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ABSTRACT

Doan, Litterman, and Sims have described a method for estimating
Bayesian vector autoregressive (BVAR) forecasting models. The
method has been successfully applied to the U.S. macroeconomic
dataset, which is relatively long and stable. Despite the brevity
and volatility of the post-1976 Chilean macroeconomic dataset,
this paper shows that a straightforward application of the DLS
method to this dataset, with simple modifications to allow for
delays in the release of data, also appears to satisfy at least
one criterion of relative forecasting accuracy suggested by Doan,
Litterman, and Sims. However, the forecast errors of the Chilean
BVARs are still large in absolute terms. Also, the model's coef-
ficients change sharply in periods marked by policy shifts, such
as the floating of the peso in 1982.
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Doan, Litterman, and Sims (1984, hereafter DLS) have
described a method for estimating Bayesian vector autoregressive
(BVAR) forecasting models. The method has been successfully
applied to the U.S. macroeconomic dataset, which is relatively
long and stable. Despite the brevity and volatility of the post-
1976 Chilean macroeconomic dataset, a straightforward application
of the DLS method to this dataset also appears to satisfy at least
one criterion of relative forecasting accuracy suggested in DLS.
However, the Chilean BVAR's forecast errors are still large in
absolute terms. An improved dataset or modifications to the basic
DLS method may be needed to significantly improve the model's

forecasting performance.

The DLS Method Has Produced Successful Forecasting Models
for U.S. Data

The DLS method mainly consists of procedures for choos-
ing a Bayesian prior distribution for the coefficients of a vector
autoregression. A vector autoregression is a multivariate time
series model where an n x 1 vector of time-indexed elements is
regressed on its own lagged values. Typically, the value of the
vector at time t is regressed on its values at t - 1 through t -

k. This means that the model contains n equations, each with a
constant, a disturbance term, and k lags of each variable on the
right side. DLS describe how to choose a prior probability dis-
tribution for the disturbance term variance and the nk + 1 coeffi-
cients of each equation.

To simplify the task of choosing the nk + 1 means and

(nk+1) x (nk+1) covariances of each equation's coefficients, DLS




first propose that the prior distributions be chosen from a par-
ticular family of distributions. Many aspeéts of the prior dis-
tribution are common to all members of the family. For example,
in each member of the DLS family, the prior means of the coeffi-
cients are set to values associated with a random walk. Also, the
prior variance of the coefficient on the kth lag of a variable
declines as k increases, indicating increasing confidence that the
coefficient should be close to its prior mean.

The members of the DLS family do differ in a few dimen-
sions. For example, members could differ by the degree of confi-
dence they express in the random walk prior means of the coeffi-
cients, in the zero prior mean of the constant term, or in the
importance of time variation in the coefficients.

Each dimension by which the members differ is indexed by
a so-called hyperparameter. By specifying a value for each hyper-
parameter, the model builder would select a particular prior from
the DLS family. The number of hyperparameters is typically small
(in DLS, 8), and each has an economic or statistical interpreta-
tion, and usually a numerical scale as well, that does not vary
with the model to which it is applied. This means that forecast-
ers probably can develop beliefs about the best values of these
hyperparameters more readily than they can develop beliefs di-
rectly about the numerous means and covariances of the prior
distribution of the coefficients of a particular model.

In a fully Bayesian implementation of the DLS method,
the forecaster would also specify a pricr distribution over the

hyperparameters. In principle, at least, it would then be possi-
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ble to construct the'prior diStribution of the model's coeffi-
cients as a mixture of the distributions associated with each
individual hyperparameter setting, where the weights used to form
the mixture are taken from the prior over the hyperparameters.
Conventional Bayesian procedures--integration and scaling of the
likelihood times the prior--would yield a posterior distribution
for the coefficients. In general, this involves intractable
integrals and thus cannot be done. An obvious exception occurs
when the forecaster's prior over the hyperparameters is degener-
ate, putting unit mass on a single member of the DLS family. In
this case the Kalman filter will easily compute the posterior
distribution of the coefficients.

DLS do not expect, however, that forecasters should be
able to compute the difficult integrals of the general case or
identify a single member of the DLS family of distributions as
their.own prior beliefs about their model's coefficients. DLS
propose a tractable alternative that, under certain assumptions,
should approximate the fully Bayesian procedure just described.
For each hyperparameter setting, the forecaster computes how well
a model with those hyperparameters would have forecasted in the
past. The criterion DLS use to evaluate each model's simulated
forecasting performance can be interpreted as a likelihood func-
tion relating the data and the hyperparameters. DLS recommend
using the hyperparameter setting that maximizes this likelihood
function.

