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Chaotic Dynamics and Bifurcation in a Macro Model

Consider the following simple macroeconomic growth model analyzed by

Haavelmo (1954):

(1) = a - SN/Y = - ; , > 0

N

(2) Y = ANa, A > 0, 0 < a < 1

where N and Y are functions of time and the dot denotes a time derivative.

Equation (2) has real output Y produced with a constant output elasticity, a,

under decreasing returns by the labor force, N. In equation (1), N is seen to

grow autonomously at the proportional rate a, minus a rate that depends inversely

on per capita output. Therefore, the growth rate increases with per capita

output and is bounded above by a. Substituting (2) into (1), find:

(3) N = N[a-BN1 - a /A].

By dividing both sides of (3) by N, we see that the growth law is a

generalization of the familiar logistic (S-shaped) form used in the industrial

growth studies of Kuznets (1933), technological diffusion study of Griliches

(1957), and the simulation study of Kaldor's trade cycle model by Klein and

Preston (1969). This has been referred to generically in the econometric litera-

ture as the "logit" model [Maddala (1977)]. The logistic law also plays an

important role in studying the growth of biological populations.

Haavelmo solves (3), obtaining the solution

N(t) : [1/A((x(0)/N(0)-/a)ea(a-1)t+8/eL)]1/a1

Y(t) = AN(t)a

where x(0) = AN(0)a-l
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The dynamics are quite simple. If the initial conditionx(0)/N(0)>

SB/, then both N and Y will increase (decrease) monotonically, approaching their

unique steady-state values (AaI 1/1-a and A(Aa/8)a/1-a, respectively. The

solution is graphed in Figure 1 below.

For econometric estimation with period data, or for ease of analysis by

those untrained in the solution of nonlinear differential equations, discrete

time logit models might be considered. A common practice is to replace time

derivatives by first differences. Doing so in (1) and (2), one obtains:

N -N
t+1 t

(1') N = - BNt/Y
t t

(2') Y = ANa
t t

Combining (1') and (2'), find:

(3') N = Nt[(1+)-N1-at /A].

To simplify the notation, perform a positive linear change of variable in (3') by

letting Nt = (A(1+a)/) xt, which yields:

(4) xt+1 =(1+a)xt[ 1- x t -a = F(xt; ,a).

As the change of variables is just a change of the scale measuring N,

one can analyze the dynamics of (4) without loss of generality. In doing so, we

will see that the discrete time version (3') has vastly different qualitative

properties from that of the continuous time model (3). No longer does the system

always monotonically approach a steady state. As the autonomous growth rate a

exceeds a certain value, the steady state ceases being approached monotonically,

and an oscillatory approach occurs. If a is increased further, the steady state

becomes unstable and repels nearby points. As a is increased even further, one
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can find a value of a, call it ak, in which the system would possess a cycle of

period k for any arbitrary k. Also, there exists an uncountable number of

initial conditions from which emanate trajectories which fluctuate in a bounded

and aperiodic fashion and which are indistinguishable from a realization of some

stochastic process! Such behavior has been dubbed "chaotic" by Li and Yorke

(1975), whose work is heavily relied upon in this paper.

The following conclusions can be drawn from the detailed analysis to

follow:

A. The discrete time analog of a continuous time system cannot reliably be

assumed to be found by replacing derivatives with first differences.

This corroborates evidence arrived at independently in different

contexts by Sims (1971), Sargent and Hanson (1979), and Graves and

Telser (1968). In this model even the qualitative properties of the

continuous and discrete time systems are as different as night and day.

Alternatively, if one is not sure which representation is the "real"

system, these results stress the fundamental importance that choice of

time domain and "unit time" length can have on the qualitative proper-

ties of models.

B. Simple, nonlinear, first-order, deterministic difference equations may

exhibit chaotic, seemingly random fluctuations which might mistakenly

be attributed to the influence of excluded variables or the influence

of included, but assumed random, variables. Such phenomena are absent

in deterministic low-order linear difference equations. Mathematical

modelling of fluctuations typically leads to additive random terms

(e.g., white noise) whose fluctuations are propagated through time by

the rest of the system. Our results show that there must be a better

basis for introducing such stochastic effects than merely the desire
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1/
to reproduce "realistic" trajectories.- In the context of linear

difference equation models of macroeconomic phenomena, the introduc-

tion of plausible, theoretically justifiable nonlinearities into the

structural equations might explain observed fluctuations as well, or

better than, the addition of random variables. This possibility is

more likely in models where linearity is usually an ad hoc assumption

justified solely as an analytical convenience. The practice of

explaining fluctuation through the use of linear models with higher-

order lags and leads is also subject to this criticism.

