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ABSTRACT

In order to analyze careers both within and across firms, this paper proposes a matching model of the

labor market that extends existing models of job assignment and learning about workers’ abilities.

The model accounts for worker mobility across jobs and firms, for varying degrees of generality of

ability, and for the possibility that firms affect the information they acquire about workers through

job assignment. I characterize equilibrium assignment and wages, and show how, depending on how

abilities and jobs are distributed across firms, equilibrium gives rise to widely varying patterns of job

mobility within firms and turnover across firms, even if matching would be perfectly assortative in

the absence of uncertainty. The implied job and wage dynamics display features that are consistent

with a broad set of empirical findings on careers in firms and the labor market. In particular, work-

ers can experience gradual promotions and wage increases following successful performance but few

or no demotions when employed by the same firm. The model also produces turnover across firms

and occupations after both successful and unsuccessful experiences, leading to wage increases or

decreases following a firm or occupation change. Overall, the results in this paper provide a unified

framework in which to interpret the dynamics of jobs and wages in firms and the labor market.
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Over their careers, workers typically move through a hierarchy of jobs within a given firm

as well as experience turnover between firms. These two types of mobility have been analyzed

extensively, albeit separately. A model that integrates both types of job mobility would provide

a useful framework in which to interpret the patterns of careers typically observed in the

data. In this paper, I develop such a unified model under uncertainty about workers’ ability

and characterize equilibrium assignment for varying degrees of generality of ability across jobs

and firms. I also explore the impact of differences in the speed of learning across jobs on

crucial dimensions of the dynamics of jobs and wages. I show that the model’s implications are

consistent with numerous stylized characteristics of careers, cast new light on some common

findings, and naturally explain features of careers previously thought difficult to reconcile with

the presence of uncertainty and learning.

I propose an equilibrium model of learning in the labor market in which career paths re-

flect a gradual process of information acquisition about workers’ suitability for the various jobs

available in the economy. In this framework a career is the outcome of a two-way feedback

between job assignment and information acquisition. As information is acquired, workers op-

timally advance through jobs both within and across firms. At the same time, workers select

into jobs, in part, because of the information acquisition possibilities that employment offers.

The model integrates and extends two leading approaches to the study of careers. Specifi-

cally, I extend the approach to the analysis of careers within firms developed by Gibbons and

Waldman (Gibbons and Waldman (1999, 2006)). Gibbons and Waldman propose an integrated

framework of job matching within firms that combines learning and human capital acquisition

and qualitatively explains a broad set of empirical findings about job and wage mobility in

firms. Their focus is on an environment in which the technologies of all firms are identical,

so they abstract from worker turnover. Differently from Gibbons and Waldman, I allow firms

to be heterogeneous in their technologies and examine the implications of firm and worker

heterogeneity for the patterns of job mobility (and wages) within and across firms.

I nest in this framework and extend the classic approach to worker turnover across firms

developed by Jovanovic (1979). Jovanovic considers a model of job matching across firms,

in which each firm has only one job and workers gradually learn about the quality of their

match with a given firm based on their output. By construction, this model is silent about

the patterns of careers within firms. Differently from Jovanovic, I allow multiple jobs to exist

within firms. Moreover, I explore how different degrees of firm specificity of ability, ranging

from purely specific to jobs and firms to purely general across both, lead to different predictions

about turnover, both across jobs within a firm and across firms.

Formally, the model is a competitive economy in which a worker’s ability, either high or

low, is initially unknown to all agents, including that worker. A worker’s state is then the



current prior that the worker’s ability is high. Firms operate technologies that are described

by a collection of jobs, which produce output and information. These technologies can be

heterogeneous in both the expected output produced by a worker with a given prior and the

information about that worker’s ability conveyed by success or failure in a job.

When a worker of any given prior is employed, a two-way trade in heterogeneous goods takes

place. The worker provides labor services to the firm with perceived quality summarized by

the prior. The firm provides information to the worker that is indexed by the informativeness

of the assigned job. Hence, the wage varies both with the worker’s heterogeneity (that is, the

prior) and with the firm’s heterogeneity (that is, the informativeness of the assigned job). As

a result, in equilibrium, a worker may choose to work in a job that produces more information

at a lower wage than he would accept at a job that produces less information. In this sense,

the differing information produced by jobs leads to compensating wage differentials.

In my analysis, I assume complementarity between ability and jobs, as do MacDonald

(1982) and Gibbons and Waldman (1999, 2006). I start with a simple general ability model in

which ability is general across jobs and firms and, for simplicity, assume that jobs are equally

informative. Critically, I suppose that all the jobs in the economy can be ordered according to

their degree of complementarity with ability. Then, equilibrium implies an ordering of jobs in

a natural hierarchy according to a worker’s comparative advantage: success leads to promotion

to higher-ordered jobs in which workers are paid higher wages and high-ability workers have

greater comparative advantage. Likewise, failure leads to demotion to lower-ordered jobs in

which workers are paid lower wages and low-ability workers have greater comparative advantage.

In the model, the turnover of workers across firms in equilibrium depends on how jobs are

distributed across firms. In the simplest such distribution, each firm has the same collection

of jobs so that all firms are identical, as in Gibbons and Waldman (1999, 2006). In this case,

moving up the hierarchy of jobs in the economy means moving up the job ladder within a

firm. Another possible distribution of jobs across firms entails one technology consisting of a

collection of the lowest-ranked jobs, another technology consisting of the next tier of jobs, and

so on. Such a distribution leads to a hierarchy of firms as well as jobs: moving up the hierarchy

of jobs means moving up the job ladder within a firm and then turning over to the firm on

the next rung of the ladder of firms. My results are phrased so that they apply to any such

distribution.

The general ability model relies on the extreme assumption that ability is perfectly general

across all jobs and firms. Two strands of the literature on careers argue that such a model is

inconsistent with some of the observed patterns of job mobility and wages. These patterns,

however, can be qualitatively well accounted for by a mixed ability model in which ability is not

fully general. Specifically, one strand of the literature, which started with Jovanovic (1979) and
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the empirical work of Flinn (1986) and Topel (1991), argues that firm-specific capital explains

two important features of the data: that the hazard of separation from a firm eventually

decreases with tenure in the firm and, at the same time, that workers experience sizable returns

to tenure. (See Buchinsky, Fougère, Kramarz, and Tchernis (2010) for recent estimates of

returns to firm tenure.) This strand motivates me to consider a mixed ability version of the

model, in which ability is firm specific. A newer strand, pioneered by Miller (1984) and recently

advanced by Kambourov and Manovskii (2009a,b), argues that occupation-specific capital can

explain two other features of the data: that the hazard of switching occupation decreases with

tenure in a job or experience in the labor market and that workers enjoy substantial returns

to tenure in an occupation. (See also Moscarini and Vella (2008) on the relationship between

occupational mobility and experience.) This strand motivates me to consider another mixed

ability version of the model, in which ability is occupation specific.

The firm-specific version of the model extends Jovanovic’s model to a model of careers

within and across firms by allowing each firm to have a collection of jobs rather than a single

job. In this case, a worker’s ability is specific to firms but general across a firm’s jobs. Thus,

a worker’s state can be summarized by a vector of priors about the worker’s ability at each

firm. Equilibrium job assignment, then, has a two-part form. First, at each vector of priors,

an index for each firm, a modified Gittins index, is computed: a worker is assigned to the firm

with the highest value of this index. Second, given the assigned firm based on this index, the

assigned job within the firm follows a within-firm hierarchy rule. To understand how the model

generates the patterns observed in the data just discussed, note that success in a given firm

increases the index of that firm only, whereas failure lowers it. Hence, continual success leads

workers to move up the hierarchy of jobs of a firm but to remain continuously employed at the

same firm. Continual failure, instead, leads to demotion within a given firm until the Gittins

index of the firm drops below that of the next-best firm, at which time the worker turns over

to that firm.

The occupation-specific version of the model provides a theory of careers in firms and occu-

pations. In this version, a worker has occupation-specific ability and each firm has a collection

of jobs in each occupation (though not necessarily all occupations). For any given ordering of

the jobs of a given occupation, the model implies a hierarchy of jobs within an occupation. In

this model, equilibrium assignment follows a hierarchy rule for job assignment within an occu-

pation and a generalized Gittins index rule for occupational choice. Depending on how general

ability is across the jobs of different occupations and on how jobs of different occupations are

distributed across firms, the model leads to different patterns of turnover across jobs and firms,

which are consistent with the evidence on occupation-specific ability.1

1This version of the model bears similarities to the search model of Neal (1999). Neal shows that if workers
cannot look for a new career–a career in his model corresponds to a job here–without looking for a new firm,
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I then analyze the case in which jobs are differentially informative about ability, so that the

speed of learning differs across jobs. Such an extension is motivated on several grounds. First,

starting from Prescott and Visscher (1980) and Holmström and Tirole (1989), the argument

has long been made that firms assign workers to jobs taking into account that different jobs

provide different amounts of information about workers’ abilities. Second, Baker, Gibbs, and

Holmström (1994a,b), henceforth BGH, in their influential analysis of careers in firms, suggest

that managers at the firm in their data may initially be assigned to an entry-level job that

possibly contributes little to firm value but at which performance may be especially informative

about a manager’s ability.2

To capture these features, the paper focuses on an entry job economy in which the lowest-

level job in the hierarchy is more informative than all higher-level jobs. I show that as the

informativeness of the entry-level job increases, the range of priors at which a worker is assigned

to that job expands. This result implies that assignment is no longer dictated by the static

comparative advantage of workers to jobs. Indeed, there exists a range of priors at which workers

are assigned to jobs at which they have static comparative disadvantages but are dynamically

compensated for this assignment with a wage differential when promoted out of such a job.