Since the data are used to pick the prior, this is

clearly not a strict Bayesian procedure. However, DLS note that




if (a) the forecaster's priors over the hyperparameters are nearly
flat, (b) the DLS likelihood statistic is high within a region R
and low elsewhere, and (c) the important features of the estimated
models are not too sensitive to variations of the hyperparameters
within R, then picking the hyperparameters that maximize the DLS
likelihood gives a model whose important features are approxi-
mately the same as the model implied by the fully Bayesian proce-
dure. DLS then argue that condition (a) is plausible and that
conditions (b) and (c) seem to hold, at least for the U.S. macro-
economic dataset they examine. This rationale justifies the use
of a non-Bayesian procedure to estimate a "Bayesian" vector auto-
regression.

Whatever its rationale, the DLS method for estimating
BVARs has produced models that forecast U.S. economic data reason-
ably accurately. In the simulated out-of-sample forecasts, DLS
(p. 22) observed "an average of about 2 percent improvement in the
one-step-ahead forecast errors in going from (a system of univari-
ate autoregressions for each variable) to the final (BVAR)." They

claim (p. 2U4) that,

"Despite the small absolute gain in forecast accuracy, it
is significant that we have documented a consistent gain
from the use of a formally explicit multivariate method
in a system of this size. This has not been done before,
to our knowledge. The difference in accuracy that we
find between multivariate and univariate methods is
substantial relative to differences in forecast accuracy

ordinarily turned up in comparisons across methods, even




though it is not large relative to total forecast er-
ror. Moreovef, if we think of a decomposition of move-
ments in the data into signal and noise, with noise being
the dominant component, then a 2 percent increase in
forecast accuracy must represent a much lérger percentage

increase in the amount of signal that is being captured.”

Litterman (1986) and McNees (1986) present evidence that the
actual forecasts generated in the early 1980s by a small BVAR of
the U.S. macroeconomy were also at least as accurate, for real
variables like real GNP and unemployment, as the forecasts of the

major U.S. economic consulting firms.

Chilean Macroeconomic Data Pose Severe Difficulties

to Any Forecasting Method

Compared to the U.S. macroeconomic data series that DLS
used, the Chilean macroeconomic data series are short and vola-
tile. Current practice among analysts of the Chilean economy, I
am told, is to regard all data available for periods before 1976
as unreliable, incompatible with current data, or both. The
validity of this practice needs to be examined, but I have adopted
it here. As a result, I have about 144 monthly observations,
enough to encompass only about 3 or 4 normal business cycles.

During this short period, however, business cycles were
not, at least by U.S. standards, normal. The period began at the
tail end of a rapid disinflation, and growth rates of the season-
ally adjusted M1 money stock (MINPS) and the wholesale price level

(WPI) continued to drift down from the 8-12 percent range in 1976




to slightly negative rates by 1981 (Figures 2c and 3c). Domestic
interest rates (DIR) began the period at levels far above the
highest values in the DLS dataset, fell precipitously for a year,
but remained high (for example, relative to percentage changes in
the WPI) throughout the period (Figure 6a; nominal rates are
shown) . Policy regarding the foreign exchange value of the
Chilean peso (XCH) shifted twice, from floating to fixed in 1979
and back to floating in 1982 (Figure 4a). The first exchange rate
shift was roughly contemporaneous with a peak in the price of a
ma jor export good, copper (PCOB, see Figure 8a), and a liberaliza-
tion of capital controls. It was followed by surges in Chilean
capital inflows (KINF; Figure 5a) and international nominal rates
of interest (LIBOR; Figure 7a). The second exchange rate shift
was preceded by sharp declines in the (copper) terms of trade
(Figure 8a), capital inflows (Figure 5a), and seasonally adjusted
industrial production (IPINSS; Figure 1a). It was followed by a
burst of inflation (Figure 3c), a spike in domestic interest rates
(Figure 6a), and partial rebounds in the (copper) terms of trade
(Figure 8a) and industrial production (Figure 1a). Variables like
these also vary in the United States, but generally to a much
milder degree and in a dataset whose greater length allows more
precise measurement of any associated changes in the relationships
among variables.

