy +w

{apvantZo 125

s.t. (97), where w = [aeg + (1 — @) €] (1 — &) A’Eg Y oo, B'yr. Rearrange the expression for

W* and substitute (97) (at equality) to obtain

W* = max Eo» p'{enA® —(1—a)(cu — &) dre} oyr +w
t=0

{art}§2g

={deg+ (1 —90)[acy + (1 — a) ]} A°Ey Zﬁtyt.
t=0

The allocation consisting of ap; = A®, a;s = 0, and the Dirac measure defined in the statement

of the proposition achieve W* and therefore solve the planner’s problem. m

C.2 Examples

In this section we present two examples for which the basic model of Section 2 can be solved

in closed form.
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Example 1 Suppose that the probability distribution over investor valuations is concentrated
on two points: e, with probability 7wy, and €y with probability 7y, with € = wgeg +nrer. Then
(13) implies

5* _ +a(9ﬁ(1_ ,(3 ( _) )
Bad(1-80)rgey—(u—PB)Bo(E—abmrer) ., . B
Bab(1—-B8)mu+(u—B)[1-Bs(1—abmy)] ifp<u<p
with
g (1= 70) (= o) oy (€~ e1) -3 (1—B6)ab(e—er)
B ! d = 1 _ -
T FTatme R e (- )

Given €*, the closed-form expressions for the equilibrium allocation are given in Proposition 1.

Example 2 Suppose that the probability distribution over investor valuations is distributed

uniformly on [0,1]. Then (18) implies

* a@(l—,@&)—i—a—\/[ajég(ll—_égg;-LF_[a@(l—,éts)]z ZfB <u<i
o
(1-56) (a0+0)—/[(1-B5) (ab+0)] ~abB [1-Bs(140)] =) ., . i
) \/[( ae[iﬁé(llL)] [ ] qu SH<p
with _ . 53

and where 1= (i — ) /B and € = (1 — /1 — ab)/ (ab). Given €*, the closed-form ezpressions

for the equilibrium allocation are given in Proposition 1.

C.3 Equilibrium conditions for the general model

In this section we derive the equilibrium conditions for the general model of Section 6. We
specialize the analysis to recursive equilibria in which prices are time-invariant functions of
an aggregate state vector that follows a time-invariant law of motion. The state vector is
x = (A", g, T1) € Ri, with 74 = (wy, e, r¢). Asset prices in a recursive equilibrium will be
Of = 0 (1), Of = ¢° (1), ¢ = ¢™ (x1), P} = p* (1), @ = q (®1), and &f* = & (a;). Let A7'*
denote the amount of money that investors have available to trade asset k € N = NU{b} at the
beginning of period ¢ (i.e., the bond, if £ = b, and equity, if k& € N). The laws of motion for the
state variables A", y;, and T are exogenous (as described above) while A7"* = U* (z,), where

the decision rule U¥, for k € N, is determined in equilibrium.

93



The investor’s value functions are

Wl(agnbv af‘/)a (ai**, af)sen, kt; @) = Z (9™ (®1) a™* + ¢° (¢) af]
seN

+ ™ () (0" + af) — ke + W (24),

where a? denotes the quantity of bonds that the investor brings into the second subperiod of

period ¢, with

Wie)=T@+ omax {om@ah - X o @it
(aﬁlv(a§+1)s€N)€R+ seN
1
+ 1+ [Vl<at+1v(at+1)sevat+1 |$Ut] },
VI(&??i-l: (af+1)seN;~’Bt+1) = (am )maéRNH/VI(atH, (Gﬁsbafﬂ)sel\lﬁ; $t+1)dG(5) (102)
A4 ) keNER L

~m
s.t. Eat—i-l att1,

keN

and

Vl(aﬁbb (at+17 at+1)SEN7 g5 xiy1) = " (Tpy1) {a?ibl + [1 —4q ($t+1)] a?+1(aﬁrb17 q ($t+1))}

+ Z {&™ (@i41) aly) + [eys1 + O (®e11)] afyy )

seN
g — e (T411)
+ Z [ Tmytﬂﬂ{es*(wtﬂ)@}aﬁsl
+ Z {0459 iL’t+1) - 5] yt+1]1{5<89*(wt+1)}at+1}
seN
+ W (@e41)

where a?(a*, ¢;) is the bond demand of an agent who carries a}*® dollars into the bond market
in state @;, and aj,; = 6a;,; + (1 — ) A°. In writing V' (-) we have used the fact that Lemma
1 still characterizes the equilibrium post-trade portfolios in the OTC market. The following

lemma characterizes an investor’s demand in the bond market.

Lemma 5 Consider an investor who brings aj®® dollars to the bond market of period t. The

bond demand, al(a™®,q;) and the post-trade bond-market cash holdings, @™ (ai™, q;) = a"® —
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qal(af™, q;), are given by

b b afsnb
ai(ai™, qt) = x (g, 1) v
a;ﬂb( 7Qt) [1 — X (Qta 1)] mb7

where x (-, ) is the function defined in Lemma 1.
Proof. The investor’s problem in the bond market of period ¢ is

max W@, al, (a, a3)gen > kies @) s.t. am™ + qal < oM.
(a,af)eRy
This problem can be written as
max @™ (@) (@ + (1— @) af]| + W (0], 07) e 0,0, ki @)
ay E[O:agnb/Qt}
and the solution is as in the statement of the lemma. m

The market-clearing condition for bonds is a? (A;”b, qt) = By, which implies the equilibrium

nominal price of a bond is ¢; = min (A{”b /B, 1), or in the recursive equilibrium,

¢ () = min { inﬂ? : 1} .

