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1. Introduction 

Recent substantial advances in computational methods have greatly expanded our 

ability to apply Bayesian procedures in econometrics and other statistical sciences. 

Whereas just a few years ago applied Bayesian inference was limited to a few textbook 

models, in an increasing number of instances computationally intensive Bayesian methods 

are proving more practical and reliable than non-Bayesian procedures even by conventional 

non-Bayesian criteria. (Jacquier, Poison and Rossi (1994) provide such a comparison for 

stochastic volatility models, as do Geweke, Keane and Runkle (1994) for multinomial probit 

models.) These recent advances have exploited dramatic decreases in computation costs, 

and they are likely to continue as these costs decline even further. 

This paper integrates and extends several of these advances, with the objective of 

realizing the promise of a complete and coherent framework for statistical inference that is 

inherent in Bayesian theory. It shows that some of the elegant constructions in Bayesian 

analysis are by no means limited to the elucidation of statistical principles. They also form 

the basis for the more mundane but essential task of efficient computation, and place the 

workaday business of diagnostics, outlier analysis, and model comparison on a sound yet 

practical footing. The paper breaks fresh ground in four directions. 

First, the work introduces a combination of Markov chain Monte Carlo and 

independence Monte Carlo with importance sampling, including systematic procedures for 

the assessment of approximation error (Section 3.4). The extension is quite 

straightforward, yet it provides a widely applicable computational tool for the task of rapid 

updating of posterior distributions that has heretofore been unavailable. 

Second, this research recapitulates the decomposition of marginalized likelihood as the 

product of predictive factors (Section 2.1). This decomposition forms the basis for the 

efficient computation of marginalized likelihoods — and therefore Bayes factors and 

posterior odds ratios ~ that has proven elusive and intractable (Sections 4.1 and 4.2). The 

predictive factors turn out to be precisely the importance sampling weights that are required 

in the combination of Markov chain Monte Carlo, and independence Monte Carlo with 

importance sampling, for the purposes of updating. Predictive likelihoods for individual 

observations provide diagnostics of model inadequacy and their ratios provide a useful 

analysis of posterior odds ratios (Section 5). 

Third, this paper argues that in the construction of dynamic econometric models — and, 

probably, many other kinds of statistical models as well - there is often an identifiable 

portion of the sample that ought to be regarded as part of the prior (Section 2.2). This 

argument provides a practical resolution of well established and widely known logical 
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difficulties with respect to improper priors, "data mining," and public reporting. It is at 

least as logically appealing as alternative approaches (but perhaps no more l ikely to 

command a consensus). 

Final ly, the paper suggests specific standards for public reporting that exploit very 

recent and drastic declines in the costs of storing and communicating massive quantitative 

information. It argues (Section 4.3) that these standards wil l enable the prototypical remote 

client (Hildreth, 1963) to impose his or her subjective priors, investigate prior robustness, 

evaluate new loss or other functions of interest, and/or update the reported posterior with 

new observations - all very rapidly with 1994 technology, and with simple generic software. 

The technical details of these ideas require a different order of development. The next 

section reviews some classical compositions and decompositions of posterior odds ratios, 

and argues for a prior distribution based on an identifiable portion of the sample. Section 3 

reviews recently developed simulation methods for the computation of posterior moments 

and introduces the modest extension just described. Section 4 takes up the important task 

of efficient computation of the elements of posterior odds ratios described in Section 2, and 

describes a public reporting format based on these methods. Examples in Sections 5 and 6 

provide encouraging evidence on the practicality of the procedures proposed in the paper. 

This paper argues for an agenda as much as it presents new results. The reader wi l l 

note that some innovations in computation -- e.g., updating by importance sampling rather 

than recomputation - are not featured in the examples. (Forthcoming revisions wi l l take up 

nontrivial examples of these procedures.) More generally, the methods proposed here 

ultimately require repeated application to actual problems for a complete assessment of their 

utility. 

2. Posterior odds and Bayesian practice 

The posterior odds ratio is a well established concept for model comparison. It 

constitutes the fundamental means of model comparison in subjective Bayesian analysis, 

and is central to the classical expected utility theory of decision making under uncertainty. 

(DeGroot (1970) provides a detailed fundamental argument.) Here we recapitulate this 

principle to establish notation, and introduce some compositions and decompositions of the 

posterior odds ratio that form the basis for the rest of this paper. W e argue that one of 

these decompositions often provides a good formal model of the process of model 

construction in economics. 
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2.1 Priors, marginalized likelihoods, Bayes factors, and posterior odds ratios 

Let {y,Yl=l be a set of observations whose conditional densities yl\(y1,...,y,_1,d) 

under model j are given by f ;,(;y,|l',_ 1,0 ;), where Yt ~{ys}'s=1,Y0 = {0 } and d} is the 

vector of parameters in model j . The prior probability of model j is Pj and conditional on 

model j the prior density kernel for 0 y is f , o (0,)- If the prior density is proper then the 

kernel is taken to be the density itself. Let 

denote the partial likelihood through observation t. Then conditional on model j and Y, 

the posterior density for dj is 

so long as the integral in the denominator converges. The marginalized l ikelihood for 

model j and the subsample for observations 1 through t is 

provided the prior is proper. The Bayes factor in favor of model j versus model k, given 
observations 1 through t, is Bjlkl = M-fjMh, and the posterior odds ratio in favor of model 

j versus model k, given observations 1 through r, is 

The concepts of predictive likelihood, predictive Bayes factor, and predictive odds ratio 

are closely related. The predictive likelihood for observations u +1 through t, given model 

/ and observations 1 through u, is 

h = L M e j \ Y M . u J M Y ^ > d M 0 i • ( 3 ) 

The predictive Bayes factor is 

and the predictive odds ratio is 

PRED'^^pjp'JpJl, 

both in favor of model j versus model k for observations M + l through t. These 

decompositions are widely known. 
A further set of decompositions is central to the computational methods and diagnostic 

tools introduced in this paper. Suppose 0<s0<sl<...sq <t. Expanding (3), recalling that 

J e P > o ( ^ ; | ^ ) ^ = 1' and adopting the notational convention n^_%+1f;,(3',|̂ -i» ,̂-) = 1, we 

have 
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l,p*(^jn^« f*(^.^KJeyp^4^K)n;:;+ 1f4^K-.'^K 

" A L = 7 ,p^^K)r i ' ; + 1 ^(^K. '^K 

The predictive likelihood is thereby expressed as a product of linked predictive likelihoods. 

The decomposition (4) may be interpreted as a succession of q multiplicative updatings to 

the marginalized likelihood p* at time s0 that lead to the marginalized likelihood p"? at time 

sq. The particular case s0 =0,sq =t provides a decomposition of the marginalized 

likelihood for the entire sample, and if s( - s(_{ = 1 V £ the decomposition is complete. The 

decomposit ion (4) is of interest as a model diagnostic, especially the complete 
decomposition: an unusually low value of ps

s'ti = p£_, indicates that observation st is 

improbable conditional on model j and the previous observations. 

There are corresponding decompositions of the predictive Bayes factor, 

=PI/PI=KMJPL ) = I L A * , • 

This decomposition can indicate observations, or groups of observations, that are more 

probable under one model or the other. It can lead to the identification of observations that 

are decisive in Bayes factors that are quite large or small. 

2.2 Variants and alternatives 

For a given data set, likelihood function and prior distribution, the posterior distribution 

(1) and the marginalized likelihood (2) are sufficient. In particular, these objects are all that 
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is required to compare the model at hand with other models, including models not yet 

conceived and those which neither nest nor are nested in the model at hand. Posterior odds 

ratios establish the posterior probabilities of models conditional on a set of models, and 

together with the posterior distribution for each model this information is sufficient for 

formal decision making. 

Despite these advantages marginalized likelihoods are not widely used as sufficient 

summary statistics for Bayesian model comparison. A key diff iculty is that the 

marginalized l ikel ihood is defined by the prior distribution as well as the l ikel ihood 

function, and there is rarely a single specific proper prior distribution on which most 

investigators would agree. For the purposes of expressing a posterior distribution this 

problem is frequently obviated by the use of uninformative prior distributions. In particular, 

Jeffreys (1961) suggested improper prior distributions to represent knowing little, that are 

frequently employed when reporting posterior moments (Zellner, 1971, pp. 40-53). This 

does not resolve the difficulty with respect to posterior odds ratios, however, because proper 

prior distributions are essential not only to the interpretation of the posterior odds ratio but 

also to the construction of the marginalized likelihood. For suppose that {f 'o'^,)} I S a 

sequence of proper prior densities with the property l i m , ^ f 'o ' (^ ) = 0 V 0;. e 0 ; . . Let 

{p>"'(^|^()} denote the corresponding sequence of posterior densities, and {M]"'} the 

corresponding sequence of marginalized l ikelihoods from (2). In regular cases 

lim„_^p^)(fy|r',) is a well defined posterior density function, but l im n _ o o MJ,"' =0 and 

consequently l im n _ > 0 0 /7 > MJ, ' , ) /p T M I , = 0 for any model k with a f ixed proper prior 

distribution. This is L indley 's paradox (Bartlett, 1957; Lindley, 1957) and may be 

paraphrased as saying that a hypothesis that assigns prior probability zero to any set of 

events cannot be preferred to one that assigns positive probability. "Posterior odds ratios" 

involving improper prior distributions for both hypotheses are especially troublesome, 

because they often employ convenient but arbitrary normalizing constants and therefore 

yield finite positive values but have no interpretation as ratios of probabilities. 