C. The bounded, aperiodic, "chaotic" fluctuations referred to earlier

might best be described statistically, e.g., by computing over a long

span of time the fraction of time the trajectory spends in given

intervals. This is sometimes analytically possible, but requires

rapidly developing techniques from ergodic theory and topological

dynamics not familiar to most economists. Thus, while economists

spend much time learning techniques to find order in the chaos of the

real world, it may be necessary to learn techniques to find chaos

resulting from the order of the real world.

D. Relatively "small" changes in structural parameters can lead to large,

qualitative changes in system behavior. While (3') is technically

structurally stable in the sense of Smale (1967) for most values of a,

as a practical matter the range of perturbation of a, which will pre-

serve the qualitative properties of the solution, can be quite small.

E. The evolution of nonlinear low-order systems can also be drastically

affected by the initial conditions of the system. In the construction

of models, this dependence is often viewed as something to avoid.

After all, how can one know what conditions prevailed when the system

I
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started--whenever that was? In time series modelling, such reasoning

is often the basis for justifying stationarity assumptions. This is

not sufficient cause to ignore the very real possibility of qualita-

tive dependence on initial conditions. Rather, a more detailed theory

predicting plausible values for the initial conditions is essential.

Haavelmo .(1954, pages 56-63), in a spirited defense of this position,

argues that the distinction between structural parameters and initial

conditions depends on the level of detail in the questions posed of a

model. For example, he argues that if one merely wants to know how

long it will take for an investment growing at a constant rate to

double, then knowledge of the growth rate (a "structural" parameter)

is sufficient. However, if one also wanted to know how much money one

would have after this period, then knowledge of the initial amount

invested (an "initial condition") is essential as well.

F. The latter two effects (i.e., qualitative changes caused by small

changes in structural parameters and initial conditions) coupled with

the possibility of measurement error in these variables, casts doubt

on the ability to predict and control such nonlinear systems. Thus,

even if the model specification is exact, prediction and control may be

impossible in practice, due to unavoidable measurement error.

Definitions

Consider a first-order difference equation, xt+I = F(xt), where F:

J -+ J is continuous, and J is a closed and bounded interval of the real line.

Denote the n-fold composition of F with itself by Fn(x), with FO(x) x denoting

the identity map.

A point peJ is termed a nondegenerate (degenerate) periodic point with

period n, or an n-period point, if and only if Fn(p) = p and p ( F(p), for all
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(some) 1 < k < n. A point pEJ is termed periodic if it is an n-period point for

some n > 1. A 1-period point is termed a steady-state, an equilibrium, or fixed

point of F.

If p is an n-period point, then each point in the collection of points

(p,F(p),...,Fn-(p)} is also an n-period point, and the collection is termed the

periodic orbit, or cycle, of p. If p is nondegenerate, then each point in the

periodic orbit is distinct, and the orbit is said to have length, or period, n.

A point qEJ is asymptotically periodic if there is a periodic point

p f q for which:

lim [Fn(q)-Fn(p)] = 0.
n-w

A k-period point p, and its corresponding periodic orbit, are said to

be locally asymptotically stable if, for some open interval I about p,

IFk(p)-xI < p-xj, for all xeI.

For k = 1, i.e., when p is an equilibrium point, the definition is the

usual definition of a locally stable equilibrium point. For k > 1, the defini-

tion guarantees that all points xcI are asymptotically periodic to p.

The term chaotic dynamics refers to the dynamic behavior of certain

equations F which possess: (a) a nondegenerate n-period point for each n > 1,

and (b) an uncountable set SC J, containing no periodic points and no asymptoti-

cally periodic points. The trajectories of such points wander around in J

"randomly" and, for practical purposes, may be indistinguishable from a realiza-

tion of a stochastic process.