With Lemma 5, the investor’s value function in the first subperiod becomes

ol ($t+1)

Vl(aﬁbh (at—‘rl? at—}—l)SENa &, $t+1) — t+1 + W ($t+1)
q (xT+1)

+ > {¢" (@er1) afty + [eyent + ¢ (@e41)] a4 }

seN
g€~ ¥ (xy41)

+ Z —)yt+lﬂ{53*(wt+1)<s}a?}rsl
seN !

+ Z o’ mtJrl) - 5] yt+1]1{5<85*(:ct+1)}at+1
seN

The following lemma characterizes the optimal partition of money across asset classes chosen

by an investor at the beginning of the period.

Lemma 6 The (a[%%),cx that solves (102) satisfies

V@, (a3, 1) sen; o —e
(@i, (acit;l) NG Tit1) > 6 (2401) +a80/ MyHldG( ) (103)
S| (@) P (@)
ovi(ay,, (Cff—&—l)seNthJrl) > o (55'1t+1)7 (104)
oayy q(Tt+1)

where (103) holds with “=" if aj*% >0 and (104) holds with “=" if a"% > 0.
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Proof. The objective function on the right side of (102) can be written as

/Vl(atJrlv (at+17at+1)SEN75 xi41)dG(e)

= {¢" (@) af}t + [Eyent + ¢ (zer1)] i )}
seN

€H e —e% (x ms
+ Z 0‘59/ wytﬂd(}(a)atﬂ

et (@ern)  P°(Tig1)

seN
S*($t+1
+ Z oﬁe/ (xp41) — €] yr41dG(e )a%9+1
seN
¢" (@t11) m
4 2 At/ +W!(x .
@) ayh (Ti11)

The Lagrangian for the maximization in (102) is

A ms ~m m s = g€ —¢e** (mtJrl) ms
L((ai51) sers aiy1, Ti1) = Z o™ (Te1) + a0 —yHldG( )| @i
= e (@es) D (Tig1)

" (x t+1 b
T (@) agyy + E ¢ (2441) at+1 +& (i) | @y — § at+1 ;
keN keN

where ¢ (z441) is the multiplier on the feasibility constraint in state @41 and (¢ (z¢41))pen

are the multipliers on the nonnegativity constraints. The first-order conditions are

(ZS(](Z:)I) + gmb (Tt41) — & (x441) =0
o et /:( ) Mytﬂd(;(@ + " (@141) — E(@e41) = 0,

for all s € N. Finally, notice that & (x¢41) = 82/6&;11 = V(@ (af 1)sen; Te41)/07,. ™
The following lemma characterizes an investor’s optimal portfolio choice in the second sub-

period of any period with state x;.

Lemma 7 The portfolio (G}, (a;,,)sen) chosen by an investor in the second subperiod of

period t with state x; of a recursive equilibrium, satisfies

5 [ wt+1) .
®° () > 1+Tt]E EYir1 + ¢° (®441) +0459/ [ (®t+1) — €] yr+1dG(e) wt]
£
1 i o € — &% (z1y41)
() > ™ (x + a0 _— dG
" () > T _Cb (1) oy P (@) Yi+1dG(e)|
1 [ ¢ (x411) }
M (xy) > E x|,
" (@) 2 L4+7re | q(®i41) !
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where the first condition holds with “=7" if aj, ; > 0, the second condition holds with “=7" if

a® > 0, and the third condition holds with “=" if a]?, > 0.

Proof. The investor’s maximization problem in the second subperiod is

1 _
e —0" (@) Q1= ¢ (@) gyt —E [Vl(dﬁl, (afﬂ)seN; $t+1)‘ wt] }>
(&ﬁlv(dts+1)seN)€Rf+1 { SEZN 147

with

Vl(dﬁp (afﬂ)seN; Tiy1)

=W (z411) + max L((a7%)) sern; @ry1, Tev1)
{afi beeneRY
+

e (z+41)
i+ 6 @) 400 [ (@) - e pndG(o)
seN

€L

S
Ai41)

where £ ((aﬁfl) seN; Ayt qs a:t+1) is defined in the proof of Lemma 6. We then have,

R ) e (@ y1) .
(@i g;tfi) eNi@e+1) Epr1 + &° (T41) + ase/ (€% (211) — €] Yt 1dG(e)

€L

8vl(aﬂ1:(af+1)sel\!;mt+1)
day, = &(®141) -

The first-order conditions for the investor’s optimization problem in the second subperiod are

1 8‘71(&;117 (af.;.l)sGN; mt+1) . « g~
—¢"™ () + r— dar, x| <0, with “="1if a7 >0
1 6‘7[(&;117 (af,1)sen; Tey1) 1wy e~
—¢° (xy) + r— das., x| <0, with “="1ifaj ; >0,
or equivalently,
m 1 : 13 » s ~
T liE [€ (@eq1)| @], with “ =" if a;F, >0
+ 1y
5 e (@e41)
@)z B w46 ) a0 [ (@) - piadGlE) |
1+ el
with “="if af,; > 0, for s € N. By Lemma 6, the first condition can be written as

- " (1 41)
o (@) 2 T+ [ q(x11)

wt:| )
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with “=" if aﬁbl > 0, or as

1 €H e —e%* (xyq1)
" (x) > E | ¢" (zi11) + a0 —————Y+1dG(e)| T | ,
14+ 5% (@ys1) ps (mt+1)
with “=" if a{'{y > 0, for s e N. m

Definition 2 A recursive monetary equilibrium for the multiple asset economy with open-

market operations (in which only investors can hold assets overnight) is a collection of functions,

{6 (),q (), 9 () {8° (),0° (), (), U ()} gen ), that satisfy

¢5 (mt) — LE

e (®r41)
B e 4 @) et [ @) - JndG(e)
+ 7y el

1 o £ — ™ (wr41)