A n alternative approach is to regard the posterior distribution as formed from the 

Opossibly improper) prior distribution and a subset of the data, as a prior distribution for the 

balance of the data. For example, Atkinson (1978) and O'Hagan (1991) propose to take 

p^.(0;|y.j as the prior distribution, where t* =[pt] for some f ixed p e ( 0 , l ) , and 

observations t' + l,...,r as the sample. Then 

^ = J e ; p / ( * ' ) E , - + I

f , ( ^ K p ^ K 
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is the marginalized likelihood, and the construction of posterior odds ratios proceeds as just 

described. Berger and Pericchi (1992) determine the smallest number of data points such 

that the posterior density is proper, form the marginalized likelihood corresponding to each 

subset (or a representative sample if the number of subsets is quite large) and then use the 

geometric mean of the resulting marginalized likelihoods in place of Mjr There are several 

other examples of these approaches; Gelfand and Dey (1994) provide an interesting 

synthesis. 

The way applied econometric work is actually conducted motivates an approach similar 

to that of Atkinson and O'Hagan. Typically the investigator has used all of the data at hand 

to select the model(s). This can be a sound practice, reflecting the practical decision not to 

undertake costly formal consideration of models whose collective probability clearly wil l be 

negligible compared with the model(s) selected for study. But such judgments are difficult, 

and even well-intentioned investigators can unwittingly tailor prior model probabilities to 

features of the data peculiar to the sample at hand. Pursued with premeditation, this 

tailoring becomes the process of "data mining" scorned by Bayesians and non-Bayesians 

alike. Occasionally a portion of the sample is set aside before the process begins, but such 

cases are the exception and not the rule. In the predominant situation the only practical and 

fair arbiters between models are the predictive odds ratios. One muse use (3), with 

observations u + \ through t taken after model construction, rather than (1). The 

appropriate prior density is p ; u(0,|r ' H). In this context we shall refer to f ; 0 ( ^ ) a s the 

protoprior density for B-r The protoprior density may be improper, but the prior density 

P;«(^y'l^«) typically wi l l be proper. The question of sensitivity to the proto-prior density 

remains open, but both analysis and examples taken up subsequently in this paper suggest 

that for sufficiently large t, p ,,(#,) will not be very sensitive to changes in f ; O ( 0 ^ . 

3. The computation and updating of posterior moments 

Conditional on a particular model j , most problems amount to the computation of the 

posterior expectation of a function of interest g ;(#,). with the posterior density of 0 ; given 

by (1): 

- r / M t \ 1 Je l/foM'/M^K 
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Estimation, forecasting, and formal decision making each take this form, for the choice of 
g,( •) appropriate to the problem at hand. Removing the conditioning on a particular model, 

_g y(*,) |{ModeU, P j , M*,)}; J = Z > A i , / Z > A • 
where n is the number of models under consideration, Mfl is the marginalized likelihood 

defined in (2), and p y is the prior probability of model j . (It is implicit in this expression 

that the functions g;.( •) have been chosen so that their posterior expectations pertain to the 

same substantive concept in the different models -- e.g., the probability of a future event, an 

elasticity, or the value of a loss function corresponding to a particular action.) 
Only in rare instances is it possible to evaluate (5) analytically, and 0 y is usually of 

sufficiently high dimension that deterministic computational methods like quadrature are 

impractical. The recent rapid development of simulation methods has made possible good 

numerical approximations to (5) in a wide variety of applications, however. Such methods 

produce a random sequence of vectors and weights {^jm ) 'M 'jm >}m , w i m m e property that 

A principal objective of this paper is to develop methods for the practical evaluation of 
posterior odds ratios, building on the ability to obtain numerical approximations of gj of 

this form. 

We turn first, in this section, to a review of these methods (Sections 3.1 through 3.3) 
and an extension (Section 3.4). Their properties wi l l be important in the development of 
methods for the computation of approximations to the marginalized likelihoods Mjt in 

Section 4. 

3.1 Independence Monte Carlo 
For certain models and prior distributions it is possible to draw 0; directly from the 

posterior distribution whose probability density is given by (1). Leading examples include 

the univariate normal linear regression model with a normal-gamma prior, and the 

mutinomial model with Dirichlet priors. Acceptance sampling (Geweke, 1994, Section 4.2) 

widens the class of models for which this is possible. For independence Monte Carlo 

w j m ) = 1, and since the 0j"° are independent, g)M]—±£^>gr If varjĝ fy)] exists and is 

finite then 

M V 2 ( i r - i > ) - ^ N ( ° ^ 2 ) ( 6) 

as we l l , with o- 2=var[g,(0;)]. Since ^ ^ [ g ^ j f - \ g l ? ] J - ^ < ? , it is 

straightforward to evaluate the magnitude of the approximation error - gj. 

1 



3.2 Importance sampling Monte Carlo 

Suppose that it is not possible, or at any rate inconvenient, to draw 0 y directly from the 

posterior distribution. Instead let the 0 ;

( m ) be drawn from a distribution with probability 

density function 1(9), called the importance sampling density, and let 

^ = w > ( ^ > p , ( ^ | r ( ) / i ( ^ ) . 

So long as the support of 1(0) includes that of p^d^Y,), g["] ) g . (Geweke, 1989, 

Theorem 1). If in addition E^w 7(0 ;)] and var[gy-(0;)] exist and are finite — a fortiori i f 

Wy(fy) is bounded above and varjg^fl^j < e» — then a limiting distribution (6) once again 

obtains but a2 is different (Geweke, 1989, Theorem 2). To obtain the value of a2, let 

A = E,[wy.(0 ;.)g ;.(0;)] and B = E,[w y(0 ;.)], where the subscript " I" denotes moment with 

respect to the importance sampling distribution with density 1(6). Applying a Taylor series 

expansion, 

<J2=[\/B -A/B2] ][B_ 

-A/B 

Substituting A=M-1Y'mmivtj(e(

j

m))g(el;)) for A, M ' ^ y ^ g 2 ^ ) - A 2 for 

varJw^.^^g^^jj, etc., the central limit theorem becomes operational. 

For importance sampling Monte Carlo to be effective l(# ;) must approximate 

p ; ,(0jm ) |y,) well in the appropriate way. If EJwy(#;)J is not finite (implying w ; (# ; ) is 

unbounded) then not only is there no limiting distribution (6), but convergence is usually 

impractically slow. If EJwy(0;)j = E,|wj(0 ;-)] < <*> but the right tail of the distribution of 

w*(0j) under the importance sampling distribution is sufficiently important then 

convergence can stil l be very slow even in simple problems; see Geweke (1989) for 

examples. In general and as a practical matter, importance sampling Monte Carlo is 

effective to the extent that WyiflO can be bounded above by a constant not too large relative 

to E[w.(0,)]. 

8 



3.3 Markov chain Monte Carlo 

Fol lowing a line of research that began with Metropolis et al. (1954), several 

where P ; , is the distribution corresponding to (1). (Thus, w ; ( 0 y J = 1.) One example is the 

Gibbs sampling algorithm developed by Geman and Geman (1984), Gelfand and Smith 

(1990), and others. Casella and George (1992) provide an introductory exposition, and 

there are examples in Sections 5.2 and 6.1. Another example is the Metropolis chain 

proposed by Metropolis et al. (1954) and extended by Hastings (1970) and others. Chib 

and Greenberg (1994) provide a good introduction, and there is an example in Section 5.1. 

A n extension of considerable importance to econometrics is the data augmentation 

algorithm of Tanner and Wong (1987). Their essential contribution is to note that in a 

subjective Bayesian approach parameters and latent variables are inherently symmetric, and 

therefore the Gibbs sampling algorithm obviates the need to integrate explicitly over the 

distribution of the latent variables. An example is provided in Section 5.2. 

Conditions under which (7) obtains for any 6^ e 0^ are rather general, and include 

essentially all conventional econometric models: Tiemey (1991) and references cited therein 

provide weak sufficient conditions; Roberts and Smith (1992) present conditions that are 

stronger, easier to verify, and usually obtain in econometric applications. Even though these 

conditions are satisfied, it is conventional to discard some initial simulations to mitigate 

sensitivity to initial conditions. These authors also discuss conditions under which there 

exists a central l imit theorem of the form (6); see also Geyer (1992). Conditions under 

which <T2 can be approximated consistently in M are more elusive, and for useful 

discussions the reader is referred to Gelman and Rubin (1992) and the comments that 

fol low. Growing experience with these methods suggests that in econometric models 

j g ; ( 0 ' m ) ) J generally behaves like a stationary stochastic process, with a spectral density 

function which we shall denote S(A). Standard frequentist time series analysis (e.g., 

Hannan, 1970, pp. 207-210) then yields a2 = S(0), and well-established procedures may be 

used to approximate S(0); Geweke (1992, Section 3) provides details. 
In most applications the bulk of the computing time is devoted to drawing the 0- . 