Analysis of Discrete Time System (4)

From inspection of (4), note that F(0;a,a) = F(1;a,a) = 0, for all c

and a. Differentiating (4), find:
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(5) F'(x;a,a) = (1+a)(1-(2-a)x ) < 0 as < x1-a
2-a

or as

1 1/1-a >( ) < x.
2-a

Noting that F"(x;a,a) = -(1+)(2-a)(1-a)xa < 0, one sees that the

geometry of F when, say, a = 1/2, is depicted in Figure 2.

As xt increases, note that xt+1 at first increases for low values of

xt, then peaks, and then decreases for all xt higher than this. This density

dependence is a consequence of the autonomous growth of the labor force coupled

with limited production capacity to sustain it. In population biology, density

dependence arises from autonomously growing populations competing for fixed

resources with no production capacity. Figure 2 also shows that the autonomous

growth rate a "tunes" the nonlinearity of F, the severity of the nonlinearity

increasing with a.

While it is not essential in obtaining the results to follow, the

admissible a will be restricted for each 0 < a < 1 so that F maps J = [0,1] into

itself. Hence, assume:

(6) F(x;a,a) < 1,

or computing F from (4) at its maximum,

(7) a <1- 1 - 1 = *
(-a) (1-)2-a 2-a

a* is tabled for various values of a in Table 1 below:

a a"
.1 3.307619
.25 3.920707
.5 5.750000
.75 11.207031
.9 27.531167

Table 1: Largest a such that F: [0,1] + [0,1]
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The qualitative properties of (4) can be found by examining it for any

particular value of a, say a = 1/2. None of the qualitative properties are

affected by the particular choice of 0 < a < 1. This will become clear as the

analysis proceeds.

Thus, for the rest of the paper, consider the single-parameter family

of first-order difference equations (graphed in Figure 2).

(8) xt+1 = (1+a)x (1- x t ) = F(xt;a); 0 < a < 5.75; x E[0,1].

For each value of a, equilibrium points are found by locating the intersection of

the graph of F(xt;a) with the 45-degree line in Figure 2. For each value of a,

a2note that there are two equilibrium points: x = 0 and x = (-) = x(a). The
1+a

latter is found by solving analytically for the intersection point. The point

x = 0 is clearly unstable and repels nearby points. The local stability of the

other can be determined by linearizing about x(a) = ( a) in (8), obtaining:1+(

(9) F'(x;a) = 1 - 1/2a = (a).

As is well known, the eigenvalue X(a) determines the local stability of

x. When 0 < X(a) < 1, x attracts nearby points in an exponential, monotonic

fashion. When 0 > ?(a) > -1, x attracts nearby points in a (damped) oscillatory

manner. When X(a) = -1, x is neither stable nor unstable, neither attracting nor

repelling nearby points. Finally, when I (a)I > 1, x is unstable and repels

neighboring points. Examination of (9) shows that these behaviors occur when:

0 < a < 2, 2 < a < 4, a = 4, and 4 < a< 5.75, respectively. This is illustrat-

ed in Figure 3 below, where X(a) is the slope of the graph of F at x(a).

When the steady-state x(a) is globally stable, i.e., when a < 4, the

trajectory starting at any point always approaches it. In these cases, the

qualitative dependence of the solution on the parameter a can be approximated by



-9-

comparing the steady state for one value of a with that for another value of a.

This comparative statics analysis can be carried out using the relation x(a) =

a2 _2_(-) . Note that x'(a) = 2 > 0, so that increases in a can be expected to
1+a (+a) 3

increase xt, for sufficiently large t. This analysis is of no help when x is

unstable, i.e., when 4 < a < 5.75.

In this region, if trajectories don't approach x, but are bounded by 0

and 1, where do they go? The first task in discovering the answer is to examine

(8), when a is in this region, for the possibility of stable periodic orbits

which will attract nearby points into patterns of regular, bounded oscillation.

This is now accomplished.

Periodic Orbit Structure: The 2-Period Cycle and its Harmonics

As a exceeds 4, the unstable equilibrium point bifurcates into two

stable points of period two, i.e., into a stable periodic orbit of length 2.

This can be seen by examining F2 , the second iterate of F, for nondegenerate

fixed points, i.e., fixed points of F2 which are not also fixed (equilibrium)

points of F.