M (xy) = E|o™m(x + a’f _— dG(e)| x
o™ () T r " (Te41) + o P @) Yi+1dG(e) | 2
9™ (24) R G20

= ¢ (x¢) + a®0 —— 1 dG(e
q(mt> ( t) es* (xy) P’ (wt) ' ( )

¢ (a¢) = min[A7/ (w, A7), 1]
[1 = G (™ (x0))] A

ps (wt) = Il (53* (fL‘t)) As
& (2,) = p°(ze) o™ (;t) —¢° (x1)

AR = 0k (), for ke N
k
AT =) AR,
keN
Suppose x; = (A}, yi, w;, i, ;) and focus on a recursive equilibrium with the property that

real prices are linear functions of the aggregate dividend. Then, under the conjecture

¢ (x1) = Pyt
¢° (®1) = by
" (1) A" = Ziys
APE = UF (@) = AFAY
¢° (@) = p° (1) 9 (1)
q () = min(A\} /wi, 1) = g;

(o) = EEE) g g = e (111)
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the equilibrium conditions reduce to (21)-(25), which is a system of M (3N 4+ 2) indepen-
dent equatlons to be solved for the M (3N + 2) unknowns {¢f,ef* Zza)‘fa/\?}iEM,seN- Given
{7,632, X; )\i}ieM,seN, for a state &y = (A}", yi, 7¢) with 7y = 7; = (wi, 4, 7i), ¢° (1) is ob-
tamed from (105), ¢* (x¢) from (106) (with ¢f = ef* +¢¢), ¢™ (x;) from (107), A7* from (108),
p® (x¢) from (109), and ¢ (@) from (110). Notice that an economy with no explicit open-market
operations is just special case of this economy with w; = 0 for all ¢ (which in turn implies )\f =0
for all 7, so (23) is dropped from the set of equilibrium conditions).

The following proposition shows that if a monetary equilibrium exists for a given joint policy
process for money growth and real rates, {u,r}o, then there exists a bond policy, {w}o,
that implements a positive real value of money that is constant over time. This result is useful
because it implies the real price of money need not change at the times when monetary policy

switches states.

Proposition 12 Let ((ui,ri), [04j]) denote a (Markov chain for the) joint process of money

i,JEM
growth and real rates, i.e., a set of states (ju;,7);cpy and a transition matriz [Uij]z'jeM such that
oij = Pr[(pug1, me41) = (5, 75) | (e, 7¢) = (pa, ri)]. Consider a process (i, 73) , [045])

that there exists a vector (¢F,e

ijeM such

’L’Z

g 7}/6 = S s Ei* s¥ .
e T %aw E+¢]+a 0/5L (3 s)dG(a)] for (i,s) e M x N (112)

1= ZUU 1 +a80/ s* i ¢s (5)

Then for any Z € (Zy,00), there exists a bond policy (w;);cpy that implements equilibrium

i )iemsen that solves

for (i,s) € M x N. (113)

aggregate real balances (Z;);cq with Z; = Z for all i € M. Moreover, the bond policy that

implements the contant aggregate real balance Z is

G(ES*)AS

2 seN 1 GI(E )(ES* +¢7) en =
seN gy 1 T } £ e .
and () A
G (ei*) A®
70— SNE A sy sy
0 I?EaNX 1 _G(gls*) (57, +¢z)

seN

Under bond policy (114), in state xy = (A}, y¢, wi, Wi, i), investors assign )\é’Z real balances to
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the bond market and \;Z real balances to the market for stock s € N, where

G(Ei")A® / _sx s
S en Topay (65 + )

AN=1- ~ € (0,1) (115)
W e+
Al = — €(0,1), (116)

and the dollar price of equity in the OTC round is p® (x¢) = (e* + ¢) A"/ Z.

Proof. Given the vector (¢7,€7*); . sy that solves (112) and (113), (23)-(25) imply

G(ei")A® [/ ok s
> seN 1_(0(2@*)(51' + ¢7)

Z = T : G (117)
a0 [ + ¢SdG(a)

l? EHwi€ 6 (118)
1+ asf f IF _dG(e)

" ( () )(€S*+¢S)
A= |1— e = e ey (119)
Ta f ”‘Hbg (5) ZSGN 1— G( *)( f* + ¢7,S>

From (117), it is clear that the bond policy (w;);cy; described in the proposition implements
aggregate real balance Z. Then (118) and (119) imply (115) and (116), and A%, \f € (0, 1) since
0 < Zy < Z. Finally, p® (x) is obtained from (109). m

In general, the equilibrium for the general model with N asset classes, open-market op-
erations, and policy uncertainty, involves numerically solving the system of M (3N + 2) inde-
pendent equations and M (3N + 2) unknowns given by (21)-(25). In order to gain analytical
intuition, the following proposition offers a full characterization of the monetary equilibrium
for an economy with N equity classes and open-market operations, but no policy uncertainty.
In this context, Corollary 5 deals with implementing a level of real balance that is independent

of the growth rate of the money supply.