The numerical efficiency of Markov chain Monte Carlo methods depends on computation 

time for each iteration, and on the degree of serial correlation in {g J(#j m ))J. Very strong 

investigators have recently constructed algorithms in which |0 j ' 

continuous state Markov chain, with the properties 

is a realization of a 

(7) 
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positive serial correlation implies S ( 0 ) » var|^g(0jm )jj, so that relatively many more 

iterations wi l l be required than if independence Monte Carlo sampling had been possible. 

3.4 Importance sampling Markov chain Monte Carlo (updating) 

Importance sampling and Markov chain Monte Carlo can be combined. To motivate 

the combination, consider the problem facing a Bayesian econometrician wishing to update 
m r e a ' time- If m e econometrician had applied one of the foregoing methods 

he/she could, of course, simply perform the same analysis with the new posterior density 

P;.»+i(̂ /'l̂ '+i) * n ' ' e u ° f t n e ° ^ o n e - * n t n e c a s e ° f i m P o r t a n c e sampling this requires M 

new evaluations of the posterior density and the importance sampling density, with 

computation time generally proportional to t + 1. In the case of Markov chain Monte Carlo 

this requires a complete generation of a new set of 0 j m ) from the updated Markov chain. 

Alternatively, the econometrician can regard (1) as an importance sampling density for 

the updated posterior density Py,,+1(^j^,+i)- The appropriate weight function is simply 

In virtually all applications this function is bounded above and it is then straightforward to 

show that 

where the 0J m ) are drawn in any of the ways discussed above and 

w ; K ) = w ; ( ^ ) f , , + 1 (y ( t l | y „ ^ . ) . 

Since this approximation avoids the need to regenerate a new sequence jg(#jm ')J it is 

generally quite fast - up to t +1 times faster in the limiting but not atypical case in which 

essentially all computing time is spent in evaluation of the posterior density pJ-,,+i(0;-|l'M.i) or 

in drawing the 0J m ) from the Markov chain. The only essential new computations are the 

evaluations of f > . , + , ( )> m | l r „0 / - ) . 

The computational efficiency of this procedure depends on the variation in w*(0 ;.) with 

respect to the posterior distribution of Bf based on t observations. For most conditional 

densities in econometric models this variation wil l be greater when y l + 1 is an outlier (i.e., 
f;./ +i(y, +i| F, '^) i s smaller) than when it is not {i.e., fj,l+1(y,+i\Y„6j) is larger). 

This procedure may be extended in an obvious way to several observations, with 
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It is limited by the fact that as r increases the maximum value of IX-î >.»+*(y»+*|̂ <+*-i'̂ /) 

is increasing relative to its posterior mean. When r is sufficiently great it w i l l be more 

efficient to repeat the original algorithm using the sample with / + r observations in lieu of 

the one with t observations. 

The numerical accuracy of this procedure may be assessed as described in Section 3.2 

if the original computational procedure involved simple or importance sampling Monte 

Carlo. In the case of Markov chain Monte Carlo, let S W (A) denote the spectral density of 

{ w , W m ) ) } ' M A ) t h e s P e c t r a l d e n s i t y o f { w > ( 0 ! m ) ) g > ( 0 ! m ) ) } ' a n d S^M) t h e c r o s s 

spectral density of {w,(0jm ))} and {w y(0, ( m ))g,(0j' ' , ))}. A s before def ine 

A = E I [w. (0 J )g y (0 . ) j and B = E,[w y(0.) j . Then by the same arguments that lead to 

a2 = S(0) in Section 3.3, 

S W J (0) S ^ ( 0 ) i r 1/5 "1 

SL , (0 ) S w (0) -A/B\ ' 

Replacing each constituent of the right hand side with its consistent (in M ) estimator yields 

an operational approximation to a2. 

G2=[\lB -A/B2] 

4. The practice of model comparison 

The composition of the posterior odds ratio and its decomposition into l inked 

predictive likelihoods, and simulation-based methods for the approximation of posterior 

moments, taken together suggest a new technology for model comparison and the public 

reporting of the results of Bayesian inference. In this section we outline the important 

aspects of these new procedures. 

4.1 Systematic comparison of marginalized likelihoods 

From expressions (3) and (4), 

where 

PA""j„,p;j»;)n:;.,f*w>'.-..̂ K 
and 0 <u = s0 < st <...<sq = t. (If u = 0 then p'ju = Mj,.) Expression (8) is precisely in 

the form of (5), with the posterior density kernel composed of the prior density pjSo and 
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the l ikelihood function for the first s(_t observations, and the function of interest is the 

likelihood function for observations +1 through st. It is immediately evident that the 

predictive likelihood, and therefore the marginalized likelihood, can be evaluated using one 

of the simulation methods of Section 3, with appropriate definitions of the posteriors and 

functions of interest. Special methods (e.g., Spiegelhalter and Smith, 1982; Newton and 

Raftery, 1994) are not required. 

The foregoing arguments of this paper suggest how one might use (8) in practice. A s 

discussed in Section 2.2, the choice of u may depend on the way the model has been 

constructed. In many instances it may be desirable to choose a date corresponding to the 
creation of the model. In any event, the interpretation of p'ju is clear for any stated u: 

observations through u are treated as part of a training sample that enters the prior, and 

subsequent observations form the basis for model comparison. 
The complete decomposition st - = 1 is attractive as a diagnostic for reasons 

discussed in Section 2.1. The computational procedures developed in Section 3.4 show that 

such a decomposition need not be computationally burdensome. Consider the problem of 

forming ps*1 ,ps*5

2

tl,... given a simulated Monte Carlo sample of 0 j m ) from the posterior 

density P y i ( ^ | ^ J ) - The numerical approximation of p £ ! is the weighted average 

E : . , w i ( e i " ' ) f , „ , ( y , . , | n . » r ) ) / E l . , w > ! " 1 ) -

But the f ; , J + i ( y J t l | y s , 0J m > ) are precisely the weights required to transform the simulated 

Monte Car lo sample from pjs(0j\Ys) to a simulated Monte Car lo sample from 

Py.*+i(0;|^+i)>a s described in Section 3.4. This establishes a recursion for the computation 

of the p7, + , ,p£+i»" ' that does not require one to recompute a Monte Carlo sample from the 

entire posterior distribution. 

This recursion remains practical so long as the importance sampling weights 

K j j . s 4 y ^ \ Y ^ e J m ) ) <w=1 M) 
remain well behaved. A s r increases, however, P , ^ , ^ ) becomes a poorer importance 

sampling density for p ; , i + ,(0 y |>' J + r). The case of a shift in regime sometime between s and 

s + r aside, the problem is not violation of the conditions in the first paragraph of Section 

3.2, but rather that excessive dispersion in p^^ , ]^ ) relative to Pj.s+r(Qj\Ys+r) eventually 

makes it very inefficient. As this occurs it eventually becomes more efficient to collect the 

new r observations into a ful l new posterior density p ; , i + r ( 0 j ^ + r ) , construct {0'"'>}"_1 

from this posterior, and begin to compute ps^r\pSj]s

r^,---- The next subsection presents 
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some results bearing on how this might be done; the reader not concerned with details of 

computation can proceed to Section 4.3 without loss of continuity. 

4.2 Some comparisons of computational efficiency 

For reasons just discussed, suppose we wish to approximate the expectation of 

against the posterior density p > (^ y | l r , ) for Q L . This can be done either by treating (9) as a 

function of interest directly, or by forming numerical approximations to each 

^rf+«(y«+«J5r*«-i»^/")) separately and then forming the product. Computational efficiency 

argues for the latter, not the former. 

To see why, let X[M) = t^yJfr^.Sf*), Hu = E(X<">), <t2 = v a r ^ ) , where the 

moments are with respect to the posterior density PJS(QJ\YS)- (To simplify the notation we 

take up the case w ;(0 y-) = 1 and drop the w,(0,)- Analysis with varying weights proceeds 

in the same way.) Since X (

U

M ) > 0 and X {

U

M ) is bounded above, all moments of X (

U

M ) must 

exist. For the second procedure (approximate each function first, then take the product) 

MSE{n., " - T i , xi-'}=(n>.3)2L <v*£ * 4** )• d o 

For the first procedure (approximate the product directly) 

^ { M - s n r L x ! " ' ) } = » - \ K M + ° D - Y L . A 

> < Yl,.,rt * 4 r ) = M - ( T L A)x;., atiA * O(M- ). 

To appreciate the magnitudes involved consider a simple case that can be treated 
IID 

analytically: y, ~ N ( 0 , I J , and suppose sample size is sufficiently large that the prior 

distribution can be neglected. If sample size is t and k = 1, 

f , , + 1 ( y , + 1 | n ^ ) = (2^ r 1 / 2 exp [ - (y , + 1 - 0 ) 2 / 2 ] . (11) 

Suppose further that the posterior distribution of 0 following / observations is N ( 0 , f 

For independence Monte Carlo the first moment for the function (11) of interest is 

£ ( 2 ^ ) - V 2 e x p [ - ( y < + I - 0 ) 7 2 ] ( 2 ^ - V 2 / ^ e x p ( - 0 V 2 r 1 ) ^ 0 

= (2^)- | / 2[r/(r + l)] V 2exp[-ry, 2

+ 1 /2(l + 0], 

and the second moment is 

(2^)- 1[//(/ + 2)] V 2exp[-fy, 2

+ 1/(/ + 2)]. 