The brevity of the Chilean dataset, the volatility of
the Chilean data series, and the possibility that policy changes
significantly affected the relationships among Chilean variables

all pose difficulties for any forecasting methodology. Successful




forecasting models may require longer datasets, the imposition of
many coefficient restrictions derived from structural econometric
models of the recent Chilean experience, or more sophisticated
modeling of time variation in both the coefficients and the dis-
turbance term distributions. In this paper, I will not pursue
those possible avenues of improvement. Instead I will show that
DLS's BVAR technique, applied to the existing Chilean dataset with
no significant modifications to take account of the data's vola-
tility or the effects of policy shifts, can still at least match
the forecasting performance of univariate time series models while

capturing some relationships among variables.

The DLS BVAR Method at Least Matches a System

of Univariate Equations

I have applied a slightly modified version of the DLS
BVAR methodology to the January 1976 through December 1987 monthly
values of the eight data series discussed in the previous sec-
tion. The method yields a quasi-univariate system of equations.
That is, under apparently optimal hyperparameter settings, the
estimated forecasting equations forecast about as accurately as
univariate equations and allow only moderately more interaction
among the variables. Experimentation with other hyperparameter
settings suggests there may be a tradeoff between optimizing the
model to predict industrial production and optimizing it to pre-
dict other variables, such as inflation.

The Chilean BVAR was originally specified with six
endogenous and two exogenous variables. The six original endo-

genous variables were IPINSS (seasonally adjusted industrial




production), MINPS (seasonally adjusted M1 money), WPI (wholesale
price index), XCH (peso-dollar exchange rate), KINF (capital
inflows), and DIR (domestic interest rates). The two original
exogenous variables were LIBOR (international interest rates,
represented by the London interbank offer rate) and PCOB (the
price of copper). The original model had six equations for the
endogenous variables, each with a constant term and six lags of
each of the endogenous and exogenous variables on the right
side. The two purely exogenous variables were represented by
unrestricted univariate autoregressions, with 2 lags for LIBOR and
4 lags for PCOB.

I also experimented with models in which capital inflows
were treated as exogenous. The model reported here is somewhat
intermediate. Technically it treats capital inflows as endogenous
and has six multivariate equations (plus univariate equations for
LIBOR and PCOB). However,-the prior distribution of the coeffi-
cients in the equation for capital inflows causes most of the
coefficients on other variables in that equation to be nearly
zero. Except for contemporaneous correlations between its distur-
bance term and other disturbance terms, capital inflows are nearly
exogenous.

The model presented here differs from the initial model
by allowing for varying delays in the release of data for its
variables. Data on the money supply, the wholesale price index,
the exchange rate, domestic and foreign interest rates, and the
price of copper in month t are assumed to all first be available

in month t + k, k 2 1. Data on industrial production and capital




inflows in month t are assumed to be released two months later
(t+k+2). Accordingly, the equations for IPINSS and KINF are
augmented by terms for the contemporaneous and lead one values of
the other variables.

The prior means of the coefficients of the six endo-
genous equations are set according to the continuous-time random
walk prior. That is, the prior means are set to conform to a
model in which each variable evolves as a continuous function of
time such that at each instant its expected value at any future
date equals its current value. The variables are observed only as
discrete monthly averages, however. Discrete time averages of
continuous random walks are generated by autoregressive processes
with an infinite number of lags, where the coefficient on the kth

lag is given by

(1—a)a(k-1),

where a = /3 - 2 [see Working (1960) or Christiano and Eichenbaum
(1987)]. In each equation of the Chilean BVAR, the coefficients
on the six lags of the dependent variable are given values accord-
ing to this formula, with k = 1, 2, 3, 4, 5, 6. All other coeffi-
cients have a prior mean of zero.

The prior variances of the coefficients in the Chilean
BVAR are governed by ten hyperparameters--the eight discussed in
DLS and two more subsequently introduced by Sims. Five of these
hyperparameters affect the variances of each coefficient individu-
ally. Three--including the two new ones--affect the variances of
linear combinations of coefficients. Two control the nature of

the time variation in the coefficients.




Before allowing for restrictions on linear combinations

of coefficients, the prior variances of the model's coefficients

have the following form:

1. For the variance of the kth lag of the 1% yariable in the ith
equation,
var(a} ) = TITE x OWN

i,k k x exp(WIxWEIGHT(i,1))"

2. For the variance of the k! lag of the jth variable in the i®h

equation (i#j,k=0),

TITE x CROSS x 0?

var(ai k) = 5
3 |[k| x exp(WTxWEIGHT(i,j)) x o

3. For the variance of the coefficient on the contemporaneous
value of the jth variable in the i®P equation (i#j; i=IPINSS

or izKINF),

2 « TITE x CROSS x o?

var(ai k) = 5
I exp(WIXHEIGHT (1, 1)) x o

t

4. For the variance of the constant term in the i®h equation,

var(ci) = TITE x CON «x 0?.