For a = 4.2, Figure 4 shows the two nondegenerate fixed points of

2 -2 -2
F (x;4.2), labelled x2 and x2, as well as the degenerate fixed point x. For

a = 3.8 and all other a < 4, the 2-period orbit does not arise. Examination cf

-2 2 -2
the figure shows the slopes of F(x 1 , 4.2) and F (x2,4.2) are both less than 1,

which implies that the periodic orbit is stable.

It also appears that these two slopes are equal, and indeed this is so,

as can be proven by a simple application of the chain rule [Samuelson (1972,

2-2 2 -2page 390)]. Denoting the slope of F2 (x i ;a) by X (x(a)), compute

2-2 -2 -2
dF (xi;a) dF(F(x ;a)) 2 dF(x ;a)

(10) X "(x.(a)) = == d iI1 dx ; i=1, 2

-2 -2as F(x.;a) = xj.
1
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2-2 2 -2Direct inspection of (10) proves that X (x 1 (a)) = X (x 2 (a)). Thus,

one need only examine the slope of F2 at either periodic point to determine the

stability of the periodic orbit containing them.

Using (10) to evaluate X2(x(a)) (the slope of F2 at the equilibrium

point x), compute

2 dF 2 > dF -a=X( > I(11) X (x( oc)) =-(x(o)) < 1 as d(x())() .1.

2-
Therefore, X2(x;a) exceeds one if, and only if, x(c~) is unstable. As the

geometry of Figure 4 makes clear, X2(x;a) must exceed one in order for nonde-

generate 2-period points to exist. Thus, the two 2-period points appear when

x(a) is unstable, i.e., at a > 4. This orbit is stable at first, but as a

-222 22
increases past 4, IX2 (x2 (a) )I increases as well (compare (x2 4.2) with X (x-2

4.7) in Figure 4). For values of a in excess of about 4.8, the 2-period cycle

becomes unstable, and each 2-period point bifurcates into two 4-period points,

producing an (initially) stable cycle of length four denoted {(-4 - x-4 .

Figure 5 illustrates the phenomenon. Not surprisingly, the slope of F at the 2-

-2 -2
period points x 1 (a) and x2 (a) must exceed one in order for the bifurcation to

occur, and a similar application of the chain rule shows that this occurs when:

4-2 2F 2 -2 2 -2 2
4-2 dF (x.;ct) dF (F (xi;a)) dF (x.;) 2 2

4 -2d x dF i1 2 -2 2

(12) X (x.(a)) = dx = = = (x.()) > 1,

or when I 2 (x2i ( )) I > 1. Thus, the 4-period orbit first appears when a increases
1

to the point where the 2-period orbit becomes unstable, as suggested earlier.

This pitchfork bifurcation process continues as a increases, producing

nondegenerate orbits of lengths 2k; k = 2, ... , oo. These orbits are called

harmonics of the 2-period orbit, It is possible to show that all the harmonics

occur prior to a reaching 5.540, although how much prior to this value is not

known. Thus, the range of a , within which a stable orbit of length k first
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appears and later becomes unstable and bifurcates to a 2k-period orbit, decreases

in length as a increases to a limiting value ae < 5.540.

The range of ac < a < 5.75 is termed the chaotic region. As a enters

this region, even stranger behavior occurs. For example, a 3-period orbit exists

at a = 5.540, illustrated in Figure 6 below. This, then, gives rise to orbits of

periods 3k, k = 2, ... , c via the pitchfork process just described. The 3-period

orbit arises as the graph of F3 in Figure 7 lowers itself enough to become

tangent to the 45-degree line and is termed a tangent bifurcation. In fact, a

remarkably simple theorem of Li and Yorke (1975) demonstrates that for any

F(xt;a) in which a nondegenerate 3-period orbit arises, there must also exist

nondegenerate points of all periods, as well as an uncountable set of aperifdic,

not even asymptotically periodic, points whose trajectories wander "randomly"

throughout the domain of F.

The theorem is reprinted below.

Theorem 1 (Li and Yorke):

Let J be an interval and let F:J - J be continuous. Assume there is a

point acJ for which the points b = F(a), c = F2(a) and d = F3 (a), satisfy

d a < b < c (or d-a>b>c).

Then

T1: For every k = 1, 2, ..., there is a periodic point in J having period k.