The mean square error of numerical approximation given M replications is 
\V2 / „,2 \ 

t+l 
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For £ > l a r r > l , JX_1fy,,+s(>',+j|y,+,-i.0) factors into rk independent components 

each of the same form as (11), and the M S E is 

>• (12) 

Suppose that instead one approximates each of the r factors and then takes the 

product. Applying (10) one obtains the M S E 

M~\2n) -rk 
t+u \[t(t+2)r 

e x p [ ^ - y ' y y i - — T y ; 

(13) 

2-lu=i + \ e X P 2*i=l ^n .« + l ^« 

Comparing (12) and (13) obviously involves the data y , t l , . . . ,y , + r . Maintaining the 

assumption y, ~N(0 , I t ) , expectations over y, yield mean values of 

(In)-
t 

3t + 2 

rk/2 

and 

(In) -rk ''' ' t + 1 ^ ( r _ 1 , * / 2 

t+lj U r + l 

[(r+lX3r+l)r 

{t+if 

[t(3t + 2)] tr­
i l l . 
3r + l 

k/2 

(14) 

(15) 

for (12) and (13), respectively. The ratio of (14) to (15), for some alternative values of t 

and r with k = 9 are provided in Table 1. For r = t, numerical approximation of the entire 

product incurs M S E about six times greater than the product of the numerically 

approximated predictive likelihoods. 

The expressions (12)-(13) are predicated on the assumption that the posterior 

distribution of 6 is Gaussian, which may be reasonable for large sample sizes even when 

the model itself is not Gaussian. The assumption that the data are Gaussian, made in 

moving from (12)-(13) to (14)-(15), is not so general. For example, if the distribution of 

the y„ is Student-? then expectations of (12) and (13) are not even finite. (The expressions 

involve the moment generating function of the central F distribution, which does not exist.) 

Therefore the values in Table 1 should be viewed as quite conservative. This fact is borne 

out in the examples taken up in Section 6. 

4.3 Econometric tests and public reporting 

These methods, and continued advances in computation and communication, have 

implications for public reporting by Bayesians. Predictive likelihoods can be calculated 

routinely and ought to be reported in published work. Beyond this, computational devices 
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for the integration of public reporting and private subjective priors are clearly at hand. From 
the sampled 0 J " \ and the investigator's prior distribution, any other investigator can use 

importance sampling Monte Carlo (Section 3.4) to 

(i) impose his/her subjective priors; 

(ii) investigate the sensitivity of posterior moments to prior distributions; 

(iii) evaluate the posterior expectation of other functions of interest not considered by 

the original investigator; or, 

(iv) update the original posterior distribution with new observations. 

Observe that the theory of Monte Carlo approximation error outlined in Section 3.2 argues 

that the ratio of a client's prior density kernel to the prior density kernel used in public 

reporting should be bounded. In many instances this may commend the use of a flat or 

similarly diffuse prior in public reporting even though no client entertains such a prior. In 

sampling methods involving data augmentation, it may often be efficient to report a subset 

of the sampled values of the latent variables to facilitate updating the posterior. (Section 5.2 

provides such an example of data augmentation.) The sampled 0 j m ) provide a set of 

sufficient statistics for the numerical approximation of all posterior moments in question. 

Their computation may require specialized software and substantial time, but once these 

computations have been completed further analysis along the lines of (i) - (iv) can be done 

rapidly. 

These considerations argue that investigators should provide the 0 p and 

corresponding evaluations of their prior density (if it is not flat), for #jm ) drawn from the 

entire posterior and for enough subsamples to permit efficient numerical approximations. 

Addit ional ly they should provide software in a standard low-level language for the 

evaluation of f ^ y , ^ . , . ^ - ) . These procedures can lead to large files, but costs of storage 

and remote access continue to decline. 

5. An example: GARCH and stochastic volatility models 

Models in which the volatility of asset returns varies smoothly over time have received 

considerable attention in recent years. (For a survey of several approaches see Bollerslev, 

Chou and Kroner (1992).) Persistent but changing volatility is an evident characteristic of 

returns data. Since the conditional distribution of returns is relevant in the theory of 

15 



portfolio allocation, proper treatment of volatility is important. Time-varying volatility also 

affects the properties of real growth and business cycle models. 

The earliest model of time varying volatil ity is the autoregressive conditional 

heteroscedasticity ( A R C H ) model of Engle (1982). This was extended to the generalized 

A R C H ( G A R C H ) model by Bollerslev (1986). Since then many variants of A R C H models 

have appeared. The distinguishing characteristic of these models is that the conditional 

variance of the return is a deterministic function of past conditional variances and past 

values of the return itself. G A R C H models exhibit both time-varying volatil ity and 

leptokurtic unconditional distributions, but the two cannot be separated: these models cannot 

account for leptokurtosis without introducing time-varying volatility. 

Stochastic volatility models have been examined by a series of investigators beginning 

with Taylor (1986). Promising Bayesian methods, used here, have been developed by 

Jacquier, Poison and Rossi (1994). In these models the conditional variance of the return is 

a stochastic function of its own past values but is unaffected by past returns themselves. 

L ike G A R C H models they account for time-varying volatility and leptokurtosis, but unlike 

G A R C H models it is possible to have excess kurtosis without heteroscedasticity. 

In this section we compare these two models, using the methods set forth in the paper 

and a time series of 3,010 daily closing observations of the U.S./Canadian exchange rate. 

5.1 The G A R C H model 

The G A R C H model of time-varying volatility may be expressed 

e, ~ IIDN(0,1) 

Here, y, is the observed return at time t; x, is a vector of covariates and (3 is the 

corresponding vector of coefficients; h, is the conditional variance at time t; a > 0, ys > 0 

(s = l,...,q), 5j > 0 (j = 1,...,/?). The vector of covariates is typical ly deterministic, 

including a constant term and perhaps indicator variables for calendar effects on the mean of 

y,-
For the comparisons taken up here we use only the G A R C H (1,1) model, which is (16) 

with p = q = l. (Henceforth, we omit the subscripts on yi and 5,.) The G A R C H (1,1) 

specification has proven attractive for models of returns. It typically dominates other 

G A R C H models using the Akaike or Schwarz Bayesian information criteria (Bollerslev, 

Chou and Kroner, 1992). Fol lowing the G A R C H literature we treat /J, as a known 

constant. Then, the likelihood function is 
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Lu(fi, a, y, 8\YU) = hf exp[-(y, - x's(S)2/2hs] (17) 

where h, is computed recursively from (16). The predictive density, through observation f, 

( 2 * ) - , , - * E . . . A M - ( * - X ; 0 ) 7 2 4 

For expressing prior distributions as well as for carrying out the computations it proves 
useful to work with a = log(a) rather than a. With this reparameterization the functional 
form of the prior distribution used in this work is 

a~N(a,s2

a); 

P~^(P,SP), (18) 

n{y,8) = 2{y>0,d>0,r + 8<l); 

and the distributions are independent. Restriction of / a n d 5 to the unit simplex is 

equivalent to the statement that the variance process is stationary. Choices of the parameters 

of the prior distributions and sensitivity of the results to these choices are taken up in 

Section 5.3. 

To perform the computations we construct a Metropolis independence chain to produce 

a sequence of parameters whose unconditional l imit ing distribution is the posterior 

distribution. Let 0' = (R',a,y,8), and let p„(0|r ' ,) denote the posterior distribution at time 

t. The kernel of this distribution is the product of (17) and the three prior density kernels 

in (18). The mode of the log posterior kernel is easily found using analytical expressions 

for the gradient and Hessian and a standard Newton-Raphson algorithm. Denote the mode 

by 0, and the Hessian at the mode by H. Let J( • V , v) denote the kernel density of a 

multivariate Student-r distribution with location vector p., scale matrix V , and v degrees of 

freedom. For the choices / ! = 0, V = -(1.2) 2H~\ v = 5, the ratio pXl(0\Y,)/j(0;p, V , v) is 

bounded above (as indicated by a Newton-Raphson algorithm). 

This multivariate Student-r distribution forms a proposal distribution for an 
independence Metropolis algorithm as follows. At step m, generate a candidate 0' from 
J(- ;p, V , v). With probability 

. f p,.(e*|r,)/ j( f l*; ; i ,v,y) 1 
p = mm{—, , ,,, ; ,— —r , 1>, 

[ P l ( ( e ( " - 1 ) | y l ) / j ( e ( " - i ) ; / i , v , v ) j 

6{m) = 6'; and with probability 1 - p, 0(m) = 0 ( " _ , ) . For this proposal distribution, about 

half the candidate parameter vectors were accepted in the work discussed below. 