Specifically, this compensating differential reflects the value of the loss in information about

ability that workers incur when they move from a job of higher informativeness to a job of lower

informativeness and leads to discontinuous increases in wages upon a job change. This logic

provides a novel argument for the observation that individuals commonly experience sizeable

wage increases at promotion. In particular, the model can explain why wage increases following

promotion may rise with hierarchical level and experience, as is the case in the BGH data, even

when much information has already been acquired about a worker. Commonly, learning models

in which jobs are equally informative cannot well explain these feature of the data. (See the

discussion in Gibbons and Waldman (2006) of the difficulty of learning models in accounting

for these facts.)

To illustrate these predictions, I present a simple two-period example in which the infor-

mativeness of a job decreases with the level of the job in the firm hierarchy. In equilibrium,

successful workers are promoted by one level at most and experience wage increases, which are

discontinuous (in the prior) for workers with high enough priors at a level promoted to a dif-

ferent level. Unsuccessful workers, instead, experience wage decreases but are never demoted.

These features of the model are consistent with commonly observed characteristics of careers

in firms and, in particular, with those in the BGH data.

then a two-stage search strategy is optimal, whereby workers look first for their best career matches and then
for their best firm matches. His model, however, abstracts from learning (and human capital acquisition) and
focuses on job mobility only.

2In Pastorino (2013) I provide formal evidence supporting this conjecture in the BGH data. Specifically, I
estimate a labor market model with job assignment, learning, and human capital acquisition using the BGH
data and find that the entry-level job in the firm’s hierarchy has greater informativeness than higher-level jobs.
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Although the proposed model is rich enough to be promising in accounting for many observed

features of careers, one dimension it may not capture is that individual wages on average

increase with experience in the labor market, a feature that a competitive learning model with

complementarity between ability and jobs can explain only upon a job or firm switch. (See

Gibbons and Waldman (1999) for a discussion of this point.) I show that human capital can be

straightforwardly incorporated into the model to account for this missing feature. Moreover,

equilibrium in this augmented model displays the same qualitative patterns of job assignment

as before.

Related Literature. The model is developed around the idea that important complemen-

tarities exist between workers and jobs. This specification of the production technology of a

firm parallels those found in the literature (see Waldman (1984), Bernhardt (1995), Gibbons

and Waldman (1999, 2006), and the references therein cited).3 Following Jovanovic (1979),

Prescott and Visscher (1980), MacDonald (1982), Miller (1984), and Gibbons and Waldman

(1999, 2006), I model informational human capital by allowing firms and workers to learn

(symmetrically) about a fixed set of productive skills of a worker, referred to as ability. The

assumption of symmetric learning based on a worker’s output is common in the literature on

learning in the labor market.

I allow for ability to be firm specific to a varying degree, in order to nest the cases of

purely firm-specific ability as in Jovanovic (1979), Miller (1984), and Flinn (1986); purely

general ability, across jobs and firms, as in MacDonald (1982) and Gibbons and Waldman

(1999, 2006); and ability that is imperfectly transferable across jobs or firms. When ability is

general across a firm’s jobs, the production structure of my model shares the feature of the one

in Rosen (1982), Waldman (1984), and Gibbons and Waldman (1999, 2006) that tasks or jobs

can be ordered in terms of the extra value that a worker of greater ability produces. When

ability is imperfectly transferable across jobs, the model provides a theory of sorting within

and across occupations, whose patterns depend on the distribution of skills and jobs across

firms. Jovanovic and Nyarko (1997) also examine patterns of occupational mobility between

occupations but focus on contrasting the implications of a pure learning model to those of a

learning-by-doing model in which what is learned about production in an occupation is also

valuable for production in another occupation. Along this dimension, my work is related to that

of Groes, Kircher, and Manovskii (2010), who analyze patterns of occupational mobility among

low and high earners in an occupation. Basing their analysis on a theory of learning about

absolute advantage, they provide an explanation for the U-shaped pattern of turnover across

3In these papers a worker’s productivity is assumed to be independent of other workers’ assignments within
the firm. For papers that relax this assumption, see Kremer (1993), Kremer and Maskin (1996), and, more
recently, Ferrall (1997) and Ferrall, Salvanes, and Sørensen (2009), who all analyze the impact of complementar-
ity in production among workers on the assignment of workers to tasks or teams. The models in these papers,
however, are silent about the dynamics of job assignments and wages, which is the focus of the analysis here.
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occupations. This U-shaped pattern is generated by the fact that the probability of leaving an

occupation is highest at the lowest and highest percentiles of the distribution of wages in an

occupation.

My paper is also related to the learning models of MacDonald (1982), Felli and Harris

(2004), Eeckhout and Xi (2009), and Anderson and Smith (2010). MacDonald (1982) analyzes

equilibrium assignment in a competitive economy with task complementarities in which workers’

abilities are unobserved, but assumes that the jobs of all firms are equally informative about

ability and that ability is purely general. Felli and Harris (2004) consider an oligopoly setting

in which the jobs of a firm differ in the amount of information they provide. They focus on the

case in which ability is firm specific and do not characterize equilibrium assignment. Eeckhout

and Xi (2009) and Anderson and Smith (2010) examine matching in the labor market with

two-sided heterogeneity and learning. Whereas Anderson and Smith (2010) focus on limiting

conditions under which assortative matching may or may not arise, Eeckhout and Xi (2009)

characterize equilibrium assignment when firms consists of two jobs and ability is purely general

across jobs and firms.

1 The Economy

Here, I set up the model and then discuss its information structure.

1.1 Setup

Consider a market in which  firms compete for workers in each period of an infinite (or finite)

horizon, with dates  ≥ 1. All firms and workers share a common discount factor,  ∈ [0 1). In
the economy, only one good is produced and consumed, the price of which is normalized to one.

A worker’s talent or productive ability at each firm  is described by the skill type  ∈ { },
which is assumed to be unobserved by both firms and the worker. I refer to a worker of type 

as a high-ability worker and a worker of type  as a low-ability worker. Each worker inelastically

supplies one unit of labor each period. At the initial date,  = 1, the information about any

worker is summarized by the prior probability 1 that this worker is of high ability. I assume

there is a continuum of workers with a distribution of initial priors (1) and associated density

(1).

Each firm is endowed with a production set that consists of  tasks or jobs. A worker’s

output in a period is stochastic, and its distribution depends on the worker’s ability and the

job that the worker performs. The output produced in period , when the worker is employed

at job  of firm  , 1 ≤  ≤  , is denoted by  ∈ { }, with     0. For
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a worker of ability , the probability of high output at job  of firm  is , whereas for a

worker of ability , the probability of high output at job  of firm  is , with

0      1 (1)

Thus, a job is a four-tuple {   }. A worker’s output, or performance, is sym-
metrically observed by all firms and workers. Assumption (1) implies that learning about

ability is gradual (,  ∈ (0 1)) and that the output distribution at each job satisfies the
monotone likelihood-ratio property (  ); that is, observing high output, , increases

the probability that the firms and the worker assign to the worker’s ability being high.

At the beginning of period  ≥ 1, the one-period expected output when the worker is

assigned to job  of firm  , conditional on ability being high and low, respectively, is

( ) =  + (1− ) and ( ) =  + (1− ) (2)

The one-period expected output ( ) at job  of firm  in  ≥ 1 given  is

( ) = ( ) + (1− )( ) (3)

Notice that    and (1) imply that the expected output ( ) at any job  of firm

 is monotone in the prior . I assume throughout that

(  + 1) ≥ ( ) and ( ) ≥ (  + 1)  = 1     − 1 (4)

To interpret this assumption, suppose that managerial talent at each firm  corresponds to the

ability to implement successfully risky projects at any job , where the probability of success

at each project is  if the worker’s ability is high and  if the worker’s ability is low. This

assumption implies that if projects are ranked by their complexity, from the simplest (job 1) to

the most involved (job ), then more complex projects are those at which complementarity

with managerial talent is more pronounced, since (4) implies that (  + 1) − ( ) ≥
(  + 1) − ( ). In particular, whereas high-ability workers are more productive at

higher-level jobs, low-ability workers are better suited to lower-level ones. Notice that (1) and

(4) also imply single crossing, namely, that for any two jobs  and 0 of firm  ,

( ) and ( 
0) cross once in  for  ∈ [0 1] (5)

See Figure 1 for static rewards that satisfy these assumptions.