In these expressions, o, is the variance of the disturbance term
in equation i. The o, are treated as though they are known but
are in fact estimated as 0.9 times the standard error of the
residual in a regression of variable i on six lags of itself. The

terms WEIGHT(i,j) come from the 6 x 8 matrix
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1.0 1.0 1.0

0.0 1.0 1.0 1.0 1.0

1.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0
1.0 0.5 0.0 0.5 1.0 1.0 1.0 1.0
2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0

1.0xKW 1.0xKW 1.0xKW 1.0xKW O0.OxKW 1.0xKW 1.0xKW 1.0xKW
2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0

Along with the hyperparameter WT, this matrix allows selective
alteration of the variances of a given variable's coefficients in
a given equation.

I exploited this possibility by experimenting (in the
initial model only) with various values of KW, which controls the
influence other variables have on capital inflows. Treating KW
as, in effect, an eleventh hyperparameter, I selected a value of
KW = 8, which makes capital inflows nearly a univariate process.

Except for the KW factor, the rest of the WEIGHT matrix
is patterned after the one used by DLS. Rows 1 and 5, for IPINSS
and KINF, have the basic DLS pattern of zeroes on own lags and
ones on other variables. Rows 4 and 6, for XCH and DIR, have ones
on own lags and twos on other variables, the pattern DLS suggest
for variables especially likely to follow random walks. Rows 2
and 3, for MINPS and WPI, have a modified form of the 0-1 pat-
tern. Because they are likely to be sensitive to each other, to
the exchange rate and, in the case of MINPS, to KINF, these other
variables are given the intermediate downweighting factor 0.5 in
rows 2 and 3.

The terms OWN, CROSS, and CON are hyperparameters gov-
erning the size of the variances of the coefficients of, respec-
tively, own lags (lags of the dependent variable), cross lags

(lags of variables other than the dependent variable), and the
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constant terms. Finally, the hyperparameter TITE is used to scale
all prior variances up or down simultaneously.

Three hyperparameters govern the tightness with which
three linear restrictions are imposed on the coefficients. SUM is
used to control the tightness of a restriction that the sums of
the coefficients on own lags should be one and the sums of the
coefficients on cross lags should be zero. BEGWT controls the
tightness of another restriction that even if the SUM restriction
is violated, the coefficients on all variables should collectively
imply that the best forecast of a variable is given by the random
walk prior. NOMWT controls the tightness of a long-run superneu-
trality constraint. This constraint allows the sums of individual
nominal variables to deviate from one in their own equations and
from zero in other equations, but requires that the sum of all
nominal variable coefficients be approximately one in nominal
variable equations and approximately zero in other equations.
(Nominal here means variables measured in units of domestic cur-
rency and hence likely to inflate at about the same rate in the
long run. MINPS and WPI were treated as nominal here. XCH was
not, since it partly depends on inflation outside Chile and be-
cause experiments suggested little gain from treating it as nomi-
nal.)

The eight hyperparameters discussed so far determine the

prior mean, 8., and prior variance-covariance matrizx, ZO' Two

0
more hyperparameters govern how the posterior mean and variance
evolve as the model is estimated by applying the Kalman filter to

the observations one by one. The hypothesized law of motion of

the coefficients, which must be supplied to the Kalman filter, is
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(Bt-so) = DECAY x (Bt—1-80) + Uy
where He is taken to be normally distributed with mean zero and
variance-covariance matrix TVAR x 20. DECAY and TVAR are the two
hyperparameters governing, respectively, the rate- at which the
coefficients decay toward their prior mean and the extent to which
they vary around their expected path.