Furthermore,

T2:There is an uncountable set SCJ (containing no periodic points), which

satisfies the following conditions:

(A) For every p, qeS with p f q.

(2.1) lim sup IFn(p)-Fn(q)/ > 0
n+aco
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and

(2.2) lim inf IFn(p)-Fn(q) = 0.
n+co

(B) For every peS and periodic point qeJ,

lim sup IFn(p)-Fn(q)I > 0.
n+-m

Note that the hypothesis of the theorem will be satisfied by the

existence of a 3-period orbit.

Rather than present the proof of the theorem, which involves only

elementary techniques of real analysis, the techniques used will be integrated

into the following discussion of how one might count the number of k-period

points for each k = 1, ... , o. As a by-product, T1 will be rigorously proven.

Counting the Periodic Points: Symbolic Dynamics

The method we use for counting the number of periodic points of various

periods, and as a by-product proving T1, is termed symbolic dynamics and has

been used by Smale and Williams (1976) and Guckenheimer, Oster, and Ipaktchi

(1977) for this purpose. Their approach is followed here. Symbolic dynamics is

also quite useful in establishing the nature of the aperiodic, chaotic behavior

described precisely by T2 and has recently been applied in studying the chaotic

nature of a class of two-player, noncooperative games by Rand (1978).

Let us examine the map F(x;5.540) of Figure 6 and embellished below in

Figure 8. From Figure 8 it is evident that F[a,b] = [b,c], and that F[b,c] =

[a,c] = [a,b] u [b,c]. This can be seen by following the action of F on the end

points a, b, and c, and using continuity and monotonicity to infer the rest.

Denote [a,b] = K and [b,c] = L. Then, with the notation:

F(K) = [F(a),F(b)] = [b,cl = L

(13)

and F2(K) = F(L) = [F(c),F(b)] = [a,c] = K U L.

r
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Figure 8 shows an equilibrium point x in L where F intersects the 45-

degree line. A rigorous proof of this fact could be made by noting that F(L) =

K U L D L. As L is a compact interval and F is continuous, there ought to exist a

compact subinterval of L, call it QIc L, such that F(Q 1 ) = L. 2 / In our example,

a glance at Figure 8 shows that Q = [b,ql ] C L, by noting that F(b) = c and

F(q u ) = b.

A simple argument will now be used to prove the existence of a unique

fixed point xeQ1C L; F(x) = x. Define the function G(x): Q1 + L by G(x) = x -

F(x). Note that G(b) = b - c < 0, and G(qu) q - b > 0, as b is the lower limit

of L. Therefore, by continuity of G, there must exist xeQ 1 such that G(x) = x -

F(x) = 0. Further, Figure 8 shows that F maps Q1 monotonically to L. So, there

must be only one such xEL. Of course, there are no equilibrium points other than

the origin in K, as F(K) = L, and K n L = b, which is not an equilibrium point.

Suppose we wished to look for 2-period points in K or L. Note that:

(i) F2(K) = F(F(K)) = F(L) = K U L D K (in short: KLK),

(ii) F2(L) = F(F(L)) D F(F(L)nK) = F(K) = L (in short: LKL),

(iii) and F2(L) = F(F(L)) D F(F(L)n L) = F(L)D L (in short: LLL).

The information in (i) can be summarized by saying K covers itself once under the

action of F2 , i.e., if the initial condition is in K, the only way to get back to

K after two iterations of F is to first go to L and then back to K (denoted KLK).

Similarly, the information in (ii) and (iii) means that there are two ways L

covers itself under the action of F2 . One way is to start in L, go to K, and back

to L (denoted LKL), and the other is to start in L, go to L again, and then stay

in L once more (denoted LLL). If we could show that there had to be a fixed point

of F2 following each of these three "paths," then there would be three distinct
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2-period points.-  One of these, of course, would be the equilibrium point x (a

degenerate 2-period point) following the path LLL. For situations (i) and (ii)

we can apply the previous argument to the continuous map F2 finding compact

2 2 22 22
subintervals Q2 C K and Q C L such that F2 (Q) = K and F (Q2 ) = L (see

-2 -2Figure 9). Each contains a unique fixed point termed x1 and x2, respectively.

These must be distinct, as their respective trajectories followed different

paths (and the only common point to K and L is b, which is not a 2-period point).