Starting from the initial prior 1 for a worker, the prior is updated in the obvious recursive
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way using Bayes’ rule. In particular, if  is the prior that the worker is of high ability at the

beginning of period , and the worker is assigned to job  of firm  , then if the realized output

is , the updated prior +1 at the beginning of period + 1 is

( ) =


 + (1− )
(6)

with  = ( ). If the realized output is , the updated prior +1 at the beginning of

period + 1 is

( ) =
(1− )

(1− ) + (1− )(1− )
 (7)

I will say that job  is more informative than job 0 if the posterior reached after output is

realized at job  is a mean-preserving spread of the posterior reached after output is realized

at job 0 in that

( ) ≥ 0( 0) and ( ) ≤ 0( 0) (8)

as shown in Figure 2. For convenience, I define the updating rule after  ≥ 2 consecutive

successes and failures, respectively, as  
( ) and  

 ( ).

1.2 Information Structure

Here, I model the distribution of output at each job as discrete and possibly asymmetric (in that

 need not equal 1−). Most of the literature, including Jovanovic (1979) and Gibbons and

Waldman (1999, 2006), model the signals as continuous (normally distributed) and symmetric.

My setup has several advantages. First, the performance data from firm personnel records are

discrete in that they come in a coarse scale. In most cases, this scale simply has two values,

such as satisfactory or not; in others, it takes only a few other values. Moreover, it is well

known that scores are compressed, so that even if the scale allows, say, for three or more scores,

nearly all of the scores are one of two values. (See the discussion in Pastorino (2013).) Second,

my discrete Bernoulli type of information structure allows for flexible time variation of the

variance of posterior beliefs, and thus wages and job assignment. In contrast, the normal type

of information structure, commonly used, implies that the variance of posterior beliefs declines

deterministically in the number of signals observed. Hence, this structure in a competitive

economy would imply that the variance of equilibrium wages also declines monotonically with

tenure. This pattern, however, is not universal. For example, it is not present in the BGH data.

As such, in practice, a discrete distribution may be empirically more relevant.

Finally, the normal type of information structure imposes symmetry in the distribution of
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output realizations across types. This symmetry constrains the pattern of belief updating and,

in turn, the patterns of promotions and demotions. In contrast, the discrete signal structure

assumed here naturally accommodates asymmetric output distributions between workers of

high and low ability. These asymmetric distributions can more easily account for the common

observation in the data on careers in firms that there are virtually no demotions and promotions

are gradual. The asymmetric model can generate these observations under two conditions.

First, a high-ability and a low-ability worker have a small chance of low output, so demotions

are rare. Second, a high-ability worker’s chance of high output is only slightly higher than

that of a low-ability worker, so the information produced by a success is small. If so, then

promotions are gradual. Below, I discuss an example that makes this point.

2 A Competitive Equilibrium

Here, I set up a competitive equilibrium for this economy, first by defining notation for the

goods being exchanged. Note that when a worker supplies labor to a firm in a given job,

there is two-sided heterogeneity, on the part of the worker and on the part of the job. Worker

heterogeneity is due to workers being of different unobserved skill types and is summarized by

the prior , which may be thought of as the worker’s information capital at date . Thus, a

worker with prior  supplies a labor input that is different from that of a worker with prior 
0
.

Job heterogeneity is due to the fact that each job  of any firm  supplies a possibly different

increment to this information capital. Specifically, if a worker supplies labor in a job indexed

by , then the worker’s information capital is (stochastically) augmented according to (6)

and (7). I refer to  as the informativeness of job  at firm  . The updating rules in (6) and

(7) are essentially production functions for incremental information that a firm supplies to a

worker by hiring the worker in a given job. Because of this two-sided heterogeneity, a worker’s

wage at  will depend on the observable characteristics of both the worker, , and of the job

the worker is assigned to, . Hence, at any time  the wage function is ( ).

Now consider the problem of the representative firm  that takes this wage function as

given. This firm maximizes the present discounted value of profits by solving

Π = max
{()}

⎧⎨⎩(1− )

X
=1

Z
[( )− ( )] ( ) + Π+1

⎫⎬⎭  (9)

where ( ) is the measure of workers with prior  that firm  hires in job  ∈  at time

. Here, as in the worker’s problem below, I normalize payoffs by 1−  so as to express them as

per-period averages. Since the firm rents labor services each period, there are no state variables

for the firm, and the dynamic problem (9) reduces to a sequence of static problems. Each static
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problem reduces to a job-by-job maximization problem for workers of each level of information

capital , given by

max
{()}

[( )− ( )] ( ) (10)

Notice that since the firm is hiring a measure of workers and all of the uncertainty about a

worker’s production is idiosyncratic, the law of large numbers implies that there is no uncer-

tainty at the firm level.

Next consider the problem of a worker with initial prior 1. Each such worker has endow-

ments of one unit of labor services in each period and owns a per capita share of aggregate

profits. Each worker has preferences over consumption  given by (1− )1
P∞

=1 
−1. The

income of each worker is the sum of wage income and profit income , which is the sum of the

period  profits of the  firms. I assume there are no asset markets so that in each period a

worker sets consumption equal to income.4 In a worker’s problem, the aggregate profits  are

simply an additive constant to consumption that has no effect on decisions. Hence, I do not

explicitly include them in the worker’s problem. Since they will be zero in equilibrium, they

also have no effect on the value of a worker’s utility.

Now letting  be an indicator function for whether the worker chooses to work at job 

of firm  at  ( = 1) or not ( = 0), with
P

  = 1, I can write this problem as

 
 () = max

{}

X
=1

X
=1


£
(1− )( ) +  

+1(+1| )
¤
 (11)

where  
+1(+1| ) = ( )


+1(( )) + [1 − ( )]


+1(( )) is the

continuation value, given the current state  and the current assigned job  of firm  , and

( ) =  + (1 − ) is the probability of success when the worker is in such a

job. Let  = {()} denote the decision rule of a worker at time . Starting from any

initial distribution of priors 1(1), these decision rules imply a transition law from () to

+1(+1) of the form

+1(·) = Γ((·) ) (12)

Then, the market clearing condition for labor is that at each  ∈ [0 1] and time period,Z 

0

()() =

Z 

0

() (13)

at the job of each firm. For intuition, imagine that  is a discrete distribution so that ()

4I show in the Appendix that this economy is equivalent to one in which workers are risk averse with utility

function (), there are complete markets against idiosyncratic risk, and the economy is stationary as workers

stochastically die and new ones enter.
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is the fraction of workers with prior . Then, (13) requires that at every prior , the fraction

of workers who choose to work in job  of firm  in period , namely, ()(), equals the

fraction of the labor force demanded at that job, namely, (). Notice that the time subscript

on all variables is due to the dependence on the distribution of priors , which evolves with

time.

A competitive equilibrium is a sequence of wage functions {( )}, worker job choices
{()}, firm labor choices {()}, and distributions of priors {()} such that: (i) given
the wage functions, each worker’s job choices solve the worker problem (11), (ii) given the wage

functions, each firm’s labor choices solve the firm problem (10), (iii) the worker decision rules

are consistent with the transition law (12) for the distribution of priors, (iv) each firm makes

zero profits at each date, and (v) the labor market clears.

Turning to the characterization of equilibrium, first consider wages. The zero profit condition

immediately implies that ( ) ≥ ( ) for all jobs, priors, and dates, and

( ) = ( ) (14)

whenever ()  0. Notice first that (14) implies that wages do not vary with time, hence

I drop the time subscript on wages from now on. Next, notice that there are many ways of

setting wages for unchosen jobs (those with () = 0) that are consistent with the same

allocations. Here, I do so as follows. Recall that an arbitrary  = ( ) indexes the

informativeness of job  of firm  . Let () denote the set of output levels ( ) of jobs

(   ) in all the  firms such that (   ) = (  ) for the

given , that is,

() =
©
( )| (   ) = (  )

ª


and let

( ) = max
()∈()

( ) (15)

I refer to ( ) as the equilibrium wage function. To help with the intuition for (15), suppose

only two jobs in the economy have a given level of , say, job  of firm  and job 0 of firm

 0 with  =  00 = . Now suppose that for   ̄, ( )   0( 
0) and for  ≥ ̄

( ) ≤  0( 
0). Then, the wage equals

( ) =

(
( ) for   ̄

 0( 
0) for  ≥ ̄

)


At these wages, for   ̄ firm  will make zero profits at job  and firm  0 will make negative
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profits at job 0, whereas for  ≥ ̄ firm  will make negative profits at job  and firm  0 will

make zero profits at job 0. The planning problem for a given worker in this economy can now

be stated:

 () = max
{}

X
=1

X
=1

 [(1− )( ) +  (+1| )]  (16)

where at  = 1 the initial prior 1 is given. Notice that the planning problem for a given

worker is a stationary recursive problem. In this economy with linear utility, the intertemporal

marginal rate of substitution in consumption is constant at  and, hence, (16) applies even

when the prior distribution  is time varying.
5 The following result can be established.