I selected values for the ten hyperparameters by at-
tempting to maximize the likelihood statistic developed by DLS.
For the i®h endogenous variable, the likelihood statistic for any
given hyperparameter setting is computed as a weighted average of
variable i's one-step-ahead forecast errors when the model is
estimated with those hyperparameters. The one-step-ahead forecast
errors are computed recursively, with each forecast based on
coefficients estimated only through the data that would have been
available when the forecast was made. Forecasts of exogenous
variables, which are needed to forecast the endogenous variables,
are computed in the same recursive fashion, using their univariate
equations. The weights on the individual forecast errors in the
average are given by the forecast's conditional variance (condi-
tional on the data and estimated probability distribution of the
coefficients at the time the forecast was made) divided into the
geometric mean of all conditional forecast variances for variable
i. The overall likelihood statistic for the model is ordinarily
the sum of the likelihoods for each endogenous variable, but I
also experimented with maximizing the 1likelihoods of individual

equations (see below).
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In attempting to find the hyperparameter setting with
the highest 1likelihood, I searched over hundreds of possibili-
ties. Computing the likelihood for a given hyperparameter setting
takes about 10 seconds on an Amdahl dual 580 mainframe computer
system, and a large-scale search on a personal computer would take
days. Even on the mainframe, it is not practical to thoroughly
search all interesting hyperparameter settings. I chose a method
called axial search, which searches over one hyperparameter at a
time while keeping the others fixed at their best (up till then)
values. With about ten values for each hyperparameter and ten
hyperparameters, each axial search iteration covered about 100
settings.

The success of axial search depends on the shape of the
likelihood function and the order in which the hyperparameters are
searched. If the likelihood is symmetric (around lines through
its peak and parallel to the axes) as illustrated in Figure 20a,
then axial search will probably find a nearly maximizing setting
for the hyperparameters no matter in what order they are
searched. However, if the likelihood has the asymmetric shape of
Figure 20b, then results of axial search may depend on the order
in which the hyperparameters are searched, and some orders may not
find settings that are close to optimal. Even repeating the axial
search from the best point of a previous axial search may not get
around this problem if, for example, the likelihood is asymmetric
and has multiple local peaks. To lessen the possibility of such a
result, I sometimes varied the starting values and search order of

the hyperparameters.
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For the model I have described, with KW = 8 implying a
very nearly univariate equation for endogenous KINF ard exogenous
LIBOR and PCOB having strictly univariate equations, the highest
likelihood value I found in my initial hyperparameter search is
associated with estimated equations for the other five endogenous
variables that are also not far different from univariate. The
chosen hyperparameters, shown in Table 2, are not much different
from those typically found in applications of the DLS method to
U.S. data, although the TITE*¥CROSS product of 0.0001 implies a
relatively high degree of confidence that the coefficients of
variable j in equation i (i#j) are zero. However, as also shown
in Table 2, the BVAR model's root mean squared forecasting errors
1, 6, and 12 months ahead during 1981-87 are generally similar to,
and for IPINSS worse than, those of the system of univariate
equations shown in Table 1. The similarity of the univariate and
BVAR models is also evident in the histories of their forecast
errors, shown in the upper panels of Figures 9-14.

In addition, a decomposition of the sources of forecast
error indicates that the BVAR model attributes a very high per-
centage of the variance of each variable's forecast error to the
variable itgglf (that 1is, to its own disturbance term). For
forecasts of MINPS, WPI, and KINF 1-6 months ahead, nearly all of
the variance of the forecast errors is attributed to the vari-
able's own disturbance term. This 1is somewhat less true of
IPINSS, XCH, and DIR. The slightly lower degree of autonomy
displayed by these variables apparently reflects contemporaneous

correlation between their disturbance terms and the disturbance
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terms of the other variables, for the univariate system shows
roughly the same degree of autonomous variation in these vari-
ables. After one year, some of the variance decompositions show
stronger cross-variable effects, but these figures are subject to
wide confidence bands and thus may not be significant. [See
Runkle (1987) for a discussion of this point. See Doan and
Litterman (1986, p. 19-4) for a procedure for computing confidence
bands for BVARs.] Though not shown in the tables, estimated
coefficients on variables other than the dependent variable or
constant term are also small. Similarly, the response of variable
j to a surprise movement in variable i (the impulse response of j
to i) is generally small.

Despite the similarity of the BVAR and univariate mod-
els, the likelihood statistic favors the BVAR. The discrepancy
between the likelihood statistic, which favors the BVAR, and the
root mean squared errors, wﬁich show mixed results, may be due to
several factors. One obvious reason is that the system likeli-
hood, as the sum of the individual equation likelihoods, balances
the BVAR's inferior performance in forecasting IPINSS against its
superior performance in forecasting the other five endogenous
variables. Another possible reason is that the equation likeli-
hood, unlike the root mean squared error, does not necessarily
give equal weight to two errors of the same magnitude. An error
in a period for which the conditional variance of the forecast
error was high will depress the likelihood less than an error of
the same size occurring when the conditional forecast error vari-

ance was low.
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Some of the forecast error histories in the upper panels
of Figures 9-14 also indicate some possible advantages for the
BVAR. In particular, the univariate model's forecast errors have
on average been more biased than the BVAR's errors in recent
years, as shown by the greater tendency of running totals of
univariate model errors to drift up or down since about 1984.