Proposition 13 Consider the economy with no policy uncertainty, i.e., p; = p, w; = w, and

o , s _ 7 a®0(1-B5)(e—e1)
r, =1 for allt € M. Let p° = 1+m

€(B,a*) and w € (O,,u/B). Then there exists a unique recursive monetary equilibrium:

and @* = mingen p°, and assume
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(i) Asset prices are

¢f = ¢Syt7
where -
¢° = ps E+ a0 /ES*(&?S* —¢)dG(e) (120)
B 1- 56 €L
and €¥* € (er,em) is the unique solution to
(e —e™)dG — B
55 fa (5 e 62* (5) _ /J; Sg —0. (121)
g%* + T35 [E_-l- as0 faL (e5* — e)dG(e)} Bo
(ii) Aggregate real balances are
¢?1Am = Zyta
where e
Zs %(65* + ¢°)
7 — eN 1-G(e /32 ‘ (122)
1-— ﬁw
(iii) The price of a bond is B
p
G = =. 123
= (123)
(iv) The proportion of real balances assigned to the bond market is
M= Cy (124)
I
(v) The proportion of real balances assigned to the OTC market for equity s is
G(e)A% | o | s _
s 1_((;(6)5*) (5 + (b ) /B
AS = Ry 1-Zw). (125)
2 seN - (€ + %) H

Proof. With no policy uncertainty, ¢; = ¢°, e = €**, Z; = Z, A\ = \°, )\ﬁ? = AP for all

i
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i € M and all s € N, and the equilibrium conditions (21)-(25) reduce to

£8%*
% =6 |E+ ¢° + ase/ (e®* —e)dG(e)| forall s e N (126)
eL
2 EH _ 8%
=5 [1 + ase/ — dG(s)] for all s € N (127)
" R
b EH e — 55*
max(w/A”, 1) =1+ asﬂ/ ——dG(e) for all s € N (128)
cox ESF 4 @S
Sk AS
ZN = %(55* + ¢°) for all s € N (129)
L-XP =) (130)
seN

This is a system of 3/N+2 independent equations in the 3N+2 unknowns, {{qbs, %, M en > b Z}.
Conditions (126) and (127) imply (120) and (121). It is easy to check there exists a unique
e%* € (er,ey) provided pu € (B,i*). Given {¢°,e"} cn, conditions (128)-(130) need to be
solved for {{\*} ., A%, Z}. Conditions (129) imply the values of {Z %} - Conditions (127)
and (128) imply max(w/A’ 1) = u/j3, and since 3 < p, this implies (123) and (124). Finally,

condition (130) implies (122) and therefore (129) implies (125). m

S*

Corollary 5 Consider the economy of Proposition 13. Let {€>* (u) ,¢° (1) },cn denote the vec-
tor {e%*, ¢°} ;o that solves (120) and (121) for a given p, and let

Gle™ ()] A
Z(W =) Aarm e (W) +e%(w)].
2 1G]
(i) The monetary authority can implement any real balance Z € [0, 00).
(ii) For any po € (B,,a*), any equilibrium aggregate real balance Z € (Zy,0), where Zy =
Z (o), can be implemented in a way that it is independent of the money growth rate, p, for
any p € (po, 1)
(iii) Any equilibrium aggregate real balance Zy € (0,00) can be implemented independently of

the money growth rate, u, provided p € (po, i*), where pg is the unique solution to Z (o) = Zy.

Proof. (i) Fix w. From (121), it is clear that by varying p in the interval (B,,B*), the
monetary authority can implement €** = ¢, as well as €** = ey for all s € N. The result then

follows from (122).
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(ii) Fix po € (B, i*) and let Zg = Z (po). Then for any Z € (Zy, 00), set

W= <1 - Zé’”) % (131)

Clearly, w € (O,,u/B) for any p € (uo, @*). To conclude, notice that for any pu € (po, 5*), the
bond policy (131) implements the constant aggregate real balance Z.
(#i) Fix Zy € (0,00) and let po denote the unique solution to Z (p9) = Zp. Then for any

w= <1 - ZZ(SL)> % (132)

Clearly, w € (O, ,u/B) for any p € (po, 1*), and the bond policy (132) implements the constant

€ (po, 1), set

aggregate real balance Z;. m
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D Supplementary material: Robustness
In this section we perform several robustness checks on the empirical and quantitative analyses.

D.1 Delayed return response

Our quantitative theory predicts that returns of more liquid stocks are more responsive than
returns of less liquid stocks to monetary policy shocks on the announcement day, and that these
differences persist beyond the announcement day. The prediction for announcement days is in
line with the empirical estimations we have carried out in Section 5.2 and Section 5.3. However,
the evidence in those sections may also be consistent with an alternative hypothesis, namely,
that while the more liquid stocks may experience a stronger reaction than less liquid stocks on
the day of the announcement, this differential response would dissipate if we gave the less liquid
stocks more time to react. We have already pointed out (see footnote 37) that this hypothesis
is at odds with the VAR evidence in Section 5.4. In this section we redo the estimations in
Section 5.2 and Section 5.3 by looking at two-day cumulative returns after the announcement,
and find no support for the alternative hypothesis.

For j = 1,2, .., define the cumulative marketwide stock return between day ¢ and day ¢ + 7,
by ﬁ{’t 4 = Hizl R{ 4> the cumulative return of stock s between day ¢ and day ¢ + j, by
ﬁf’t 4= #—1 Ri. ), and the change in the 3-month Eurodollar future rate between day t and
day ¢t + 7, with Aty = 4445 — .

The first exercise we conduct consists of estimating the marketwide regression
ﬁ{—l,t—l—l—j =a+ bAitfl,t71+j + €t—1+45, (133)

for t € Sy, with j = 2, where ¢_14; is an exogenous shock to the asset return. Notice (19) is a

special case of (133) with j = 1. The second exercise consists of estimating
ﬁffu,lﬂ- =a+bAt 14 14j+ €145 (134)

with j = 2, for t € 1 and s = 1, ..., 20, where s represents each of the twenty liquidity portfolios
constructed in Section 5.3, and €;_14; is an exogenous shock to the asset return. Since we want
to estimate the effects of the day-t policy surprise on the cumulative return between the end of
day t—1 and the end of day ¢+1, we instrument for Ai; ;1 ; using the daily imputed change in the