Proposition 1. The competitive equilibrium is efficient in that for each worker with initial

prior 1, market-wide job assignments solve (16) and each worker is paid the expected output

of the resulting job as in (15).

Proof : To prove this proposition, denote the set of informativeness levels  of all jobs in the

economy by Θ = {|∃ :  = }. Then using (15), the worker’s problem can be written as

 () = max
∈Θ

[(1− )( ) +  (+1| )]  (17)

which using (15) can be written as

 () = max
∈Θ

∙
(1− ) max

()∈()
( ) +  (+1| )

¸
(18)

or, since the second term in (18) does not depend on ( ), equivalently

 () = max
∈Θ

½
max

()∈()
[(1− )( ) +  (+1| )]

¾
 (19)

which clearly equals (16). Notice that (16) simply adds to (19) the option of choosing dominated

jobs for a given .

Notice that when  varies across firms and jobs, the planning problem (16) is a multi-armed

bandit problem with dependent arms in which the planner (and the worker in equilibrium)

trades off the value of current output in a job against the informativeness of the job. In

general, the solution to this problem does not imply that the job with the highest current

expected output is chosen.6 It will prove convenient notationally to write the problem in (16)

5When the economy is interpreted as an overlapping generations economy with risk-averse consumers, (16)

applies only to the stationary distribution; otherwise, the discount factor  will be replaced by the gross interest

rate, 1, and hence will vary with time.
6The bandit problem describes the sequential sampling problem of a decision maker uncertain about the
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as

 () = max
∈

[(1− )( ) +  (+1| )]  (20)

3 General Ability

Here, I assume that a worker’s ability is general across jobs and firms. In this economy, each

firm  has  jobs, so there is a total of ̄ =
P

=1 jobs. Suppose that these jobs can be

ordered by a single index , say,  = ( ), such that these jobs satisfy the analog of (4) for the

entire set of ̄ jobs in that

(  + 1) ≥ ( ) and ( ) ≥ (  + 1)  = 1     ̄ − 1 (21)

where it is understood that ( ( )) = ̄( ). Notice that (21) is a strengthening of (4)

in that even if (4) holds for the jobs of each firm, it does not imply that (21) holds for the jobs

of all firms. For simplicity, I also assume that informativeness is the same across all firms and

jobs in that

 =  and  =  for all  and  (22)

so that  =  is identical across all firms and jobs. Therefore, I suppress  in the following

whenever unambiguous. I will later relax these assumptions.

My characterization applies to the set of all jobs ̄ for any such ordering ( ). Given this

ordering, the implications of the model for turnover between jobs in a firm and between jobs

across firms depends only on how these jobs are distributed across firms.

For ease of exposition only, I first suppose that all firms are identical so that ( ) = ( 0 )

and the ordering ( ) reduces to an order on the  (= ̄) jobs of each such firm, indexed

by  = 1    . For this reason, the firm subscript below is suppressed. I then discuss

alternative orderings and their implications for turnover across firms. Note that regardless of

the distribution of jobs across firms, in this economy job assignment is purely driven by output

considerations, since, unlike in the general model analyzed below, the assigned job does not

affect the amount of information generated about a worker’s ability.

I start with a characterization of the job assignment rule and the associated wages, and

then examine the implications for promotions and demotions.

distribution of payoffs of the available alternatives. Here, each arm corresponds to a job. Since the worker’s

ability is (perfectly) correlated across jobs, the returns from the arms, here the jobs of all firms, are dependent.
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3.1 Characterization

I start by showing that restriction (22) implies that the equilibrium job assignment rule and

paid wages are both static, and that workers with higher priors are assigned to higher-indexed

jobs. In particular, the equilibrium wage function reduces to

() = max


( ) (23)

and a worker with prior  chooses the job  and firm  that lead to (23). Define the job

assignment rule ∗() as

∗() = argmax
∈

( ) (24)

Proposition 2. Under (4), when firms are identical in their technologies and jobs are equally

informative as in (22), the equilibrium job assignment rule is static in that a worker is assigned

to the job with the highest current expected output and a worker’s wage equals the worker’s

expected output at the employing firm. Moreover, ∗() is increasing in 

Proof : By Proposition 1, equilibrium job assignment solves problem (20). Since firms are

identical, the subscript  can be dropped, and since all jobs are equally informative, (20)

reduces to

 () = (1− )max
∈

[( )] +  (+1|) (25)

which implies that the assignment rule solves max∈ ( ). By (14), it also follows that the

equilibrium wage is given by (23). To prove that the optimal policy is increasing in , note that

by monotonicity of expected output in  and by single crossing, if a higher-indexed job 0 is

preferred to a lower-indexed job  at some prior  then 0 must also be preferred to  at any

higher prior 0 ≥ .

Note that in this equilibrium, workers are indifferent about which firm they choose. If we

think of there being an infinitesimal cost of switching firms either on the worker side or on the

firm side, then there is no turnover in equilibrium.

This benchmark model implies a number of features of job and wage dynamics in line

with the patterns observed in firms. These features can be illustrated through a complete

characterization of the path implied by the optimal job assignment rule phrased in recursive

form. To do so, let () and () be shorthand notation for 
∗(∗()()) and 

∗(∗()()),

respectively, the job assigned after a success at the optimal job at prior  and the job assigned

after a failure at the optimal job at prior . The next corollary provides this characterization.

Corollary 1. Under (4), the optimal job assignment rule is: (i) in any period , if the prior is

 assign ∗(), (ii) upon a success, in period +1 update the prior to ∗()() and assign job
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() ≥ ∗(), (iii) upon a failure, in period +1 update the prior to ∗()() and assign job

() ≤ ∗().

A convenient way to visualize the assignment rule implied by this proposition is as a partition

of the set of priors. To do so, let ,  = 2    , denote the cutoff prior at which expected

output is equal at jobs  − 1 and , defined by (  − 1) = ( ) and given by

 =
(  − 1)− ( )

(  − 1)− ( ) + ( )− (  − 1)  (26)

Notice that assumption (4) allows for the possibility that some job is dominated by the

others in that it is not optimal at any prior. (For example, if, say, job 3 is dominated, then

as the prior increases, the worker might move from job 2 to job 4, skipping over job 3.) If

dominated jobs are ruled out, by assuming that for each job , there exists a prior () such

that

(() )  (() 0) for all 0 6=  (27)

then the optimal assignment rule can be represented by a partition of the set of priors into

disjoint intervals such that at prior  ∈ [ +1), a worker is assigned to job , where

0    +1  1 (28)

Here, I have adopted the convention that if two jobs are tied in expected output, then the

higher-indexed job is selected. I refer to this partition as the interval characterization of the

optimal assignment rule. The wages of a worker with prior  are

∗() = ( 
∗()) (29)

The following corollary summarizes the patterns generated by the equilibrium assignment and

wage rules. The proof is relegated to the Appendix.

Corollary 2. In the benchmark model: (i) wages increase both upon promotion and after

successful performance, (ii) wages decrease both upon demotion and unsuccessful performance,

(iii) workers assigned to higher-level jobs are paid higher wages, (iv) conditional on current

wages, wage increases are positively serially dependent, (v) conditional on current wages, a

worker promoted from job  to job 0 is more likely than an unpromoted worker to receive a

future promotion to job 00, and (vi) wage increases at promotion can be small relative to the

range of possible wages at a level.

So far I have focused on the paths of wages and job assignments for a single worker. When

there is a nondegenerate distribution of workers across jobs, this model also has implications
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for how certain cross-sectional moments of a cohort of workers vary with time. This is first

illustrated with a simple result on the limiting distribution of workers across jobs. Next I

present an example of how heterogeneous priors allow the model to account for various patterns

of promotions observed in the data.

For the first result, consider an initial prior distribution 1() with interior support, that

is, a support [ ̄] with 0    ̄  1. This result immediately follows by standard properties

of martingales.

Corollary 3. Suppose (4) holds and consider an initial prior distribution with interior support.

Then, in the limit under the optimal assignment rule, a measure
R ̄

1() of workers are

assigned to job  and a measure
R ̄

(1− )1() of workers are assigned to job 1.

The intuition for this corollary is that at any point in time, the job assignment process

provides a strictly positive amount of information at any interior prior. Hence, by repeatedly

sampling observations on the performance of each worker, eventually the true ability of all

workers is learned.

3.2 Promotions and Demotions

I now turn to a detailed discussion of the implications of the model for promotions and de-

motions. I begin with an example motivated by a striking feature of the BGH data, namely,

that the hazard rate of promotion is nonmonotone in tenure. In particular, the probability of

promotion from one job level to the next first increases, then decreases with tenure. I show

here that the benchmark model can easily generate this pattern for a suitable nondegenerate

distribution of initial priors (1).