Given the sequence J 0 ( m | } formed in this way, marginalized l ikel ihoods were 

computed by the method of linked predictive likelihoods described in Sections 2 and 3. 
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f« ^ IID 

Over the next 20 observations, M = 2000 iterations of the independence Metropolis chain 

produce numerical approximations of the predictive likelihood whose numerical standard 

error is typically about 0.5% of the predictive likelihood, and never greater than 1%. One 

can therefore obtain reliable marginalized likelihoods using (4) with intervals of 20 

observations between the s(. Computation time ranged from just under 75 seconds for the 

smallest sample (757 observations) to just over 5 minutes for the largest sample (2962 

observations), on a Sun 10/51. 

5.2 The stochastic volatility model 

The stochastic volatility model taken up by Jacquier, Poison and Rossi (1994) is 

y,=p% + e„ e, = h^u„ 

log/?, = a + 8\oghl_1 + avvl, (19) 

N(0 , I 2) , 

where |<5| < 1 and <TV > 0 . Following Jacquier, Poison and Rossi we do not condition on t\ 

but rather regard i\ as a random variable drawn from its unconditional distribution 

N(«/(1-<5),CT7(1-<52)). Then, 

LB(i3,a,5,o-JyJ = f-^L:(iS,a,5,<T vA,...A|nK---^ 
where 

•exp{[logA l-a/(l-5)]7[(TvV(l-52)]}. 

The prior distributions for /? and 0"v are of the forms 

P~N(P,SP) (21a) 

and 

VAl/oi~Z2(v,), (21b) 

respectively. The prior distribution of (a, 5) is bivariate normal, induced by independent 

normal prior distributions on the persistence parameter S, 

8~N(8,s2

s) 

and the unconditional mean of logfy, 

a/(l-S)~N(h,sl). 

A linearization of a / ( l - 8) yields the corresponding bivariate normal prior distribution, 
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h(l-8) 

8 -hs2

s 

(21c) 

- / 
To perform the computations we construct a Gibbs sampling - data augmentation 

algorithm. To describe this procedure, let 0' = (P',a,8,av) and h' = (hi,...,hu), and note 

that for any function of interest g(0,h) we can write 

' JLu(0\Yu)K(0)d0 jjL'u(0,h\Yu)7t(0)dhd0 ' 

where n(0) is the prior distribution constructed from (21). Thus, the latent variables 

/!,,...,/»„ are symmetric to the parameters 0 in the Bayesian inference problem. 

In the Gibbs sampling algorithm, successive subvectors of parameters and latent 

variables are drawn conditional on the remaining parameters and latent variables. The 

conditions of Roberts and Smith (1992) for convergence of this process to the posterior 

distribution are satisfied in this model. For the parameter vector 0 the Gibbs sampling 

algorithm employed here is the same as that used by Jacquier, Poison and Rossi (1994): the 

posterior distribution of /? conditional on (a,8), av and h is normal; the posterior 

distribution of (cc,8) conditional on p\ o"v and h is normal up to the last term of (20) 

which may be accommodated by acceptance sampling; and the distribution of av 

conditional on /3, ( a , 8) and h is inverted gamma. 

The treatment of h differs from that of Jacquier, Poison and Rossi (1994). The 

posterior distribution of hs (1 < s < u), conditional on {hr,r * and 0 has density kernel 

A;* 2 expK/2/ t , )exp[ - ( logA,- / i , )72(T 2 ] 

where 

F - V - X ' B .. _ « ( l - g ) + g ( l o g V 1 + l o g ^ 1 ) 
1 + d 

G2 = 
\ + 82 

The posterior conditional density kernel for Hs = \oghs is 

cxp[-(Hs-fi's)/2G2]exp[-e2/2cxV{Hs)], 

where / /* =/is-.5o2. One can draw efficiently from this distribution using acceptance 

sampling, employing a source N ( A , C T 2 ) distribution with X chosen optimally as described 

in Geweke (1994, Section 3.2). For / / , = log/j, the conditional posterior density kernel is 

exp - ( / / , - Ju;)72o- 2]exp[-e 1

2/2exp(// ])] 

where n\ = a+ 8H2-.5a2. There is a symmetric expression for Hu = \oghu. 

The predictive density for observations u+l,...,t, given observations 1,...,u, is 

( 2 * ) - < ' - " * f . . £ n ^ 
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where es = ys-\'s/3 and p*(-|) is the distribution of hu+l,...,h, conditional on the latent 

i\,...,hu and the specified value of the parameter vector. The simulated values of the 

predictive likelihood may therefore be formed as follows. For each sampled (0 , m ) ,h ( m ) ) , 

draw R sets of hu+i,...,h, through the recursion 

\oghr = a + <5log/ir_, + a v v r ( r = « + l , . . . r ) 

using simulated v r . For each set of { .̂}^_B+1 so drawn evaluate 

Then, average (22) over the R sets of drawn hu+1,...,hr (For the reported results, R=10. 

However, R=l does very nearly as well.) Finally, the grand mean over the M replications 

of (0 ( m ) ,h < m ) ) provides the desired numerical approximation to the predictive likelihood. 

Computations were carried out using M=2000 iterations of the Gibbs sampling - data 

augmentation algorithm. There was very little serial correlation in the sampled values of the 

marginalized predictive likelihoods, and numerical standard errors were about 2% of the 

predictive likelihood for t - u = 20. Computation time ranged from just over 2 minutes for 

the smallest sample, to about 7.5 minutes for the largest sample, on a Sun 10/51. 

5.3 Priors for U.S./Canadian exchange data, 1975-1986 

The G A R C H and stochastic volatility models were compared for the time series 
y, = 100 • log(;t,/;<:,_,) where x, is the closing value of the Canadian dollar on business day 

t. The only covariate in either model is a constant. This data set has also been studied 

using the stochastic volatility model by Jacquier, Poison and Rossi (1994). The data set 

was supplied by the authors. 

The 757 observations in 1975-1977 formed the initial sample in this experiment. 

These observations, together with the protoprior distribution of the parameters in each 

model, form the prior distributions in the computation of posterior odds ratios for the period 

beginning in January, 1978, and extending through the different months through November, 

1986. Proper protoprior distributions were used in both models. 
In the G A R C H model, fi ~ N(0, . l 2 ) . Since returns are measured in percentage points, 

this is a diffuse protoprior distribution for mean return. The protoprior distribution of 

(y,S) is uniform on the unit simplex. To specify the protoprior distribution for a, we 

consider reasonable values for the unconditional mean a/(l - y- 8) of h, and then assign 

a large variance. Given the behavior of exchange rate returns generally, E(/z, l / 2) = 1 is 

reasonable. If y+ 8 -.9 then a «(.1)2(1—.9) and a = log(a) = -6 .8 . To allow substantial 
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variation in a, let sa = log(9) = 2.1972. We shall refer to these specifications as the base 

prior, or prior 0, for the G A R C H model. 

The first row of Table 2 provides the marginalized l ikel ihood for M a y , 1982, 

corresponding to this protoprior and the prior sample extending through the first business 

day of May, 1982. Three different values are given, corresponding to three different seeds 

of the random number generator and therefore three different draws of an initial value 

from the protoprior distribution. May, 1982, was chosen for study because this month is 

about midway through the 1978-1986 likelihood period: one would expect more sensitivity 

to the protoprior before this point, and less sensitivity after. In parentheses beside each 

marginalized likelihood evaluation is the corresponding numerical standard error, computed 

as described in Geweke (1992). Notice that the differences in the three evaluations of the 

marginalized likelihood are consistent with their numerical standard errors. 

We assess the sensitivity of the marginalized likelihood to the protoprior by making 
changes in the protoprior distribution. In protoprior 1, / J ~ N ( 0 , . 0 1 2 ) instead of 

/ 3 ~ N ( 0 , . l 2 ) ; in protoprior 2, corresponding to an unconditional mean of .2 for /J , V 2 , 

a ~ N(-5.4,2 .1972 2 ) rather than a ~ N(-6.8,2.1972 2 ) ; in protoprior 3, sa = log(4) so 

that a ~ N(-6.8,1.3863 2 ) ; in protoprior 4, 7t(a,8) «= \a+ S\ rather than n(a,d) = 2 on the 

unit simplex. In each case only one parameter of the protoprior distribution was changed, 

while other values remained at the protoprior 0 levels. Protoprior 5 makes all these changes 

simultaneously. We also examine sensitivity of the initialization specification of hx. The 

base specification used \ = ^[}™{y, - y ) 2 / l 0 3 0 . In variant 6 we scale this value by 4, in 

variant 7 by .25, and in variant 8 we take = 0 , all the time maintaining protoprior 0. 

The results of these experiments are shown in the upper panel of Table 2. In every 

row, differences among the three evaluations are consistent with numerical standard errors. 

Comparing rows, it is evident that only prior 1 changes the evaluation of the marginalized 

likelihood in a detectable way. (The effect of the prior 2 change is exhibited in row 5 as 

well as row 2.) In the posterior distribution for the first business day of M a y , 1982, 

corresponding to prior 0, ft ~ N(- .0114, .0046 2) . Prior 1 is informative relative to this 

posterior distribution. A s one would expect, the effect of prior 1 is to lower the 

marginalized likelihood (by about 6%). 