Changing the likelihood criterion by omitting the like-
lihood of one or more endogenous variables can lead to somewhat
different results. I experimented with maximizing just the like-
lihood of WPI and just the likelihood of IPINSS. In the former
case, shown in Table 3, the overall system likelihood is actually
higher than in Table 2, where the hyperparameters were chosen in
an attempt to maximize the system likelihood. The axial search
procedure for Table 2 obviously failed to maximize the system
likelihood. This suggests that a technique like Sims's Bayesian
interpolation of the 1likelihood surface may be useful (Sims
1986). The optimal values in Table 3 are quite extreme, espe-
cially for SUM and NOMWT. (SUM was always the last hyperparameter
whose values were searched, and its value was set to zero during
the initial searches over values of the other hyperparameters.
NOMWT, by contrast, was generally among the first three or four
hyperparameters searched over.) Together they keep the sums of
coefficients fixed at their prior means. The rapid rate at which
parameters decay toward their prior means (DECAY) is also unusual.

There are other anomalies in Tables 2 and 3. Despite
the tight priors and rapid decay toward the prior means of its

coefficients, the model of Table 3 shows slightly more cross-vari-
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able interaction in its variance decompositions than the first
BVAR. Also, despite a stronger system likelihood and generally
stronger equation likelihoods, the Table 3 model's root mean
squared errors are generally higher than for the BVAR of Table 2.

Maximizing solely the likelihood of the IPINSS equation
appears to imply modest changes in forecast performance but more
substantial changes in the coefficients of the models. As shown
in Table 4, the system likelihood for the IPINSS optimized model
is lower than in Tables 2 or.3. Nonetheless, the equation likeli-
hood for IPINSS and some root mean squared errors are superior in
Table 4. The lower panels of Figures 9-14 also suggest that the
model of Table U4 predicts IPINSS somewhat better, and other vari-
ables somewhat worse, than the other BVARs.

The running totals of one-step-ahead forecast errors in
Figures 9-14 give a somewhat different perspective on the model of
Table 4. For all variables except DIR, the Table U4 model has less
of a tendency to consistently under or over predict during the
1981-83 period, as shown by the gaps that open up at that time in
panel I of Figures 9-14. Thereafter, the lines in the I panels
are roughly parallel, suggesting nearly equal tendencies to under
or over predict. The superiority of the Table 4 model in 1981-83
may be just a fluke, attributable to the small sample size. Or it
may be evidence that the Table 4 model captures useful information
about turning points that the Table 2 model misses. Perhaps time
will tell.

The difference in the Table 4 model's forecast perfor-

mance appears to be small, however, compared to the change in the
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coefficients of the model. Figures 15-19, for example, generally
show that the coefficients of the Table 4 model have évolved very
differently from those of the Table 2 model (and the coefficients
of the Table 3 model don't evolve at all). One difference is that
the coefficients optimal for forecasting IPINSS allow much more
interaction among variables. Table 4 reveals much lower degrees
of autonomy in its variance decompositions of all endogenous
variables, at least after one year. This may be due to the zero
values of the hyperparameters SUM and NOMWT chosen in the maximi-
zation of the likelihood of IPINSS. The relatively high degree of
time variation in the model's coefficients could also play a
role. Also note that in both models changes in coefficients were
especially rapid in about 1982 and, to a lesser degree, about
1985.

The generally moderate changes in the BVAR models'
forecasting performance as the hyperparameters are varied around
the optimal values is encouraging in one sense. As discussed
above, this is one of the conditions necessary for interpreting
the likelihood maximization performed here as an approximately
Bayesian procedure. The forecasts of all of the models above have
been fairly similar historically, and any one of them thus approx-
imates reasonably well the mode of a Bayesian posterior distribu-
tion over future events. This convenient result may not extend to
questions about the structure of the Chilean economy, given the
wide variation the models show in the relationships among vari-

ables and the evolution of coefficients.
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Conclusion

In some ways, this initial attempt to estimate a Chilean
BVAR has been successful. With no significant modifications, the
DLS method produces a multivariate model that captures at least a
small degree of interaction among key macro variables while
achieving much higher DLS likelihoods and perhaps slightly lower
root mean squared forecast errors than a system of univariate
equations. DLS suggest that this is not a trivial accomplishment.