I then refine the interval-based rule for job assignment, showing that equilibrium implies that

the interval of priors associated with any job , namely, [ +1), can be further partitioned

into rungs of promotion and demotion. Specifically, a success at prior  in this interval leads to

a new prior (). In general, this new prior could remain in that interval, so that the worker

stays in job  could land in the interval [+1 +2), so that the worker is promoted by one level

to job +1, or could land in some higher interval [+ ++1), so that the worker is promoted

by  levels. Likewise, a failure at a prior in this interval could lead the worker to stay in job

, be demoted by one level, or be demoted by more than one level. I begin this refinement by

characterizing through a partition of [ +1) the number of successes and failures required

for a promotion and a demotion by exactly one level. I then consider multi-level promotions

and demotions.
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3.2.1 Heterogeneous Priors and Promotion Patterns

For simplicity only, assume that the output distribution is symmetric across types of workers

in that type  workers succeed with probability  and type  workers succeed with probability

 = 1 −  at any job. This symmetry ensures that one failure and one success cancel each

other in that (()) = (()) = . Next, in a slight abuse of notation, let the initial

distribution of priors be discrete and correspond to just two groups of workers, denoted by 

and , with mass () on prior  and mass () on prior , respectively, where   .

Suppose the initial priors are such that both groups start at job 1 in period 1 but that group

 workers need one success to be promoted, whereas group  workers need two successes, that

is,

()  2  () (30)

and (())  2, where 2 is the cutoff prior for promotion to job 2. This example is

illustrated by Figure 3.

After one year, only the group  workers that were successful get promoted. The successful

group  workers have updated prior (), which by (30) falls short of the promotion cutoff.

Hence, after one year the fraction

()() (31)

of all workers get promoted, where () = + (1− ) denotes the fraction of successes for a

group with prior .

After two years, only the group  workers who received two successes get promoted, so the

fraction of promoted workers is

(())()() (32)

The group  workers that failed in the first year and then succeeded in the second have priors

(()), which by symmetry equals the initial prior , which is below the cutoff for

promotion. Likewise, the group  workers that succeeded in the first year and then failed in

the second have priors (()), which also equal . Adding together these two sets of

group  workers gives that after two years there is a measure of

{() [1− (())] + [1− ()] (())} () (33)

workers at prior 

After three years, the group  workers of measure (33) with priors  who receive a success

have priors (). By (30) these workers are promoted, and using (33) these workers are

fraction

() {() [1− (())] + [1− ()] (())} () (34)
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of the workers. A moment’s reflection makes clear that no workers from group  can be

promoted in period 3. The reason is that any group  worker with three successes has already

been promoted in period 2, and any group  worker who experienced at least one failure has a

prior no greater than ((()) = (), which by (30) falls short of the cutoff level of

promotion 2. Clearly, if () is sufficiently larger than () = 1−(), then the promotion
rate initially increases and then decreases, in that (31) is smaller than (32), which is larger than

(34).

As this simple example should make clear, with multiple groups of workers of varying pro-

portions and with different priors, the model can produce very flexible tenure profiles of the

hazard rate of promotion out of a job.

3.2.2 Steps to Promotion and Demotion by One Level

In the BGH data, nearly all of the promotions are by one level, and (the relatively few) de-

motions are also by one level. Motivated by this observation, I begin with the simple case in

which

(+1)  +2 and () ≥ −1 (35)

so that all promotions and demotions are by one level. The more general case is discussed later.

Under (35), I define a promotion rung as an interval of priors at which the same number of

consecutive successes leads to promotion by one level and a demotion rung as an interval of

priors at which the same number of consecutive failures leads to a demotion by one level.

Now promotion rungs can be constructed. Given a cutoff prior +1 for promotion to job

+1, define the priors ̄1 ̄2     by (̄1) = +1 
2
(̄2) = +1 and so on, where 

2
()

denotes (()) and similar notation is used for 

(). Let ̄ be the smallest integer such

that  ̄
 () ≥ +1. Then job  has ̄ promotion rungs given by

[ ̄̄−1)     [̄2 ̄1) [̄1 +1) (36)

with the interpretation that a worker in promotion rung  ∈ {1     ̄} of job , namely, with
priors in [̄ ̄−1), will be promoted exactly after  successes.

Demotion rungs are constructed analogously. Given a cutoff prior  for demotion from job

 to job  − 1 define the priors 
1
 

2
     by (1) =  

2
(2) = , and  be the

smallest integer such that 

 (+1)  . (The equalities 


 () =  are intended to hold

for priors just below the cutoff .) Then job  has  demotion rungs given by

[ 1) [1 2)     [
 +1) (37)
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with the interpretation that a worker in demotion rung  ∈ {1     } of job , namely, with

a prior in [
−1 ), will be demoted after  failures. This discussion is summarized with a

proposition and illustrated by Figure 4.

Proposition 3. Under (4) and (35), the promotion rungs and the demotion rungs of any job

 = 1    − 1 form two partitions of the interval [ +1) as in (36) and (37). A worker in
promotion rung [̄ ̄−1) is promoted to job  + 1 after  successes. A worker in demotion

rung [

 

+1
) is demoted to job  − 1 after  failures.

3.2.3 Promotions and Demotions by Multiple Levels

So far I have focused on the number of successes it takes to be promoted by exactly one level

and on the number of failures it takes to be demoted by exactly one level, under the assumption

that all promotions and demotions are at most by one level. More generally, it is possible that

in certain regions of the interval [ +1), a single success could lead to a promotion by one

level, a promotion by two levels, and so on. Here I focus on partitioning this interval [ +1)

into subintervals by the level of job assigned after one success. The case for demotions by one

or more levels is analogous.

To help develop this general characterization, it is useful to define the inverse functions

() of (6) and () of (7) by

() = −1 () =


− (− )
 (38)

() = −1 () =
(1− )

1− + (− )
 (39)

The interpretation of () is that a worker who starts with prior () and succeeds in job

 ends with prior , whereas the interpretation of () is that a worker who starts with prior

() and fails in job  ends with prior .

These inverse functions are used to represent the rule that specifies the job assigned after a

success or a failure in a given job  as a partition of the interval [ +1). First consider what

happens after a success at the lower edge  and at the upper edge +1. At prior , a success

leads to job () ≥ , whereas at prior +1 a success leads to job (+1) ≥  + 1.

Now, as the prior increases from , at first the worker will continue to be assigned to the

same job () until (by continuity of ) a cutoff prior is reached, at which one success leads

the prior to increase exactly to ()+1, the lowest prior at which job () + 1 is optimal.

This cutoff prior is the inverse image of ()+1 under  , which is denoted by (()+1).

This part of the construction is illustrated by Figure 5.
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Continuing in this fashion, a partition of [ +1) can be constructed. That is, after

succeeding in job  a worker with a prior in [ (()+1)) is assigned to job (), a

worker with a prior in [(()+1) (()+2)) is assigned to job () + 1, and so on,

until the uppermost part of [ +1) is reached, namely, [((+1)) +1), where a success

leads to the assignment of (+1). The partition of [ +1) after a failure in job  is

analogous.

Notice, of course, that if job  is not very informative, there may not be much variation in

posterior beliefs and, therefore, no significant change in the job assigned from period  to period

+ 1. For example, if job  is completely uninformative, both of these subdivisions collapse in

that () = () =  at all  ∈ [ +1). Regardless of success or failure in job , job  is

still assigned.

3.2.4 Symmetric versus Asymmetric Signals

Note that, as mentioned, the informational structure here allows for asymmetric signals. The

case of symmetric signals is simpler analytically, but I argue that it is less relevant empiri-

cally. With symmetric signals at any job , that is, with  = 1 − , it follows (()) =

(()) = . Thus, in a precise sense, one failure exactly offsets one success. This property

implies that ̄ =  and both equal, say, . That is, if it takes  successes to be promoted

to job  + 1 starting from , then it takes exactly the same number of failures to be demoted

to job  − 1 starting from (just under) +1. Moreover, if a worker is promoted from job  to

job  + 1 after a success, then if that newly promoted worker fails at job  + 1, that worker is

necessarily demoted back to job .

Asymmetric signals, that is, cases in which  6= 1−, allow for much more flexible patterns
of promotions and demotions. For example, consider an extreme case in which  = 1 so that

high-ability workers never fail and  is close to one so that low-ability workers rarely fail. In

this case, a success is not very informative. Therefore, it takes a large number of successes

for the prior to increase past any given cutoff for promotion. Also, demotions are rare. This

combination of patterns is commonly observed in the data. Notice that this case is very different

from the symmetric case, in which if high-ability workers always succeed ( = 1), then low-

ability workers always fail ( = 1 −  = 0). In the data, the general pattern of gradual

promotions and rare demotions is typical. In the BGH data, in Pastorino (2013) I find support

for the asymmetric signal case in which  is close to .
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3.3 Turnover

This characterization of job assignment and wages applies to any order  = ( ) of the ̄

jobs of the economy. Since firms are collections of such jobs, the model’s implications for the

mobility of workers across firms depends only on how these jobs are distributed across firms.