In the stochastic volati l i ty model the protoprior specifies /? ~ N(0, . l 2 ) and 

S ~ N(.8, .3 2 ) . The same unconditional mean and variance for h1/2 then leads to a bivariate 

normal density for ( a , <5) by means of (21c). The unconditional variance for h, is 

c 2 / ( l - <52) in the stochastic volatility model; evaluation at <5 =8 then leads to sv =.889 in 

(21b), and we specify v = 1 to make the protoprior diffuse. Evaluations of marginalized 
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l ikelihood for May , 1982, corresponding to this protoprior are presented in line 0 of the 

bottom panel of Table 2. 

We consider eight variants of the protoprior distribution: in protoprior 1, 
/ J ~ N ( 0 , . 0 1 2 ) ; in protoprior 2, <5 ~ N(.95,.3 2 ) and in protoprior 3 5~N(.8,.152); in 

protoprior 4 the unconditional mean of h]/2 is changed from .1 to .2, and in protoprior 5 the 

standard deviation of the unconditional mean of log(fy) is changed from 3 to 2; in 

protoprior 6 sv is changed from .889 to .561 consistent with the change in the unconditional 

mean of h)12 from .1 to .2; and in protoprior 7, v v is increased from 1 to 10, thus making 

the original protoprior more informative. In each of these cases, only one parameter of the 

protoprior distribution was changed, while values of the other parameters remained at the 

prior 0 levels. Protoprior 8 makes all these changes simultaneously. 

The results of these experiments are shown in the lower panel of Table 2. Differences 

among evaluations within rows are again consistent with numerical standard errors. 

Numerical standard errors are higher here than in the G A R C H model, which makes 

differences between rows harder to detect. There is some evidence that the tighter 

distribution for p (prior 1) once again has some impact on the marginalized likelihood, but 

there is no indication of the changes produced by the other protoprior distributions. 

5.4 Comparison using U.S./Canadian exchange data, 1975-1986 

We computed marginalized likelihoods and Bayes factors in one-month increments. In 

each case the sample extends from Friday, January 3, 1975, through the first business day 

of the month indicated. In each model predictive likelihoods are then formed for the next 

day, for the next two days, and so on until all business days through the first business day 

of the next month are incorporated. Thus the computational procedure just described was 

repeated for 106 samples, the smallest ending Tuesday, January 3, 1978, and the largest 

ending Monday, November 3, 1986. For each sample 20 to 23 functions of interest are 

computed, corresponding to predictive likelihoods ending on each business day in the 

month ahead. 

The results of this procedure are displayed in Figure 1. The upper panel indicates the 

predictive l ikelihood for the data in the month indicated plus the first business day of the 

next month, based on the posterior distribution for the sample extending through the first 

working day of the month indicated. For example, using the posterior as of the end of the 

day Tuesday, January 3,1978, the predictive odds ratio over observations from Wednesday, 

January 4, 1978 through Wednesday, February 1, 1978, is exp(2.05)=7.79. Using the 

posterior as of February 1,1978, the predictive odds ratio over observations from Thursday, 

February 2, 1978, through Wednesday, March 1, 1978, is exp(-.484)=0.62. Hence the 
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predictive odds ratio in favor of the stochastic volatility model for the first two months of 

1978 is 7.77x0.62=4.80=exp(1.57). The lower panel of Figure 1 indicates the cumulative 

log Bayes factor in favor of the stochastic volatility model. 

There is substantial variation in the monthly predictive Bayes factor. On the whole, 

however, evidence in favor of the stochastic volatility model steadily mounts with additional 

data. In every year except 1982, the marginal evidence for that year provides a Bayes factor 

greater than 1:1 in favor of this model. Over the period of nearly nine years, the predictive 

Bayes factor in favor of the stochastic volatility model is 1 .89x l0 1 5 : l . 

The decomposition of this Bayes factor into predictive factors, as described in Section 

2, provides some insight into this result. Observe that for a few months, the Bayes factor in 

favor of the stochastic volatility model is quite large. Four months — October, 1978 with a 

log Bayes factor of 5.93; February, 1979, 4.05; May, 1980, 7.43; and February, 1985, 5.67 

~ account for nearly two-thirds of the final log Bayes factor of 35.17. Greater detail for 

each of these four months is displayed in Figures 2 through 5, respectively. Each figure 

consists of three panels. The upper panel indicates the predictive likelihood through each 

business day of the month for both models. The middle panel shows the corresponding 

Bayes factor in favor of the stochastic volatility model, and the bottom panel plots the return 

for each business day. For October, 1978 (Figure 2), the large Bayes factor is due to one 

day, Friday, October 27, when the exchange rate moved by almost 1%, or about five times a 

typical movement in the weeks preceding. For February, 1979 (Figure 3), more than half of 

the log predictive Bayes factor arises on Thursday, March 1, the last day of the predictive 

horizon. Once again, there was a very large movement in exchange rates on that day. 

Figures 4 and 5 tell similar stories. The May 1980 contribution of 7.43 was made almost 

entirely on Wednesday, May 21 when exchange rates moved by more than 1%. And in 

February, 1985, essentially the entirely monthly contribution to the Bayes factor was 

realized on Thursday, February 21, when the rate fell by over 1%. About the same change 

occurred on the next two business days. Both subsequent events were unlikely under either 

model (note the declines in the marginalized predictive likelihoods on each day) but not 

nearly so unlikely as the first of the three large shocks in the context of the G A R C H model. 

Figures 6 and 7 display similar detail for the two months in which the G A R C H model 

fared best relative to the stochastic volatility model, but the pattern here is different. There is 

no single day or even a few days that account for the relatively better performance of 

G A R C H . Returns are quite volatile throughout both months, indicating that h, is probably 

large in both models. The large movement on June 24 is improbable in both models, but 

only slightly moreso in the stochastic volatility model. 
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Finally, Figure 8 provides detail for a month in which the predictive Bayes factor was 
about 1.0. This month is relatively tranquil. Throughout the month h, declines in each 

model, and since tranquility prevails all marginalized likelihoods in both models rise slowly. 

Since this happens at the same rate, the Bayes factor is not much affected. 

This analysis of the decomposition of the Bayes factor suggests three features that are 

key in accounting for the relative performance of the models. First, both models perform 

about as well in periods of sustained tranquility (Figure 8). Second, G A R C H may perform 

slightly better in periods of sustained volatility (Figures 6 and 7), but this is at most a 

tentative conjecture on the basis of this analysis. Third, and by far the most important, the 

observed large and sudden movements in exchange rates are relatively much more probable 

in the stochastic volatility model than in G A R C H . Our casual inspection, beginning with 

Figure 1, uncovered four one-day events that were, respectively, 525,8.7,584, and 232 times 

more probable in the stochastic volatility model than in the G A R C H model. These events 

are highly informative. 

It would appear that the stochastic volatility model accommodates larger movements 

better for two reasons. Most important, since conditional variance in the stochastic volatility 

model is a stochastic function of past conditional variances, sudden relatively large shocks 

are plausible if they are not too large relative to the standard deviation (<tv) of the innovation 

of the conditional variance process. Since conditional variance is a deterministic function of 

the past in the G A R C H model, sudden relatively large shocks must appear implausible. A 

second, contributing reason is the logarithmic form of the evolution of conditional variance 

in the stochastic volatility model, which makes new, larger conditional variances more 

plausible than if the innovation to the conditional variance process were additive. Of course, 

not all models in the A R C H family maintain an additive functional form for the evolution of 

conditional variance from its own past and past returns, but so long as this evolution is 

deterministic they are likely to be subject to the limitations uncovered here. A promising 

direction for further development in both models might be the introduction of leptokurtic 

shocks. 

6. An example: Limited information Bayesian inference 

We now take up a second illustration of computation of marginalized likelihoods and 

Bayes factors. The objectives are to see how practical the procedures are in a model with 

many parameters in a very small sample. One expects computational problems to be greater 

in this situation than in models with few parameters and many observations, which was the 

case in the example in Section 5. This provides a good opportunity to measure the 
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computational advantages inherent in the decomposition of the marginalized likelihood into 

a product of predictive Bayes factors. 

6.1 The model 

The linear simultaneous equation model may be written 

Y T = X B + H. (23) 
Ixggxg ixmmxg ixg 

Each row denotes an observation and each column an equation. The model as a whole 

determines the g endogenous variables in the columns of Y, given the m predetermined 

variables in the columns of X and disturbances in the columns of H: 

Y = XQT-x+HT-l=XR + H'. (24) 

In the language of the simultaneous equation literature (23) is the structural form of the 

simultaneous equation system. Each equation corresponds to an aspect of economic 

behavior (for example, a supply or demand equation), and typically does not contain all - or 

even most - of the variables in the system. This implies restrictions to zero of 

corresponding elements of T and B . If these restrictions take the proper form then one 

may determine T and B from knowledge of R in the multivariate regression (24). The 

simultaneous equation literature provides extensive treatment of these identification 

conditions. 