30-day federal funds futures rate from the level it has 20 minutes after the FOMC announcement
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and the level it has 10 minutes before the FOMC announcement, i.e., the variable z; as described
in Appendix B (Section B.2). That is, we estimate b in (133) and in (134) using the following
two-stage least squares (2SLS) procedure. Define Aifﬁ 4 = ifij — 059, where i¢? denotes the
rate implied (for day ¢) by the 3-month Eurodollar futures contract with closest expiration
date at or after day t. First, run the regression Aiﬁl,plﬂ' = Ko + Kzt + 1414 on sample 57
(where 1,14 is an error term) to obtain the OLS estimates of kg and k, namely &¢ and &.
Second, construct the fitted values 2,1 ;—14; = ko + A2, and run the regression (19) (or (134))
setting At;_14—14; = Z—1,4—1+j. The resulting marketwide and portfolio-by-portfolio estimates
are reported in Table 5. All estimates are negative, and again, the magnitude of the response
tends to be stronger for more liquid portfolios. For example, the two-day return of portfolio
20 responds 2.23 times more than the two-day return of portfolio 1, while (from Table 2) the
announcement-day return of portfolio 20 responds 2.55 times more than the announcement-day
return of portfolio 1. Thus, even much of the tilting in the announcement-day return responses
to the policy shock is still noticeable when looking at two-day cumulated returns.

The third exercise we conduct consists of estimating the following regression of delayed
individual stock returns (for the universe of stocks listed in the NYSE) on changes in the policy
rate, an interaction term between the change in the policy rate and individual stock daily

turnover rate, and several controls, i.e.,

Ri 14145 = Bo+ B1lAi14-14j + BT + B3 (Adg—14-145 — A1) x T
+ Dy + Dy + Ba (Dip—1,0-11)* + B5 (T + 514149 (135)

with j = 2, for all t € S7 and all individual stocks, s, where Dy is a stock fixed effect, D; is
a quarterly time dummy, and &;_;, 4518 the error term corresponding to stock s on policy
announcement day ¢, 7,° = 7, — T, and Ai and 7 denote the sample averages of Ai;_1 ;14
and 7%, respectively. We estimate seven different specifications based on (135). These seven
specifications correspond to specifications (I), (II), (III), (IV), (VI), (VII), and (VIII) in Section
5.3. In every specification, the measure of daily turnover of a stock s, namely 7;°, is measured
as in the estimation of (20). In specification (I), Ai;—1¢—14; is instrumented for with z,
as explained above. In all other specifications, we proxy for Ai;_1; 145 = futl_l’t_l +; and
(Aip_1 145 — AD) X TP = Ut271,t71+j as follows. We first run the following two regressions (i.e.,
fori=1,2)

Uif1,t71+j = K+ K2 + k(2 X TS) + 771%—1+j (136)
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on sample S; (where 771%:—1—&-]' is an error term) to obtain the OLS estimates of (/16, KY, /ﬁg)i:m,

namely (&{, 71, '%)i=1,2' We then construct the fitted values @Ll’tflﬂ = rh+r 2 +rS (20 X TF)
for i = 1,2, and run the regression (135) setting Ai;—1 ¢—14j = ﬁtl_u_Hj and (Ady—1,—145 — Ai)X
T° = @f_ljt_lﬂ-. Whenever (Ai; 14 1+;)* appears in a particular specification of (135), we also
include z? as an additional regressor in the first-stage regressions (136).

The results are in Table 6. The estimate of interest, s, is large, negative, and statistically
significant in all specifications. This means that the magnitude of the negative effect of unexp-
tected changes in the policy rate on two-day cumulated equity returns is still larger for stocks

with higher turnover liquidity.

D.2 Disaggregative announcement-day effects with additional controls

In addition to the specifications (I)-(IX) of (20) discussed in Section 5.3, in this section we
report the results of three more specifications, labeled (X), (XI), and (XII), that incorporate

additional control variables. The general regression we fit is now

R; = Bo+ Biliy + BT + BsT® x Niy
+ Dy + Dy + Dy + Ba(Aiy)* + B5(T7)?
+ B6B1; + BBy, x Aiy
+ B3 + Bofs, x Aiy
+ BroBs; + B11B5, x Aiy
+ 1oL + B13L§ x Aty + g, (137)

where Dy is a dummy for the Fama-French ten-industry classification, L{ is the measure of the
bank leverage of company s at date ¢ constructed by Ippolito et al. (2018), and Bft is the “beta”

Y

corresponding to factor “f;,” with j € {1, 2,3} for announcement day ¢ that we estimated from
the multi-factor regression (82) (recall f1¢ = MKT;, foy = HML;, and f3; = SMBy; see
Section B.3 for details).%* All other variables are as defined in Section 5.3. Also as in Section
5.3, a *” on top of a variable denotes deviation from the sample average, i.e., E = (ﬂj“?’t - Bj)
and L{ = (L; — L), where §; and L denote the sample averages of Bj, and Li. The industry

dummy D; addresses the potential concern that the turnover rate of a stock may be correlated

54In Section B.3 we used B; (k) to denote the estimate for the beta corresponding to factor j for stock s,
estimated on the sample consisting of all trading days between the policy announcement days tx—1 and t5. Since
ty, is the date of the k*" announcement, we have Bii,, = B5 (k).
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with the industry to which the stock belongs. Incorporating the annuoncement-date “betas”
{ﬁjt}g?:l addresses the potential concern that the differential return response to policy rate
shocks for stocks with different turnover liquidity may be driven by heterogeneous exposure to
other aggregate factors. Specifically the betas {ﬁjt}?zl control for the effects on stock returns
of the three standard Fama-French factors—after controlling for the risk exposure to aggregate
turnover of the stock market (as captured by £§ in (82)).95 The additional control variable,
bank leverage L7, addresses the potential concern that the differential return responses that we
attribute to the turnover rate of a stock may instead reflect some other fundamentals of a firm,
such as its reliance on debt.