To illustrate how the interval characterization applies to a given distribution of jobs across

firms, let there be three firms , , and . Let firm  have jobs 1    , firm  have jobs

1    , and firm  have jobs 1    . Suppose they satisfy (21) with the order  = ( ).

Suppose the jobs of firm  happen to be the lowest-ranked ones and the jobs of firm  the

highest-ranked ones. Then, the ordering of jobs and firms is

1    ; 1    ; 1     

where  = 1 corresponds to the first job of  and  =  + + corresponds to the last

job of  . The interval characterization of job assignment then implies a hierarchy of firms as

well as a hierarchy of jobs within each firm. To see this, suppose that a worker starts at job 

of firm . Continued success leads the worker to being first promoted to higher-ranked jobs at

firm , then to turn over to the higher-ranked firm  and, next, to work up the hierarchy of

jobs at firm . Likewise, continued failure by this worker leads to demotion first to jobs in the

hierarchy of firm , eventually to turnover to the lower-ranked firm , and then to demotion

to the lower-ranked jobs of firm ’s hierarchy.

Another situation is one in which each job at level  of a firm corresponds to a different

type of job. For instance, job 1 of each of the three firms may be an administrative professional

job. Suppose that jobs are ranked as follows: job 1 of firm , then job 1 of firm , then job 1

of firm . Then, a worker who succeeds will be promoted up the ranks of the administrative

professional jobs by moving to the administrative professional jobs of firm , then  then .

Note that as long as the ordering (4) applies to the jobs of each firm and (21) applies to all

jobs, success may lead a worker to crisscross between firms on the way up the ( ) ladder.

4 Mixed Ability

Here, I relax the assumption that ability is general across all the firms in the economy. I am

motivated to do so by two sets of findings. Starting from Jovanovic (1979), the argument has

long been made that wages increase with tenure in a firm as workers accumulate firm-specific

capital in the form of information about the match of their skills to a firm’s jobs. For example,

Flinn (1986) and Topel (1991) document that firm-specific capital can explain why the hazard

of separation from a firm eventually decreases with tenure in the firm as well as the dynamics
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of wages with tenure in a firm.

A more recent strand of the literature has emphasized the importance of occupation-specific

capital in order to explain job turnover and wage growth. Miller (1984) is among the first papers

to provide evidence that job turnover patterns can be interpreted as due to the accumulation

of information about the match of a worker’s skill to jobs, when workers have different priors

about their suitability to jobs in different occupations. Moscarini and Vella (2008) document

that occupational mobility decreases with experience, and, more recently, Kambourov and

Manovskii (2009a,b) estimate that returns to occupational tenure are substantial.7

In terms of the first literature, my model of general ability does not naturally lead to

hazards of separation from a firm that decrease with tenure, nor does it explain why workers

would consistently suffer wage losses upon separation. In terms of the second literature, even

if an occupation is interpreted as a collection of jobs in the general setup, the model is silent

on the patterns of the hazard of job separation and wages for occupations.

I consider two extensions of the model that give rise to either firm-specific or occupation-

specific capital, produce patterns consistent with the evidence just discussed, and still account

for a hierarchy of jobs in each firm.

4.1 Firm-Specific Ability

Jovanovic’s (1979) work on turnover assumes that each firm has a single job and that a worker’s

ability is firm specific in that each worker independently draws the quality of the match with

each firm. My model of firm-specific ability generalizes Jovanovic’s model to an environment

of multi-job firms by letting abilities be firm specific but general across a firm’s jobs.

Specifically, let the worker independently draw a skill type  ∈ { } for each firm  =

1      . Then a worker’s ability is a vector  = (1     ) and a worker’s prior is a vector

 = (1     ). Assume that output at the jobs of firm  depends only on the component 

of a worker’s skill and that these jobs are ordered by (4). Notice here that a worker’s ability at

a given firm does not provide information about the ability of the worker at any other firm.

To set up the optimal job assignment problem, let () = max∈
(  ). Treating

() as the expected output of firm  , the job assignment problem consists of two parts: to

assign a worker to a firm and then to assign the worker to the job with the highest expected

output in that firm. In this setting, the assignment of workers to firms is a standard independent

multi-armed bandit problem for which the solution takes a simple form: assign each firm an

index,(), called the Gittins index, which is based on a particular (artificial) programming

problem. Then, in any period, given the vector of beliefs  = (1     ), choose the firm

7See Neal (1995) and Parent (2000) for the related notion of industry-specific capital.

22



with the highest index. The programming problem that defines the index for firm  is the

following. At each point in time, workers at firm  and in the current period receive the period

payoff () or stop permanently and receive a terminal reward of . The Gittins index is the

minimum amount of terminal reward  that leads to indifference between stopping today and

receiving  or continuing employment and facing the same decision in the next period. Hence,

() = min {|( ) = }  (40)

where

( ) = max{ (1− )() + (
0
 |)} (41)

and the expectation in (41) is defined based on (6) and (7). The  problems of the form

(41), one for each firm, should be thought of as convenient devices used in the definition of

the optimal policy and have no other interpretation. (See, for example, Banks and Sundaram

(1992) for details.)

Clearly, in this case, if firm  is chosen at  and success occurs, then firm  will again be

chosen at + 1. To see why, note that if firm  is chosen at  given the vector of beliefs , by

definition () ≥ () for all  6=  . Now, a success at firm  leads to a new vector of

beliefs 0, where 0 = () and the other elements are unchanged. Since  , and hence  ,

are increasing in  , if employment at firm  is optimal at , employment is also optimal at 0

Hence, the only way a worker can turn over to a new firm is for a worker to experience

sufficiently many failures so that the modified Gittins index of firm  falls below the Gittins

index of another firm (evaluated at the prior at entry into firm ). A successful worker at

a given firm  , instead, will advance to higher-level jobs within that firm. This discussion is

summarized in the following proposition.

Proposition 4. Under (4) with firm-specific ability that is general across a firm’s jobs, the

optimal assignment rule follows a modified Gittins index policy of the form (40) and (41).

Under this policy, success in firm  leads to promotion in that firm according to the hierarchy

of jobs in that firm. Failure leads to demotion within that firm according to that hierarchy, then

eventually to switching to another firm.

This model will clearly imply the two observations I discussed to motivate it. The hazard

rate of separation will eventually decrease with tenure because of selection: over time, the

workers who stay with a given firm are more and more likely to be of high ability (for that

firm), since the workers with low ability gradually separate. Indeed, only such workers separate.

Thus, the workers who stay with a firm will, on average, have a high probability of success and

experience wage increases and promotions.
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4.2 Occupation-Specific Ability

Here, extending Miller (1984), I allow ability to be occupation specific but general across firms.

To make ideas more concrete, suppose that there are three firms, , , and , and two

occupations,  ∈ { }, say, information technology and human resources, respectively. An
occupation is interpreted as a collection of jobs for which a given aspect of a worker’s skills

are most relevant. I formalize this idea by letting a worker be endowed with two sets of skills,

each of which is specific to a certain group of jobs termed an occupation. The similarity of the

skill requirements of the jobs of an occupation can be thought of as capturing a measure along

which jobs are close in a technological sense.

Let the occupation skill vector of each worker be  = (  ) with    ∈ { }  Let
 = (  ) denote the priors that the worker is high skilled in occupations  and . Let

each firm  have  jobs that are complementary to skill  with expected output (  ) for

 = 1     and  jobs that are complementary to skill  with expected output ( )

for  = +1    +.

Now consider two sets of jobs, the 3 jobs of occupation  and the 3 jobs of occupation

. The results immediately extend to this setup as long as these two sets of jobs can be

separately ordered. Suppose then that there exist two orderings: an ordering  = ( ) that

orders the 3 jobs of occupation  according to (21) and an ordering  = ( ) that orders

the 3 jobs of occupation  according to (21).

In this case, the optimal assignment of jobs within each occupation has an interval charac-

terization under the order ( ) for  ∈ { }, and the optimal policy across occupations
has a modified Gittins index form. Specifically, the optimal policy has a Gittins index form

similar to (40),

() = min {|() = }  (42)

and for occupation , (41) is now given by

() = max{ (1− ) max
∈()

( ) + (
0
|)} (43)

where () is the set of jobs 1 to  in each of the three firms and () is the set of jobs +1

to + in each of the three firms. The optimal policy is to choose the occupation  using the

Gittins index and then choose the job within that occupation using the interval characterization

of the jobs ().

I have used a simple example with two occupations and three firms to make the ideas

concrete, but the following proposition clearly applies to an arbitrary number of firms and

occupations.
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Proposition 5. Under (4) applying separately to each occupation  and occupation-specific

ability that is general across firms, the optimal assignment rule follows a modified Gittins index

policy of the form (42) and (43). Under this policy, success in occupation  leads to promotion

in that occupation according to the hierarchy ( ) of jobs in that occupation. Failure leads to

demotion within that occupation according to the hierarchy ( ), then eventually to switching

to another occupation.