As they are both 2-period points, the nondegenerate 2-period cycle is {x1,x2}.

Thus, there is only one 2-period orbit in L U K.

A similar technique is used to investigate the existence and number of

periodic points (excluding the origin) of higher length. First, we count the

number of "paths" of length k in L U K by following the transformation F. This

task is made easier by considering the system as a "Markov chain" with "states" K

and L and invariant transition law F." The "transition matrix" for this chain is

then found to be:

K L

(14) K(0 1
L 1 1

where an entry of one indicates that F (interval at left) D interval at top, and

a zero indicates the absence of this condition. The number of paths of length k

of the type Fk() D ... D (*) which start and finish with the same interval (*)

0 1 k
is found by computing trace (0 1) , where the first component in the diagonal of

ththe k t h power is the number of paths of length k connecting K and K, and the last

component in the diagonal gives the number of paths connecting L and L. Thus,

the trace, denoted Nk, is the number of all such paths of length k.

(15) Nk = trace ((0 1) = (trace(0 k

Trace is a similarity invariant, so one can diagonalize the matrix, raise it to

the k power, and then compute the trace. The diagonalized matrix is
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1+- k
2 0

0I1-- 2

and computing find:

(16) Nk = 1[( 1+-)k+( 1-~ )k] k = 1, ...k '

Computing (16), it appears that the sequence {N k} forms the Fibonacci numbers

{1,3,4,7,11,18,29,... } In fact, this is indeed the case. For example, N3 = 4,

and the paths are KLLK, LKLL, LLKL, and LLLL.

The last step in counting the number of k-period points is to prove

that each path of length k enumerated in (16) is associated with a unique, though

possibly degenerate, k-period point so that the number of k-period points (de-

generate and nondegenerate) in L U K equals Nk. Consider a path of length k,

Fk(") D ... D ("), starting and ending with the same interval, K or L. As Fk is

continuous and (') is a compact interval, there is a compact subinterval Qk of

(*) such that Fk(Q ) = (.). Then, via the same argument given earlier, there

-k
must exist a unique fixed point x in this interval. This k-period point is

distinct from all other k-period points corresponding to the other paths of

4/
length k, as each follows a different path.-

Thus, the number of k-period points equals Nk , the kth Fibonacci

number. Of course, a lot of these are degenerate. For example, for k = 3, there

are N3 = 4 periodic points. They are the equilibrium point x (following LLLL)

and the three 3-period points comprising a 3-period orbit. For k = 4, there are

Nq = 7 periodic points. They are the equilibrium point x, the two 2-period

-2 -2
points x I and x2 , and four 4-period points comprising a nondegenerate 4-period

orbit. Continuing the enumeration, it is obvious that there exists at least one

nondegenerate orbit of period k for all k = 1, ... , ~, thus proving T1.
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What about intervals in [0,1] other than K and L? Might they contain

periodic points? Partition the domain into the following sets:

[O,a), [a,b] = K, [b,c] = L, and (c,1].

A glance at Figure 8 shows there can be no k-period points in [O,a) other than

the equilibrium point 0 as F([O,a)) C [O,a) UK and is monotone increasing.

Thus, F eventually repels all points in this range into K, subsequent to which no

point ever returns to [0O,a). They are absorbed into K U L instead. Likewise,

there are no periodic points in (c,1], as F((c,1]) = [0,a), and we have just seen

that all points in [O,a) become absorbed in K U L. This can be represented by

looking at the transition matrix on the above "Markov Partition":

[O,a) K L [c,I]
[O,a) 1 1 0 0

K 0 0 1 0
L 0 1 1 0

(c,1] 1 0 0 0

Clearly, K and L are "absorbing states" of the process, and the search for

periodic points (other than the origin) can be restricted to them.

An analysis similar to the above can be applied for any value of the

parameter a > 5.540, with the result that even more periodic points are present

than for C = 5.540.