Specifications (I)-(IX) are as in Section 5.3. Specification (X) adds Dj to specification

3
j:17

specification (X). Specification (XII) adds L§ and the cross term L7 x Ai; to specification (XI).

(IX). Specification (XI) adds {35,}3_, and the corresponding cross terms, {E x Az} to
In every case, the coefficient of interest is (3.

The results for specifications (I)-(XI) for our baseline sample period (January 3, 1994
through December 31, 2007) are reported in Table 7. The results for specification (XII) re-
ported in Table 8 are estimated for the sample period June 26, 2002 to December 31, 2007 since
the company-specific leverage data from Ippolito et al. (2018) starts on June 26, 2002. For
comparison purposes, in Table 8 we also report the results of specifications (IX), (X), and (XI)
for the same sample period. The main conclusion is that in all specifications, the estimate of

B3 is negative, large in magnitude, and significant.

D.3 NASDAQ stocks

In this section we use daily time series for all individual stocks in the National Association
of Securities Dealer Automated Quotation system (NASDAQ) from CRSP to estimate the
aggregate and disaggregative return responses of Section 5.3 for the same sample period. We
perform the same estimations as in Section 5.3. The estimates for marketwide return and
turnover are reported in Table 9, which is analogous to Table 1. The estimates obtained from
the portfolio-by-portfolio regressions are reported in Table 10, which is analogous to Table
2. The estimates from the nine specifications based on (20) are reported in Table 11, which

is analogous to Table 3. The tilting in returns across liquidity portfolios in response to the

55Because the Fama-French factors are reduced-form factors that may partly capture partly the effect of the
turnover liquidity transmission mechanism, we control for the return exposure to the aggregate turnover rate in
order to obtain the betas that are net of the influence of the turnover liquidity factor.
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monetary policy shock is even stronger than for the NYSE stocks.

D.4 Value-weighted returns

Let PP denote a portfolio of stocks, i.e., a collection of stocks, each denoted by s, and let N (P)
denote the number of stocks in P. In the portfolio-by-portfolio regressions of Section 5.3, we
defined the average return of portfolio IP on day t as

1 S
ZmRt-

seP
In this section we redo the same estimations using the value-weighted return, defined as
>_ Wiy,
seP

with
Py K}

[ i)
ZiGIP’ Pt—th

where K; denotes the number of outstanding shares for stock s on day ¢. The results for

S —
wt:

the NYSE are summarized in Table 12. All the estimates are negative, as predicted by the
theory. Also, the magnitude of the (statistically significant) estimates tends to increase with

the turnover liquidity of the portfolio.

D.5 Results for the 2002-2007 subsample

The empirical finding that surprise increases in the nominal policy rate cause sizable reductions
in real stock returns on announcement days of the FOMC is well established for sample periods
ranging roughly from the early 1990’s until 2002. For example, Bernanke and Kuttner (2005)
use a sample that runs from June 1989 to December 2002, and Rigobon and Sack (2004) use a
sample that runs from January 1994 to November 2001. We have found that both their empirical
results for stocks, and our additional findings regarding the turnover-liquidity mechanism, hold
for the longer sample that runs from January 1994 to December 2007. Table 13 reports the
estimates for specifications (I)-(IX) of (20), for the sample period 2002-2007. The table shows
that our empirical findings, and the results for stocks in Bernanke and Kuttner (2005) and

Rigobon and Sack (2004) also hold for this more recent subsample.
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D.6 Nominal-real interest rate passthrough

In the baseline calibration of Section 6 we set w = .8, which implies a 100 bp increase in the
nominal rate is associated with a 80 bp increase in the real rate and a 20 bp increase in expected
inflation. As a robustness check we have also set w = 1 and recalibrated the model to fit the
same data targets as the baseline calibration, and found that the quantitative performance of
the theory is very similar to the case with w = .8. Here we report results for the case with
w = 0, which implies a 100 bp increase in the nominal rate is associated with a 100 bp increase
in expected inflation and the real rate remains constant. Specifically, we consider an economy
with w = 0, recalibrate the model to fit the same data targets as the baseline calibration, and
carry out Exercise 1 as described in Section 6.3. The theory is able to generate most of the

announcement-day tilting in cross-sectional returns. The results are shown in Figure 11.
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Return
Portfolio Estimate Std dev

EX 3

1 -4.20 1.21
2 415" 1.25
3 4617 1.29
4 435" 1.32
5 487 1.41
6 445" 1.54
7 -5.25" 1.43
8 -4.91™" 1.55
9 -4.65" 1.65
10 -5.90"" 1.64
11 -6.07" 1.47
12 -6.06™"" 1.70
13 -6.80"" 1.59
14 -6.12"" 1.57
15 779" 1.66
16 -7.08"" 1.78
17 -8.91" 2.07
18 -9.32™ 1.97
19 -8.90"" 2.19
20 -9.35"" 2.56
NYSE -6.18™" 1.49

Table 5: Two-day responses of stock returns to monetary policy across liquidity portfolios
(HFIV estimates). ~ denotes significance at 1% level, " significance at 5% level, * significance
at 10% level.
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E Supplementary material: Literature