The example here concentrates on one of the g equations, without loss of generality the 
first: 

Y Y = X B+ e. (25) 
txLLxl ixklxl Ixl 

Here, Y includes exactly those L (<g) endogenous variables that appear in the first 

equation — that is, those for which the corresponding elements of the first column of T are 

not restricted to be zero. The vector y contains these nonzero elements. Similarly X 

consists of those k(<m) predetermined variables in the first equation, and the 

corresponding nonzero coefficients from the first column of B appear in / J . Without loss 

of generality suppose that these are the predetermined variables in the first k columns of X 

in (23). In general, it is the case that k' = m-k>L — \: this is a necessary condition for 

identification of the elements of y and /? from R in (24) i f exclusions are the only type of 

restriction in the system (Theil, 1971, pp. 448-49). The coefficients in y and /3 must be 

normalized, and this is usually done by taking y, = 1. 

Now consider the L equations in the reduced form (24) corresponding to the L 

endogenous variables included in the first structural equation (25). Write this subsystem 

=\x X'] 
n 

kxL 

n ' 
\_k'xLj 

+ E, v e c ( E ) ~ N ( 0 , E ® I „ ) . (26) 
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The matrix X' consists of the last k' =m-k columns of X, corresponding to the 

predetermined variables not included in the first equation. From (25), 
n y = B and n * y = .0 . 

* x / . L x l i x l k'xLLxX k x l 

For the second of these equations to be satisfied it must be the case that Rank ( lT ) < L -1. 

When k" = L -1 this is trivially true, but if k' > L -1 (which tends to be the rule) there is a 

rank restriction on n * . With this in mind rewrite (26) as 
" n i 

+ E=X Y1+ X ¥ <D + E (27) Y = [X X'] 
y d ) nxkkxL nxxk' * « x ( L - l ) ( i - l ) x L nxL 

The system (27) is a modest extension of the reduced rank regression model, for which 

Bayesian inference using a Gibbs sampling algorithm to compute posterior moments is 

taken up in Geweke (1993). Given suitable normalization of *For<l> and suitable 

independent prior densities for n,*F,<I> and Z , the conditional posterior densities for 

n , v F and <t> are all multivariate normal and that for Z is inverted Wishart. Note that 

conditional on and X , 

Y-X'xV<& = XTl + E 
is a multivariate regression model, implying a simple conditional posterior distribution for 

n (Zellner, 1971, p. 227). Conditional distributions for the elements of O and*F are 

respectively multivariate normal, but the distributions are more complicated (Geweke, 1993). 

The functions of interest generally wil l be 

7:*F<J>y = 0, B = Uy, and a1 = var(e) = 7 Z 7 . 

The first equation may be solved through a singular value decomposition of * F O , followed 

by normalization of 7, and then (5 and o2 follow directly. For the purposes of illustration 

in this paper, we are interested in comparing (27) with the unrestricted multivariate 

regression model, 

Y = XA + U, vec (£ / )~N(0 ,Q®I „ ) . (28) 

For (27) we employ the improper protoprior kernel f 1 J 0 ( n , *F ,O ,Z ) °= | Z " I / 2 | , and for (28) 

the improper protoprior kernel f 2 % ( A , Q ) 0= | Q - V 2 | . Marginalized likelihoods are computed 

in two ways: by numerical approximation of each of the predictive l ikelihoods in (8) 

followed by computation of the product, which we shall call the " l inked" method; and by 

direct numerical approximation of (3), which we shall call the " raw" method. The 

considerations raised in Section 3 suggest that the linked method should be more accurate 

than the raw method. 
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6.2 Demand for meat (Tintner) 

A classic example found in the simultaneous equation literature is Tintner's (1965, p. 

176) meat market model, which consists of a demand equation and a supply equation: 

Ynfi + r^i = A i + & i *2 + «. (29a) 

/ ^ l + 722% = A 2 + &2*3 + 042*4 + «2 ( 2^b) 
where y, is the quantity of meat consumed, y 2 is the price of meat, x2 is per capita 

disposable income, xi is the cost of processing meat, and x4 is the cost of producing 

agricultural products. Annual data (23 observations) for the period 1919-41 are used. A 

summary of the data is found in Tintner (1965, pp. 177-78). This work begins with the 

actual observations given in French (1950, p. 27). 

In the case of the demand equation L = k = k* = 2 , and therefore the matrix IT must 

have rank 1. In the case of the supply equation, L = 2, k = 3, k* = 1. The 1 x 2 matrix II* 

therefore has rank 1 without further restrictions. (In the language of the simultaneous 

equation literature, the first equation is "overident i f ied" and the second is "just 

identified.") Consequently the joint posterior distribution for all the parameters in the 

system (29) follows from the posterior distribution of U and IT as constructed from the 

demand equation (29a) alone. 

Tables 3 and 4 present marginalized likelihoods, and Table 5 presents Bayes factors, 
for a variety of choices of s0 (the last observation entering the prior) and t (the last 

observation entering the likelihood) and for alternative computational procedures. The 

Bayes factors are expressed in favor of the restricted model (27). The unrestricted model 

has 11 parameters, and the smallest sample forming a prior (as of 1934) has 16 

observations. Computations employed 10 4 iterations of an independence Monte Carlo 

sampler for the multivariate regression model, requiring about 12 seconds on a Sun 10/51. 

For the reduced rank regression model (27), 10 5 iterations were used with functions of 

interest evaluated every 10th iteration. This required about 4 minutes. 

Tables 3 and 4 show marginalized likelihoods for the reduced rank model (27) and the 

multivariate regression model (28) respectively. In each table raw marginalized likelihoods 

are presented first, followed by linked marginalized likelihoods. Observe that marginalized 

likelihoods in the two models tend to move together: the relative predictive probability of 

observations and groups of observations is less volatile than are the prediction probabilities 

themselves. Without exception, numerical standard errors for the l inked marginalized 

l ikel ihoods are lower than the numerical standard errors for the corresponding raw 

marginalized likelihoods. Relative computed accuracy varies substantially from observation 

to observation, but on the whole the relative advantage of the linked procedure is greater than 

it is for the normal case documented in Table 1. Linked and raw results agree up to 
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computed numerical standard errors, and in all cases the linked marginalized likelihoods are 

accurate to at least one significant figure. 

Bayes factors in favor of the restricted model (27) are displayed in Table 5. In virtually 

all cases numerical standard error is smaller relative to the corresponding Bayes factor for 

the linked method than it is for the raw method. However in many cases linked Bayes 

factors are about double the corresponding Bayes factors, resulting in somewhat higher 

numerical standard errors for the linked Bayes factors. Precisely as one would expect from 

the analysis of Section 4, the relative accuracy of Bayes factors diminishes as the likelihood 

function involves more products . Numerical standard error ranges from about 2% of the 

Bayes factor (for 1941, based on the 1919-40 sample) to as much as 15% of the Bayes 

factor (for 1935-41, based on the 1919-34 sample). 

7. Conclusion 

This paper has developed a general method for the computation of the marginalized 

l ikel ihood and demonstrated its practicality in some models typical of those used in 

macroeconomics and finance. From reported marginalized likelihoods it is easy to form 

posterior odds ratios between competing models, thus enabling their comparison. It is no 

more difficult to compare several models than it is to compare two. It is irrelevant whether 

models are nested or not, and the example in Section 5 shows that they can be quite 

different. A l l that is required is that the same data set be used. The method proceeds by 

decomposing marginalized likelihood, and therefore posterior odds ratios, into period-by-

period components. As documented in one of the examples, analysis of this decomposition 

can provide an interpretation of marginalized likelihoods and posterior odds ratios that may 

be fruitful in understanding shortcomings in the models considered, and in suggesting 

promising lines of further development. 

This procedure builds on simulation methods for computing posterior moments whose 

recent rapid development has greatly expanded the class of models that may be used in 

formal Bayesian inference. These simulation methods strongly suggest a style of public 

reporting with several practical attractions. In particular, making available the simulated 

parameter values enables any other investigator to employ different priors, update the 

original posterior with new data, evaluate the posterior expectations of new functions of 

interest, or any combination of these three, by means of simple computations that are not 

model specific. 