Existence of Aperiodic Points: Chaos

Symbolic dynamics can also be used to prove the existence of aperiodic,

not asymptotically periodic points. For example, any point p f b following path

KLKLLKLLLKLLLLK . . . is clearly aperiodic. The periodic points enumerated by

(16) form a countable, and hence (Lebesgue) measure zero, subset of [0,1]. The

aperiodic points are, therefore, uncountable. It is possible to demonstrate the

existence of an uncountable set of points S C [0,1] which are aperiodic and not
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asymptotically periodic. The formal properties of this set are stated in T2 of

Li and Yorke's Theorem 1, reprinted earlier with proof omitted.5 / This uncount-

able set has measure zero for many c< 5.75. However, at a = 5.75, F covers the

interval [0,1] twice, with F[0, 4/9] = F[4/9,1] = [0,1]. I will show that

F(x;5.75) has no stable periodic orbits in [0,1] , and that the (unstable) period-

ic orbits are dense in the interval [0,1]. These periodic orbits contain only a

countable number of points. Trajectories emanating from other points approach an

infinite set A with the following properties:

(i) A is invariant under F, i.e., F(A) = A

(ii) There exists p A such that {Fn(p);n=1,...,co is dense in A.

(iii) There is a neighborhood N of A consisting of points whose trajectories

tend asymptotically to A, i.e., lim Fn(q)eA, for all qeN.
n

A set A with properties (i)-(iii) is termed a "strange attractor," and is known

to exist for some similar maps on the unit interval (e.g., f(x)=4x(1-x)). In

both that case and F(x;5.75), the whole interval [0,1] is a strange attractor.

Trajectories emanating on or near the strange attractor "randomly" wander around

[0,1]. Perhaps the best one can hope for is that the long-run behavior of such a

trajectory has nice statistical properties, e.g., that it has a long-run time

average in a meaningful sense. Thus, starting from x0 e[0,1], one hopes that the

ergodic mean

(17) lim F (x0;); FO(x 0) = x0
rna i=0

exists for almost every x0. Further, one would like to compute how often, upon

averaging over a long length of time, the trajectory takes values in a given set

B. Denoting the characteristic function on B by XB , this mean sojourn time in B

is computed as:
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n-1 i
(18) lim [n XB(F (x0; ))] = r[B;x 0].

n+o i=0

Conditions under which these limits exist and can be feasibly computed are

investigated through ergodic theory.

The individual ergodic theorem due to Birkhoff (1931) gives a useful

condition for the existence and computation of (17) and (18). It implies that if

there exists a measure n on [0,1] such that

-1
(19) n(F (B)) = p(B), for all measurable sets B.

Then (17) exists for almost all x0 . Further, if (18) is independent of x0 for

almost every x0 , then (17) can be computed by:

n-1
(20) [1 F (x0;)] J :dn for almost all x0.

i=O

Equation (19) is summarized by saying "I is invariant under F" or "F

preserves n," and (20) by "the time mean equals the space mean" or "F is

ergodic."

Also, if g is any real valued T-integrable function on [0,1], thought

of as a variable dependent on the state xt,

n-1
(21) [1 g(F(x ))] gd, for almost all x0.n i=O

Thus, if F is ergodic, (19) is computed by integrating XB over [0,1] with respect

to the measure n.

Following a technique suggested by Stein and Ulam (1963), we try to

show that F(x;5.75) on the unit interval is conjugate to the "triangle" map G on

the unit interval given by:

2x; 0 < x < 1/2

2(1-x); 1/2 < x < 1

depicted in figure 10.
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Conjugacy of F and G means that there exists a measurable transforma-

tion (i.e., bijective, measurable, with measurable inverse) h on the unit

interval such that:

-1
(23) F = h Gh.

If F is conjugate to G, then from (22) Fk(x) = h -Gkh(x), or h(Fk(x)) = Gk(h(x)).

In particular, if for some x, h(x) is a k-period point of G, then Gk(h(x)) =

h(x) = h(Fk (x)), and invertability of h implies x = Fk(x), i.e., x is a k-period

point of F. Likewise, if x in any k-period point of F, h(x) is a k-period point

of G. Thus, the periodic orbits of F and G are in one-to-one correspondence. A

simple indirect proof establishes the fact that any F conjugate to G can have no

stable periodic points. To do so, we assume for purpose of contradiction that

there exists a stable, k-period point x of F. Thus, we assume that IFk'(x)j < 1.