The empirical component of our paper (Section 5) is related to a large empirical literature
that studies the effect of monetary policy shocks on asset prices. Like many of these studies,
we identify monetary policy shocks by focusing on the reaction of asset prices in a narrow
time window around FOMC monetary policy announcements. Cook and Hahn (1989), for
example, use this kind of event-study identification strategy (with an event window of one
day) to estimate the effects of changes in the federal funds rate on bond rates. Kuttner (2001)
conducts a similar analysis but shows the importance of focusing on unexpected policy changes,
which he proxies for with federal funds futures data. Cochrane and Piazzesi (2002) estimate
the effect of monetary policy announcements on the yield curve using a one-day window around
the FOMC announcement and the daily change in the one-month Eurodollar rate to proxy for
unexpected changes in the federal funds rate target. Bernanke and Kuttner (2005) use daily
event windows around FOMC announcements to estimate the effect of unexpected changes in
the federal funds rate (measured using federal funds futures data) on the return of broad stock
indices. Giirkaynak, Sack and Swanson (2005) focus on intraday event windows around FOMC
announcements (30 minutes or 60 minutes wide) to estimate the effects on the S&P500 return
and several Treasury yields of unexpected changes in the federal funds target and “forward
guidance” (i.e., information on the future path of policy contained in the announcement). More
recently, Hanson and Stein (2015) estimate the effect of monetary policy shocks on the nominal
and real Treasury yield curves using a two-day window around the announcement. Nakamura
and Steinsson (2015) also estimate the effects of monetary policy shocks on the nominal and real
Treasury yield curves, but they use a 30-minute window around the announcement. Gertler and
Karadi (2015) also use a 30-minute window around the announcement to estimate the response
of bond yields and credit spreads to monetary policy shocks. Rigobon and Sack (2004) propose
a heteroskedasticity-based estimator to correct for possible simultaneity biases remaining in
these event-study regressions.

Relatively fewer papers have attempted to identify the precise mechanism through which
surprise increases in the federal funds rate lead to a reduction in stock prices. Bernanke and
Kuttner (2005), for example, take one step in this direction by analyzing the response of more
disaggregated indices, in particular 10 industry-based portfolios. They find that the precision of

their estimates is not sufficient to reject the hypothesis of an equal reaction for all 10 industries.
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Firms differ along many dimensions, however, and a number of studies have focused on how
these may be related to different responses of their stock prices to policy shocks. Ehrmann
and Fratzscher (2004), for example, find that firms with low cash flows, small firms, firms
with low credit ratings, firms with high price-earnings multiples, or firms with high Tobin’s g
exhibit a higher sensitivity to monetary policy shocks. Ippolito et al. (2013, 2018) find that
the stock prices of bank-dependent firms that borrow from financially weaker banks display a
stronger sensitivity to monetary policy shocks, while bank-dependent firms that hedge against
interest rate risk display a lower sensitivity to monetary policy shocks. Gorodnichenko and
Weber (2016) document that after monetary policy announcements, the conditional volatility
of stock market returns rises more for firms with stickier prices than for firms with more flexible
prices. Relative to this literature, our contribution is to document and offer a theory of the
turnover-liquidity transmission mechanism that channels monetary policy to asset prices.

From a theoretical standpoint, the model we develop in this paper bridges the search-
theoretic monetary literature that has largely focused on macro issues and the search-theoretic
financial OTC literature that focuses on microstructure considerations. Specifically, we embed
an OTC financial trading arrangement similar to Duffie et al. (2005) into a Lagos and Wright
(2005) economy. Despite several common ingredients with those papers, our formulation is
different from previous work along two important dimensions.

In the standard formulations of the Lagos-Wright framework, money (and sometimes other
assets) are used as payment instruments to purchase consumption goods in bilateral markets
mediated by search. We instead posit that money is used as a medium of exchange in OTC
markets for financial assets. In the standard monetary model, money and other liquid assets
help to allocate goods from producers to consumers, while in our current formulation, money
helps to allocate financial assets among traders with heterogeneous valuations. This shift in
the nature of the gains from trade offers a different perspective that delivers novel insights into
the interaction between monetary policy and financial markets. For example, from a normative
standpoint, the new perspective emphasizes a new angle on the welfare cost of inflation that is
associated with the distortion of the optimal allocation of financial assets across investors with
high and low valuations when real balances are scarce. From a positive perspective, it explains
the positive correlation between nominal bond yields and real equity yields, something that the
conventional formulation in which monetary or real assets are used to buy consumption goods

cannot do.
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As a model of financial trade, an appealing feature of Duffie et al. (2005) is its realistic OTC
market structure consisting of an interdealer market and bilateral negotiated trades between
investors and between investors and dealers. In Duffie et al. (2005), agents who wish to buy
assets pay sellers with linear-utility transfers. In addition, utility transfers from buyers to sellers
are unconstrained, so effectively there is no bound on what buyers can afford to purchase in
financial transactions. Our formulation keeps the appealing market structure of Duffie et al.
(2005) but improves on its stylized model of financial transactions by considering traders who
face standard budget constraints and use fiat money to purchase assets. These modifications
make the standard OTC formulation amenable to general equilibrium analysis and deliver a
natural transmission mechanism through which monetary policy influences asset prices and the
standard measures of financial liquidity that are the main focus of the microstructure strand of
the OTC literature.