At the same time, the Chilean BVAR of Table 2 is not a
lot better than or even very different from a system of univariate
equations. Further research on Chilean BVARs should probably look
for improvements in three directions. One path toward possible
improvements would be to tailor the DLS method to the Chilean
situation. This could be done, for example, by modifying the time
variation of the coefficients to make them more stable within but
less stable across policy regimes. (The tendency for the models'
coefficients to change rapidly during periods of well-known policy
shocks, such as during 1982, recommends this path. See Figures
15-19.) It could also be attempted through the specification of
restrictions on the variance-covariance matrix of the disturbance
terms, perhaps with an eye toward achieving the kind of structural
identification discussed by Sims (1987). An alternative way to
improve Chilean BVARs would be to reconstruct a longer macroeco-
nomic dataset. Finally, Sims has suggested further modifications
(beyond the BEGWT and NOMWT priors used here) to the DLS method to
allow for nonnormality and conditional heteroscedasticity in the

distributions of the equation error terms.
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Table 1

Performance Statistics for a BVAR Model With

An Approximately Univariate Hyperparameter Setting (2 lags)

Hyperparameters

OWN = 100,000,000.00
CROSS = 0.000,000,000,1
CON = 100,000,000.00
WT = 0.0

TITE = 1.0

Performance Statistics

DLS Likelihood

SYSTEM IPINSS

+389.72 +200.61

M1INPS

+216.28

SUM = 0.0
BEGWT = 0.0
NOMWT = 0.0
TVAR = 0.0
DECAY = 1.0
WPI
+237.63

Typical Forecast Errors* (percent)

IPINSS M1NPS
1-month-ahead 3.21
6-months-ahead 6.48

12-months-ahead 9.58

WPI

2.94

11.65
21. 1

XCH

2.50
13.06
23.83

Autonomous Portion of Forecast Error Variance** (percent)

LIBOR PCOB
1-month-ahead 100.0
6-months-ahead 100.0

12-months-ahead 100.0

MINPS

98.3
98.3
98.3

WPI

99.5
99.5
99.5

XCH

92.2
92.2
92.2

XCH KINF DIR
+201.84 -382.33 -84.32
KINF DIR
3.31 136.56 19.99
18.53 163.88 38.94
35.28 193.57 u7.23
KINF DIR IPINSS
90.6 98.5 87.5 85.8
90.6 98.5 87.5 85.8
90.6 98.5 87.5 85.8

¥Root-mean-squared errors in simulated out-of-sample forecasts from June 1981

to November 1987.

*¥*Portion of forecast error variance attributed to own innovations.

Computed

from coefficients that were estimated over the full 1976-87 period and vari-
ance-covariance matrix of disturbances that was estimated over the October

1978 to December 1987 period.

Choleski decomposition of variance-covariance

matrix performed with variables ordered as here (from LIBOR to IPINSS).
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Table 2

Performance Statistics for a BVAR Model With
Hyperparameters Set to Maximize the DLS Likelihood

Hyperparameters

OWN = 0.01 SUM = 25.0

CROSS = 0.00001 BEGWT = 0.0

CON = 1000.0 NOMWT = 2.0

WT = 1.0 TVAR = 0.0

TITE = 10.0 DECAY = 1.0

Performance Statisties
DLS Likelihood
SYSTEM IPINSS M1NPS WPI XCH KINF DIR
+472.10 +197.36 +225.73 +296.36 +206.86 -372.22 -81.98
Typical Forecast Errors* (percent)

IPINSS MINPS WPI XVH KINF DIR
1-month-ahead 3.31 2.74 1.73 3.20 128.60 19.66
6-months-ahead 6.59 8.47 10.18 17.86 151.98 35.10

12-months-ahead 10.32 12.39 16.27 33.34 181.52 39.88

Autonomous Portion of Forecast Error Variance** (percent)

LIBOR PCOB M1INPS WPI XCH KINF DIR IPINSS

1-month-ahead 100.0 98.2 99.6 99.6 84.2 98.0 85.8 91.7
6-months-ahead 100.0 98.2 99.3 99.4 84,3 98.0 85.8 91.5
12-months-ahead 100.0 98.2 96.17 98.7 84.3 98.0 85.6 90.5

*Root-mean-squared errors in simulated out-of-sample forecasts from June 1981
to November 1987.