These procedures may enable economists and decision makers to bring the full power 

of the Bayesian paradigm to bear on a wide array of problems, providing results more 
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directly relevant to these problems than is now the case. (For example, it is a short step 

from the results reported in Section 5 to the valuation of options, futures, and options 

contracts on futures.) They may even reinvigorate the link between econometrics and 

practical decision making that was emphasized at the inception of our profession. That 

would be a welcome development, indeed. 
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Table 1 

[Expected numerical standard error]/[Expected numerical standard error with Unking] 

as a function of sample size (t) and obserivations in likelihood function (r) 

with k=9 parameters 

t=9 t=20 t=50 

r=2 1.186 1.079 1.031 

r=3 1.418 1.166 1.062 

r=5 2.076 1.369 1.130 

r=10 6.082 2.108 1.326 

r=20 7.487 5.609 1.863 

r=50 3.953xl0 5 1.913xl0 2 6.045 



Table 2 

Sensitivity of marginalized likelihood for May, 1982, 
to prior specification, initial conditions, and likelihood initialization 3 

G A R C H 

Initial conditions a b c 
Prior/ 
initialization 

0 .0358316 (.0001987) .0359298 (.0002116) .0355990 (.0001980) 

1 .0340285 (.0002047) .0340550 (.0002096) .0334190 (.0001854) 

2 .0357066 (.0002090) .0354063 (.0001850) .0354527 (.0001927) 

3 .0357828 (.0001893) .0360759 (.0002130) .0356769 (.0001587) 

4 .0358046 (.0001641) .0360037 (.0001868) .0354254 (.0002301) 

5 .0334715 (.0001601) .0335545 (.0001601) .0333079 (.0001979) 

6 .0359182 (.0002309) .0355570 (.0002299) .0358072 (.0001798) 

7 .0355307 (.0001603) .0351651 (.0001927) .0352200 (.0001205) 

8 .0356016 (.0001639) .0355034 (.0001669) .0355820 (.0001541) 

Stochastic volatility 

Initial conditions a b c 
Prior/ 
initialization 

0 .0294394 (.0007781) .0298064 (.0007450) .0300387 (.0006926) 

1 .0281328 (.0007101) .0287615 (.0007187) .0270598 (.0005363) 

2 .0286919 (.0006656) .0300395 (.0007169) .0286605 (.0007484) 

3 .0305217 (.0006101) .0299146 (.0006883) .0310686 (.0007175) 

4 .0293207 (.0007710) .0280117 (.0007414) .0303610 (.0006978) 

5 .0289205 (.0006436) .0296276 (.0005878) .0291596 (.0005850) 

6 .0295256 (.0007364) .0297951 (.0005424) .0287858 (.0007298) 

7 .0317184 (.0007401) .0305197 (.0006872) .0295160 (.0005276) 

8 .0297489 (.0006157) .0315650 (.0007040) .0301338 (.0006945) 

a Prior specifications and likelihood initializations are described in the text. Alterntaive initial 
conditions entail different seeds for the random number generator, and a different draw of 
the initial parameter vector from the prior distribution. Numerical standard errors of the 
numerical approximations to the marginalized likelihoods are indicated pamethetically. 



Table 3 

Marginalized likelihoods for Meat model, Multivariate regression 

Raw computations 

t=1935 t=1936 t=1937 t=1938 t=1939 t=1940 t=1950 

so=1934 4.603x10"3 2.006X10 4 3.633xl0"6 6.111X10 1 1 2 .171x l0 1 2 3.299xl0" 1 4 3.342xl0" 1 6 

(.088) (.038) (.106) (.775) (.289) (.653) (1.025) 

so=1935 4.330xl0- 2 7.724xl0- 4 1.568xl0"8 5.522xl0" 1 0 7.032xl0"1 2 6.551xl0"1 4 

(.015) (.085) (.179) (.660) (.496) (.623) 

so=1936 1.765x10-2 3.109X10"7 1.081X108 1.506xl0- 1 0 1.494X10"12 

(.022) (.222) (.105) (.200) (.293) 

so=1937 1.721xl0"5 6.168xl0"7 8.838xl0- 9 8.141X10"1 1 

(.120) (.388) (.597) (.759) 

so=1938 3.514xl0- 2 4.892xl0" 4 4.967xl0- 6 

(.011) (.036) (.124) 

so=1939 1.396x10-2 1.423X10"4 

(.007) (.028) 

so=1940 1.012x10-2 
(.010) 

Linked predictive factors 

t=1935 t=1936 t=1937 t=1938 t=1939 t=1940 t=1950 

so=1934 4.603xl0- 3 1.993xl0"4 3.518xl0"6 6.054x10"1 1 2.127X10"12 2.970xl0"1 4 3.009xl0-1 6 

(.088) (.039) (.081) (.445) (.156) (.219) (.224) 

so=1935 4.330xl0-2 7.642xl0"4 1.315xl0"8 4.622xl0" 1 0 6.452xl0" 1 2 6.536x10" 1 4 so=1935 
(.015) (.099) (.093) (.328) (.459) (.470) 

so=1936 1.765x10-2 3.038xl0"7 1.067xl0"8 1.490x10-10 1.509xl0- 1 2 

(.022) (.215) (.076) (.106) (.108) 

so=1937 1.721xl0"5 6.048c lO"7 8.442xl0"9 8.552X10"1 1 

(.120) (.422) (.591) (.604) 

so=1938 3.514x10-2 4.906xl0" 4 4.969xl0" 6 

(.011) (.029) (.057) 

so=1939 1.396x10-2 1.414X10"4 

(.007) (.016) 

so=1940 1.013x10-2 
(.010) 

The mantissa of the corresponding numerical standard error is indicated in parentheses directly below the 
numerical approximation of the marginalized likelihood. The exponent of the numerical standard error is the 
same as that of the approximated marginalized likelihood. 



Table 4 

Marginalized likelihoods for Meat model, Reduced rank regression 

Raw computations 

t=1935 t=1936 t=1937 t=1938 t=1939 t=1940 t=1950 

so=1934 1.257xl0"3 4.934xl0" 5 1.038xl0"6 3.541X10"1 1 1.309x l0 1 2 2.103xl0" 1 4 2.318xl0" 1 6 

(.178) (.781) (.219) (.830) (.309) (.526) (.650) 

so=1935 3.852xl0- 2 7.166xlO"4 3.328xl0" 8 1.186xl0"9 1.698X10"11 1.823X10"1 2 

(.082) (.421) (.355) (.129) (.177) (.212) 

so=1936 2.005xl0- 2 7.818xl0" 7 2.643x10"8 3.868X10" 1 0 4.591X10" 1 2 

(.069) (.041) (.205) (.261) (.474) 

so=1937 3.632xl0"5 1.280xl0"6 1.849xl0"8 1.924x10"1 0 

(.262) (.089) (-139) (.175) 

so=1938 3.532x10-2 4.959x10"4 5.017xl0" 6 

(.015) (.044) (.088) 

so=1939 1.404x10-2 1.473X10"4 

(.011) (.025) 

so=1940 1.055x10-2 
(.015) 

Linked predictive factors 

t=1935 t=1936 t=1937 t=1938 t=1939 t=1940 t=1950 

so=1934 1.257xl0"3 4.842xl0" 5 9.708xl0- 7 3.526x10-1 1 1.245xl0" 1 2 1.749xl- 1 4 1.845xl0" 1 6 

(-178) (.693) (1.43) (.578) (.204) (.287) (.304) 

so=1935 3.835x10-2 7.723xl0- 4 2.805xl0" 8 9 . 9 0 8 x l 0 1 0 1 .391x lO n 1.468x10"1 3 

(.082) (.313) (.232) (.821) (.116) (.124) 

so=1936 2.005x10-2 7.828x10"7 2.572xl0" 8 3.61 l x l O 1 0 3.810xl0- 1 2 

(.069) (.582) (.206) (.290) (.311) 

so=1937 3.623xl0 5 1.283xl0"6 1.801xl0-8 1.900X10"10 

(.262) (.0930 (.131) (.141) 

so=1938 3.532x10-2 4.959xl0- 4 5.232xl0" 6 

(.015) (.044) (.088) 

so=1939 1.404x10-2 1.481X10"4 

(.011) (.024) 

so=1940 1.055x10-2 
(.015) 

The mantissa of the corresponding numerical standard error is indicated in parentheses directly below the 
numerical approximation of the marginalized likelihood. The exponent of the numerical standard error is the 
same as that of the approximated marginalized likelihood. 



Table 5 

Bayes factors for Meat model 

Raw computations 

t=1935 t=1936 t=1937 
so=1934 .2731 .2464 .3600 

(.0390) (.0392) (.0612) 

srj=1935 .88% .9278 
((.0192) (.0554) 

so=1936 1.136 
(.042) 

so=1937 

so=1938 

so=1939 

so=1940 

Linked 

1=1938 t=1939 t=1940 t=1950 

.5795 .6029 .6390 .6936 
(.1545) (.1634) (.2040) (.2882) 
2.122 2.148 2.415 2.783 
(.3312) (.347) (.304) (.418) 

2.515 2.445 2.568 3.073 
(.220) (.304) (.383) (.681) 

2.110 2.075 2.092 2.363 
(.212) (.195) (.157) (.308) 

1.003 1.014 1.010 
(.005) (.0117) (.031) 

1.006 1.035 
(.009) (.027) 

1.041 
(.018) 

predictive factors 

t=1935 t=1936 t=1937 t=1938 t=1939 t=1940 t=1950 
so=1934 .2731 .2430 .2760 .5824 .5853 .5889 .6132 

(.0390) (.0351) (.0411) (.1047) (.1053) (.1060) (.1109) 
srj=1935 .8896 1.011 2.133 2.144 2.156 2.246 

((.0192) (.043) (.232) (.234) (.236) (.249) 

sn=1936 1.136 2.397 2.410 2.423 2.525 
(.042) (.256) (.258) (.260) (.275) 

so=1937 2.110 2.121 2.133 2.222 
(.212) (.213) (.215) (.227) 

so=1938 1.003 1.011 1.053 
(.005) (.011) (.021) 

so=1939 1.006 1.047 
(.009) (.021) 

so=1940 1.041 
(.018) 

The mantissa of the corresponding numerical standard error is indicated in parentheses directly below the 
numerical approximation of the Bayes factor. The exponent of the numerical standard error is the same as 
that of the approximated Bayes factor. 
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