To interpret this proposition, note that the hierarchy of jobs in an occupation is given by

the ordering of ( ). Depending on how the jobs in this hierarchy are distributed across

firms, moving up the hierarchy may involve mostly moving up within firms, then crossing over

to higher-ranked firms within an occupation (in the sense that some firms have a low ranking

of their jobs by ( ), whereas others may have a high ranking), or it may involve moving

up by crisscrossing back and forth between firms (if firms contain a mix of low-, medium-, and

high-ranked jobs according to this order). Clearly, this model produces the patterns described

above: a hazard of switching occupations that is (eventually) decreasing with job tenure or

experience, and wage rates that tend to rise with tenure in an occupation.

Some recent work has argued that these patterns are not universal. In particular, using

Danish data, Groes, Kircher, and Manovskii (2010) document that occupational mobility is U-

shaped in that both the relatively low and the relatively high wage earners within an occupation

have a particularly high probability of leaving the occupation. The low wage earners tend to

switch to new occupations with lower average wages, and the high wage earners tend to switch

to new occupations with higher average wages.

A version of the model can easily generate these facts. To see how, consider the following

setup. As above, let a worker have a set of skills  = (  ). Let there be two sets of occupations

{1 2     
} and {1 2     

}, and suppose that ability is independent across the jobs
associated with the two sets but general across the jobs within each set. Specifically, suppose

that the productivity of jobs in occupations 1 2     
depends only on  , whereas the

productivity of jobs in occupations 1 2     
depends only on . Let the jobs in each

set of occupations be ranked by (21). Let this ordering also be such that occupation 1 has

jobs ranked lower than those of 2, and so on. Specifically, let the order ( ) rank the

jobs of occupations 1 2     
as follows: the jobs of 1 run from  = 1 to  = 1 the

jobs of 2 run from  = 1+1 to  = 1+2 and so on. Similarly, let the order ( ) rank

the jobs in occupations 1 2     
. Then, Proposition 5 applies with the occupations

{1 2     
} treated as one grand (artificial) occupation with  =

P

=1 jobs, and

the occupations {1 2     
} as treated as a second grand (artificial) occupation with

 =
P

=1
jobs.

Given this ordering, consider a worker at the lowest-ranked job in an occupation, say, job
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1 + 1 of occupation 2. That worker will have the lowest wage in that occupation, and a

single failure will lead to a “demotion” to the next lower occupation 1 with lower wages. Next

consider a worker at the highest-ranked job in an occupation, say, job 1 +2 of occupation

2. That worker will have the highest wage in occupation 2, and a single success will lead

to a “promotion” to the next higher occupation 3 with higher wages. Workers in medium-

ranked jobs in an occupation will be less likely to switch occupations. Thus, this setup can

easily explain how the U-shaped pattern of switching between occupations may arise. Finally,

workers will switch between the two sets of occupations only when the prior about the skill

relevant to that set of occupations drops so low that the associated modified Gittins index for

that set is lower than the modified Gittins index for the other set.

5 Experimentation

Here, experimentation is allowed for by having jobs differ in their informativeness. I start by

having all firms identical but some jobs possibly more informative than others, then discuss

how the results apply to the case of heterogeneous firms.

5.1 The Multi-Armed Bandit Problem

Since all firms are identical, I drop the  subscript in (20) and write the planning problem as

 () = max
∈

[(1− )( ) +  (+1| )]  (44)

This problem is an instance of a multi-armed bandit with dependent arms. In this problem,

the planner values jobs according to both their static expected output and their informative-

ness. Specifically, consider the relative benefits of any two jobs  and 0. This benefit can be

decomposed into two terms: the static gain in expected output from job  relative to job 0,

namely,

( )− ( 
0) (45)

and the information gain of job  relative to job 0 namely,

 (+1| )− (+1| 0) (46)

Now, job  is preferred to job 0 if, after applying discounting, the static gain of job  relative

to 0 is larger than the information gain of job 0 relative to job . Of course, if job  has both

a static gain and an information gain relative to job 0, then it is obviously preferred to job 0.

The information benefit of one job over another arises from the convexity of the value
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function (). It is straightforward to prove that the value function  (·) is convex in . (See,
for instance, Banks and Sundaram (1992) for the independent case. Adapting their proof to

this case is easy.) This convexity implies that mean-preserving spreads of posterior beliefs are

beneficial. More precisely, when job  is more informative than job 0, defined as in (8), and

the value function is convex, then using (6) and (7) we have that (46) is positive.

The intuitive idea is that the more spread out the posterior, the greater the information

acquired, and thus, the more precisely the newly assigned job can be tailored to the state. That

the greater informativeness of a job leads to that job having greater information benefits follows

from the convexity of the value function, as illustrated by Figure 6.

It is well known that, in contrast to the independent arm case, no general characterization

result of the optimal policy for (44) exists. Here, I will characterize the solution to (44) for

some special cases that I argue are empirically relevant.

5.2 Allocations in an Entry Job Economy

A standard intuition in the literature on careers in firms, dating back to Holmström and Tirole

(1989), is that certain jobs in firms, especially entry-level ones, may have greater information

content than others, so they may be used by a firm as a screening device to acquire information

about the ability of workers. (See also Felli and Harris (2004) for a similar interpretation.) As

mentioned, in Pastorino (2013) I document that the lowest-level job is the most informative

and the rest of the jobs are essentially equally informative.

Motivated by this intuition and these empirical findings, I suppose that job 1, called the entry

job, is more informative than jobs 2    , each of which is equally informative. Specifically,

I assume that the entry job has informativeness 1 = (1 1), whereas jobs 2     are less

informative in that their informativeness is  = ( ), with

1

1





and

1− 1

1− 1

1− 

1− 
 (47)

Assume also that the  jobs satisfy (4) and (27). Let {}−1=2 denote the corresponding static

cutoffs. Under these conditions, the solution to (44) has the following form: expand the static

interval [0 2) of priors at which job 1 is assigned to [0 ∗) with ∗  2; at all priors 

larger than ∗ , assign the job that would have been assigned under the static assignment rule.

Note that the interval of priors at which job 1 is assigned can expand to the point where job

1 “crowds out” some jobs starting from job 2 on. Let ∗ denote the lowest-level job that is

not crowded out. Then, the static assignment rule applies starting with job ∗ at priors in

the interval [∗ ∗+1). Note that job 1 cannot completely crowd out the highest job : as

the prior  approaches 1, the information gain of job 1 goes to zero. Hence, ∗  1 If job 1
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partially crowds out job , then job  is used only at priors in [∗ 1], a strict subinterval of

[  1]; otherwise, job  is assigned at priors in the entire interval [ 1].

More formally, I claim that the solution to the entry job problem has an interval character-

ization of the form

[0 ∗) [∗ ∗+1) [∗+1 ∗+2)     [  1] (48)

in that there exist dynamic cutoffs ∗ and  such that for priors in [0 ∗) the entry job

is assigned. Let ∗ be defined as the smallest job  such that the upper edge of the interval

[ +1) for which job  would be statically assigned, namely, +1, is strictly greater than the

dynamic cutoff ∗ . Define

 =

(
 if ∗  

∗ otherwise

)


Note that when  = , job  is assigned over the static interval [  1]. When ∗ ≥  ,

job  is assigned only at priors in [∗ 1]. See Figure 7.

In sum, the job assignment rule associated with (48) is as follows: at  ∈ [0 ∗) assign
the entry job, and at  ∈ [∗ 1] assign the job that would have been assigned using the static
assignment rule. I also claim that ∗ satisfies

2  ∗  1 (49)

Proposition 6. In the entry job economy, if job 1 is sufficiently more informative than the

other jobs, and (4) and (27) hold, then there exists ∗ satisfying (49) such that the optimal job

assignment rule is dynamic and is given by the interval characterization (48).

Proof : Since jobs  = 2     have the same informativeness, we can write the value  ()

in (44) as the choice between using job 1 today or using the statically best job among jobs

2     so that  () = max
©
1() ̄ ()

ª
, where

1() = (1− )( 1) +  (+1| 1) (50)

̄ () = (1− ) max
=2

( ) +  (+1| ) (51)

Suppose first that job 1 is perfectly informative so that 1 = 1 and 1 = 0. Then,

 (+1| 1) =  (1) + (1− ) (0) = (1) + (1− )(0 1)

where I have used that ( 1) = , that 1() = 1 and 1() = 0 at  ∈ (0 1), that
priors of 0 and 1 are absorbing states, and, finally, that under (21), job 1 is the best assignment
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at  = 0 and job  is the best assignment at  = 1. In particular,

1() = (1− )( 1) +  [(1) + (1− )(0 1)]  (52)

Note that by (21) 1(0) = (0 1)  ̄ (0) = (0 2) and 1(1) = (1− )(1 1) + (1 ) 

̄ (1) = (1). Moreover, as is apparent from (52), 1() is a straight line, whereas by (21)

and the convexity of  (), ̄ () is an increasing convex function of . Therefore, 1()

crosses ̄ () once from below to above at ∗ as depicted by Figure 8.