Our theoretical work is related to several previous studies, e.g., Geromichalos et al. (2007),
Jacquet and Tan (2012), Lagos and Rocheteau (2008), Lagos (2010a, 2010b, 2011), Lester et
al. (2012), and Nosal and Rocheteau (2013), which introduce a real asset that can (at least to
some degree) be used along with money as a medium of exchange for consumption goods in
variants of Lagos and Wright (2005). These papers identify the liquidity value of the asset with
its usefulness in exchange and find that when the asset is valuable as a medium of exchange,
this manifests itself as a “liquidity premium” that makes the real asset price higher than the
expected present discounted value of its financial dividend. High anticipated inflation reduces
real money balances; this tightens bilateral trading constraints, which in turn increases the
liquidity value and the real price of the asset. In contrast, we find that real asset prices are
decreasing in the rate of anticipated inflation. There are some models that also build on Lagos
and Wright (2005) where agents can use a real asset as collateral to borrow money that they
subsequently use to purchase consumption goods. In those models, anticipated inflation reduces
the demand for real balances, which in turn can reduce the real price of the collateral asset
needed to borrow money (see, e.g., He et al., 2012, and Li and Li, 2012). The difference is
that in our setup, inflation reduces the real asset price by constraining the reallocation of the

financial asset from investors with low valuations to investors with relatively high valuations.%¢

56In the model that we have developed here, money is the only asset used as means of payment. It would be
straightforward, however, to enrich the asset structure so that investors may choose to carry other real assets
that can be used as means of payment in the OTC market, e.g., along the lines of Lagos and Rocheteau (2008)
or Lagos (2010a, 2010b, 2011). As long as money is valued in equilibrium, we anticipate that the main results

122



We share with two recent papers, Geromichalos and Herrenbrueck (2016) and Trejos and
Wright (2016), the general interest in bringing models of OTC trade in financial markets within
the realm of modern monetary general equilibrium theory. Trejos and Wright (2016) offer an
in-depth analysis of a model that nests Duffie et al. (2005) and the prototypical “second
generation” monetary search model with divisible goods, indivisible money, and a unit upper
bound on individual money holdings (e.g., Shi, 1995 or Trejos and Wright, 1995). Trejos and
Wright (2016) emphasize the different nature of the gains from trade in both classes of models.
In monetary models, agents value consumption goods differently and use assets to buy goods,
while in Duffie et al. (2005), agents trade because they value assets differently, and goods that
are valued the same by all investors are used to pay for asset purchases. In our formulation,
there are gains from trading assets, as in Duffie et al. (2005), but agents pay with money, as
in standard monetary models. Another difference with Trejos and Wright (2016) is that rather
than assuming indivisible assets and a unit upper bound on individual asset holdings, as in Shi
(1995), Trejos and Wright (1995), and Duffie et al. (2005), we work with divisible assets and
unrestricted portfolios, as in Lagos and Wright (2005) and Lagos and Rocheteau (2009).

Geromichalos and Herrenbrueck (2016) extend Lagos and Wright (2005) by incorporating
a real asset that by assumption cannot be used to purchase goods in the decentralized market
(as usual, at the end of every period agents choose next-period money and asset portfolios in
a centralized market). The twist is that at the very beginning of every period, agents learn
whether they will want to buy or sell consumption goods in the subsequent decentralized market,
and at that point they have access to a bilateral search market where they can retrade money
and assets. This market allows agents to rebalance their positions depending on their need for
money, e.g., those who will be buyers seek to buy money and sell assets. So although assets
cannot be directly used to purchase consumption goods as in Geromichalos et al. (2007) or Lagos
and Rocheteau (2008), agents can use assets to buy goods indirectly, i.e., by exchanging them for
cash in the additional bilateral trading round at the beginning of the period. Geromichalos and
Herrenbrueck use the model to revisit the link between asset prices and inflation. Mattesini and
Nosal (2016) study a related model that combines elements of Geromichalos and Herrenbrueck
(2016) and elements of Lagos and Zhang (2015) but considers a new market structure for the
interdealer market.

The fact that the equilibrium asset price is larger than the expected present discounted value

emphasized here would continue to hold.
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that any agent assigns to the dividend stream is reminiscent of the literature on speculative
trading that can be traced back to Harrison and Kreps (1978). As in Harrison and Kreps
and more recent work, e.g., Scheinkman and Xiong (2003a, 2003b) and Scheinkman (2013),
speculation in our model arises because traders have heterogeneous asset valuations that change
over time: investors are willing to pay for the asset more than the present discounted value that
they assign to the dividend stream, in anticipation of the capital gain they expect to obtain when
reselling the asset to higher-valuation investors in the future. In terms of differences, in the work
of Harrison and Kreps or Scheinkman and Xiong, traders have heterogeneous stubborn beliefs
about the stochastic dividend process, and their motive for trading is that they all believe (at
least some of them mistakenly) that by trading the asset they can profit at the expense of others.
In our formulation, traders simply have stochastic heterogeneous valuations for the dividend,
as in Duffie et al. (2005). Our model offers a new angle on the speculative premium embedded
in the asset price, by showing how it depends on the underlying financial market structure and
the prevailing monetary policy that jointly determine the likelihood and profitability of future
resale opportunities. Through this mechanism, our theory can generate a positive correlation
between trade volume and the size of speculative premia, a key stylized fact that the theory
of Scheinkman and Xiong (2003b) also explains. In Lagos and Zhang (2015) we use a model
similar to the one developed in this paper to explain the correlation between the real yield
on stocks and the nominal yield on Treasury bonds at low frequencies—a well known puzzling
empirical observation often referred to as the “Fed Model.” In that paper we also show the
model can exhibit rational expectations dynamic sunspot equilibria with recurring belief driven
events that resemble liquidity crises, i.e., times of sharp persistent declines in asset prices, trade
volume, and dealer participation in market-making activity, accompanied by large increases in
spreads and abnormally long trading delays. Asriyan et al. (2017) also study dynamic sunspot
equilibria in an environment where the value of the asset is determined by a resale value option
as in Harrison and Kreps (1978), but their key mechanism emphasizes information frictions
(adverse selection) rather than OTC-style search frictions.

Piazzesi and Schneider (2016) also emphasize the general idea that the cost of liquidity can
affect asset prices. In their model, the cost of liquidity to end users depends on the cost of
leverage to intermediaries, while our model and our empirical work instead center on the role of
the nominal policy rate, which represents the cost of holding the nominal assets used routinely

to settle financial transactions (e.g., bank reserves, real money balances).
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