*%Portion of forecast error variance attributed to own innovations. Computed
from coefficients that were estimated over the full 1976-87 period and vari-
ance-covariance matrix of disturbances that was estimated over the October
1978 to December 1987 period. Choleski decomposition of variance-covariance
matrix performed with variables ordered as here (from LIBOR to IPINSS).
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Table 3

Performance Statistics for a BVAR Model With

Hyperparameters Set to Maximize the DLS Likelihood of WPI Only

Hyperparameters

OWN = 0.08 SUM = 100,000.0

CROSS = 0.01 BEGWT = 3.0

CON = 1.0 NOMWT = 10,000,000.0

WT = 3.0 TVAR = 0.000,000,001

TITE = 2.0 DECAY = 0.999

Performance Statistics
DLS Likelihood
SYSTEM IPINSS M1NPS WPI XCH KINF
+486.37 +202.15 +225.04 +301.85 +213.94 -371.57
Typical Forecast Errors* (percent)

IPINSS M1NPS WPI XCH KINF DIR
1-month-ahead 3.29 2.95 1.75 3.04 127.69
6-months-ahead 7.01 13.14 11.85 16.24 151.16

12-months-ahead 12.53 30.42 22.67 29.09 182.93
Autonomous Portion of Forecast Error Variance** (percent)
LIBOR PCOB M1NPS WPI XCH KINF DIR IPINSS

1-month-ahead 100.0 98.2 99.7 99.5 83.5 98.6 86.8
6-months-ahead 100.0 98.2 97.1 93.8 83.4 98.6 86.7
12-months-ahead 100.0 98.2 91.7 86.4 83.3 98.6 86.5

DIR

-85.05

20.14

39.42
50.04

91.7
87.9
80.9

*Root-mean-squared errors in simulated out-of-sample forecasts from June 1981

to November 1987.

*%Portion of forecast error variance attributed to own innovations.
from coefficients that were estimated over the full 1976-87 period and vari-
ance-covariance matrix of disturbances that was estimated over the October
1978 to December 1987 period. Choleski decomposition of variance-covariance
matrix performed with variables ordered as here (from LIBOR to IPINSS).

Computed
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Table 4

Performance Statistics for a BVAR Model With
Hyperparameters Set to Maximize the DLS Likelihood of IPINSS Only

Hyperparameters

OWN = 0.7 SUM = 0.0

CROSS = 0.001 BEGWT = 0.0

CON = 2000.0 NOMWT = 0.0

WT = 1.0 TVAR = 0.00001

TITE = 10.0 DECAY = 1.0

Performance Statistics
DLS Likelihood
SYSTEM IPINSS M1INPS WPI XCH KINF DIR
+451.61 +211.63 +211.29 +289.14 +200.43 -372.31 -88.56
Typical Forecast Errors* (percent)

IPINSS M1NPS WPI XCH KINF DIR
1-month-ahead 2.98 2.91 1.77 3.26 126.36  20.23
6-months-ahead 5.59 10.95 11.01 19.62 150.86 36.53

12-months-ahead 9.06 20.73 20.45 38.04 173.00 42.38

Autonomous Portion of Forecast Error Variance** (percent)

LIBOR PCOB M1NPS WPI XCH KINF DIR IPINSS

1-month-ahead 100.0 98.2 99.4 99.9 83.8 96.5 84.9 93.5
6-months-ahead 100.0 98.2 65.0 53.9 79.5 96.5 82.6 83.3
12-months-ahead 100.0 98.2 35.4 27.4 59.6 96.5 T3.7 68.5

*Root-mean-squared errors in simulated out-of-sample forecasts from June 1981
to November 1987.

*%pPortion of forecast error variance attributed to own innovations. Computed
from coefficients that were estimated over the full 1976-87 period and vari-
ance-covariance matrix of disturbances that was estimated over the October
1978 to December 1987 period. Choleski decomposition of variance-covariance
matrix performed with variables ordered as here (from LIBOR to IPINSS).
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Ficure 20A: SuccessruL AxIAL SEARCH

"2
*) = (. O
2) (Hl’HZ)
Symmetric
0 likelihood
H2 contours
Ficure 20B: UNsucCEssFuL AXIAL SEARCH
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Explanation: Each graph shows two searches. Each search begins

at the initial guess (H?,Hg). The search denoted

DY mmeecemccceeee- and * first optimizes H, while fixing
0
5
H?. The search denoted by —-—-— . — or T first

H, at H It then optimizes H2 while fixing H; and

optimizes H, (with H1:H?) and then optimizes H,

(with H2:g2).