Conjugacy implies h(Fk(x)) = Gk(h(x)), for all x. Differentiating, find:

(24) h'(Fk(x))F k ' (x) = Gk '(h(x))h'(x).

k
But x = F (x), and h' 0 due to its bijectivity. Thus, (2.4) implies:

(25) Fk(x) = Gk'(h(x)),

An application of the chain rule as was done in (11) and (12) yields:

k-1
(26) G (h(x)) = I G'(G (h(x))).

i=0
2 if 0 < x < 1/2

Examination of (22) shows G' = . Thus, from (26)
-2 if 1/2 < x < 1

IG(h(x))l > 1, thus implying h(x) is an unstable periodic point of G. By (25),

IFk'(x) > 1, contradicting our assumption that x was stable. Therefore, there

are no stable periodic points in G or F. Further, Guckenheimer, et al (1977)

show for G that the unstable periodic points are dense in [0,1], and are thus

dense for F via the one-one correspondence through h.

r

mmm
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In addition, if F can be shown to be conjugate to G, then it is easy to

find an invariant measure rn for F. By inspection of G, it is clear that G

-1preserves Lebesgue measure i on [0,1]. If F = h Gh, then it is easy to show that

the induced measure r defined by n(B) = p(h(B)) is an invariant measure for F.

Thus, the mean sojourn time (18) of F in the interval [0,x] can be computed as:

(27) n([O,x]) = p(h([0,x])) = lh(x)-h(0).

Furthermore, if h is differentiable and monotone increasing, the calculation of

(21) is simplified to:

n-1
(28) lim 1 g(Fi(xo;a)) = j0 g d  : fOg(x)h'(x)dx.

n+ i=O

We have constructed a fast computer algorithm which implements Ulam's

numerical technique for finding h. The results for F(x;5.75,a=1/2) and, more

generally, for maps F(x;t*,a) onto the unit interval are shown in Figure 11. For

those maps, almost all trajectories are chaotic and a typical one is shown in

Figure 12. Time averages of functions on the trajectories can be computed by

numerically integrating (28).

Concluding Remarks

It is important to note that the qualitative dynamical results in this

paper relied solely on certain geometric properties of the function family F(xt;

a,a), and not on its algebraic form. The process of successive pitchfork bifur-

cations, followed by a tangent bifurcation and chaos as the structural parameter

"tuning" the nonlinearity varies, is generic to all "one-hump" difference equa-

tions whose graphs have the general appearance of Figure 2. For example, the

families F(xt;a) = axt(1-x t ) and F(xt;) = xte xt both exhibit all the

phenomena described herein.
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The existence of a strange attractor and the necessity of statistical

techniques to analyze fluctuating dynamics of trajectories on or near it do not

arise in differential equation systems of dimensions one and two. We have seen

that the phenomena does arise in our one-dimensional difference equation, and

several authors including Beddington, Free, and Lawton (1975), and May (1976),

have indicated that strange attractor-like phenomena requiring "less" non-

linearity are far more likely in difference equation systems of dimensions two

and above.



Footnotes

The author wishes to thank Paul O'Brien for ably providing the computer
programming and moral support; K. S. Rolfe, Mary K. Steffenhagen, and Wenche
Branden-N'Kjell, who produced the detailed graphics; and Sharon Schuerman, who
patiently typed the hieroglyphics and script.

1/
- See Adelman and Adelman (1959) for an example of this, by no means

unique, practice.

2/
- This is proven in lemma 0 of Li and Yorke (1978).

3/The only point which possibly follows more than one path is b
L n K, and it follows none of these.

- Actually, there is one point which, at first thought, appears to be
multipally counted, but which in fact is not. This point is b = K n L, which
appears to be counted in paths of the following types:

(i) LKLLLKLLLKLL....

(ii) KKLKKKLKKKLK....

As b is a nondegenerate 3-period point, it is a fixed point of Fk , k =
3, 6, 9, .... The periodic orbits of b are of the form {b,c,a,b,b,c,a,b,...},
and are of type (i). Over counting would result if type (ii) paths were also
listed in our enumeration, but the enumeration never listed the possibility of
paths with consecutive K's. Thus, paths of type (ii) were not counted.

5/For example, to prove T2, (2.1) one shows the existence of an un-

countable set S C J such that for any distinct p, qES, Fn(p)eL and Fn(q)eK, for
infinitely many n. Therefore, they essentially must stay a finite distance apart
for most n.

I
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