Next, I claim that ∗  2. First I show that ∗ ≥ 2. To see why, suppose by way of

contradiction that ∗  2, that is, 1() = ̄ () at  = ∗  2. By single-crossing of

1() and ̄ (), this implies that there exists a  ∈ (∗ 2) such that 1()  ̄ (). This

is impossible, since by (21) and the definition of the static cutoff 2, ( 1)  ( 2) at any

  2. Moreover, at all priors , by convexity  (+1| 1) ≥  (+1| ), since job 1
is more informative than the other jobs. Hence, for  ∈ (∗  2), 1()  ̄ (), which is a

contradiction. Second, ∗ cannot equal 2. The reason is that since 2 is interior and job 1

is strictly more informative than the other jobs, job 1 has a strict information gain over other

jobs in that  (+1|2 1)− (+1|2 )  0. In addition, job 1 is tied statically with job
2. Hence, 1(2)  ̄ (2).

Next, note that by construction of ̄ , at any  such that ̄ ()  1(), the job assigned

is given by ∗() = argmax=2 ( ), which is the statically optimal job. Finally, that the

same result holds when the entry-level job is sufficiently informative follows by continuity, for

1 sufficiently close to 1 and 1 sufficiently close to zero.

I think of this result as formalizing the intuition of Holmström and Tirole (1989). Note that

the dynamic job assignment rule (48) in the entry job economy also has implications for wages.

To do so, consider decentralizing the economy using the wage function (15) discussed earlier.

In particular, let ( 1) = ( 1) and ( ) = max=2 ( ).

Corollary 4. In an entry job economy at priors in (2 ∗), workers accept a negative com-

pensating differential in the entry job in that when assigned to that job, they receive the wage

( 1)  ( ). As  crosses the cutoff ∗, wages increase discretely by the amount

(∗ )− (∗ 1) =


1− 
[ (+1|∗ 1)− (+1|∗ )]  (53)

Proof : I first show that wages discretely increase at the cutoff. To do so, note that by the

definition of the cutoff ∗, 1(∗) = ̄ (∗) so that using the definitions of ( 1) and

( ) in (50) and (51) yields (53). Next, since job 1 is more informative than the other jobs,

given any (interior) prior, the posterior under job 1 is a mean-preserving spread of that under

jobs 2    . Since the value function  () is convex in , it follows that the right side of
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(53) is positive. Next, to establish the first part of the corollary, note that since ∗  2,

(21) implies that for any 2   ≤ ∗ , ( 1) is strictly smaller than ( 2). At priors in the

interval (2 ∗], the difference ( 2)− ( 1) is largest at ∗ .

Notice that the corollary offers a novel interpretation of the wage premium that workers

typically experience at promotion and, therefore, of the forces that determine wage growth

with tenure in a firm. Here, a worker with a prior slightly smaller than ∗ is assigned to a

job at which the worker has a static comparative disadvantage at that prior by (21). Such an

assignment is nonetheless efficient because the information benefit to the worker from working

at job 1, in the form of higher expected future wages, more than offset the current loss in wages.

As a result, the lower current wage in job 1 contains a negative compensating differential for

the greater information value of job 1 relative to job ∗. Indeed, as (53) makes clear, the jump

in the wages at ∗ equals the information gain of job 1 over the other jobs.

So far I have presumed that the lowest-level job, job 1, is more informative than the remain-

ing jobs. For completeness, consider in contrast a top job economy in which the highest-level

job, job , is more informative than all the other jobs. Clearly, a result analogous to Propo-

sition 6 holds. Specifically, relative to the equally informative case, the interval at which job

 is assigned increases to the left, implying that job  potentially crowds out jobs  − 1,
 − 2, and so on. That is, workers are assigned to job  at priors in the interval [ 1] with

   , whereas to the left of  the static assignment rule applies. Let ∗ denote the job

that is assigned immediately to the left of  . See Figure 9.

Observe also that in a top job economy, logic analogous to that used in Corollary 4 implies

that wages at promotion decrease by the discrete amount (  ∗)− (  ). The reason

is that now as the prior crosses the cutoff  from below, workers switch from being assigned to

job ∗ to job . In the interval [∗ ), by definition ( ∗)  (). But job  provides

an information benefit relative to job ∗. Hence, job ∗ contains a positive compensating

differential relative to job  in the interval [∗ ) in that

(  ∗)− (  ) =


1− 
[ (+1|  )− (+1|  ∗)]  0

Here, a worker’s wage will drop discretely as the prior crosses the threshold .

In light of these features, I think that the implications of the entry job economy are much

more in line with the data than those of the top job economy. Using the lens of this model, the

observation that wages jump upon promotion is supportive of the idea that lower-level jobs are

more informative than higher-level jobs. Hence, the greater informativeness of lower-level jobs

could be an important factor in explaining the wage increases typically observed at promotions.

(In Pastorino (2013) I provide evidence for these patterns by estimating a general version of this

model using the BGH data.) This result could also explain why, at least in the BGH data, even
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for workers with high tenures and experience who are likely to have extreme priors, promotions

lead to large wage increases. See the discussion in Gibbons and Waldman (2006) about the

inability of their model to generate this pattern.

Finally, Proposition 6 can be used to illustrate how the relative informativeness of the

entry-level job relative to the non-entry jobs affects the speed of promotion. To this end, let

economy 1 have an entry-level job of a given informativeness 1 and the non-entry-level jobs

have informativeness . Let economy 2 have the same entry-level job, but suppose that the

non-entry-level jobs have lower informativeness 0. Then the dynamic cutoff ∗ for economy 1

is smaller than the corresponding cutoff for economy 2. But the updating rules ( 1) and

( 1) are the same in the two economies. Consider now a worker with a prior  lower than

∗ . It immediately follows that the average time until the first promotion for the worker is

shorter in economy 1 than in economy 2.

Corollary 5. In an entry job economy, as the level of informativeness of the non-entry-level

jobs decreases, the average time until first promotion out of the entry-level job increases.

5.3 Decentralization

So far I have considered only the planning problem and have been silent on how these jobs are

distributed across firms. It should be clear and intuitive that given any collection of ̄ of the

jobs in the economy that satisfy (21), the implications for careers within firms and turnover

between firms differ greatly depending on how these jobs are distributed.

To see this, suppose that in the economy there are entry-level jobs that are very informa-

tive and non-entry-level jobs that are equally informative. Consider a distribution such that

technology  consists of only entry-level jobs and the other technologies, say, technologies

 and , have only non-entry-level jobs. Then, the problem of each firm is static and all

experimentation takes place for workers turning over across firms. Alternatively, suppose that

the technologies of all firms are similar in that each firm has a mixture of entry-level jobs and

non-entry-level jobs. Then, each firm faces a dynamic allocation problem, so experimentation

also occurs within firms. In the first case, a firm’s allocation policy is static, but a worker’s

choice of firm dynamic. In the second case, both a firm’s allocation policy and a worker’s choice

of firm are dynamic.

5.4 An Example

Here, motivated by my findings in Pastorino (2013), I present a simple two-period example to

further illustrate the dynamics of jobs and wages in equilibrium for an entry job economy. In

my empirical work based on the BGH data, I find that the lowest of the three main levels of
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the firm’s hierarchy is the most informative. In my sample, each promotion is by one step and

no demotion is observed. Here, I construct an example that displays these features.

Let job 1 be the most informative, job 2 the next most, and job 3 the least informative.

Assume that these jobs satisfy (21). I proceed by constructing equilibrium and then deriving

sufficient conditions for this equilibrium to be unique. Figure 10 illustrates the basic idea. In

the second period, since there is no benefit to more information, the allocations are given by

the static cutoffs: work in jobs 1, 2, and 3 as the prior ranges from [0 2) to [2 3) to [3 1].

In the first period, the allocations are given by the dynamic cutoffs: work in jobs 1, 2, and 3

as the prior ranges from [0 2) to [2 3) to [3 1]. Note that since job 1 is more informative

than job 2, the dynamic cutoff 2 is to the right of the static cutoff 2, so 2  2. Similarly,

since job 2 is more informative than job 3, 3  3.

I claim that under three conditions, this dynamic path of jobs assignments is optimal and

entails promotions by one step but no demotions. The conditions amount to parameter restric-

tions. The first two conditions are

2(2) ≥ 2 and 3(3) ≥ 3 (54)

and rule out demotions. The first inequality implies that even if a worker fails at the lowest

prior at which job 2 is assigned, namely 2, then the resulting prior 2(2) is still above the

static cutoff for job 2, 2. Hence, all workers assigned to job 2 in the first period that fail will

still be assigned to job 2 in the second period. The second inequality analogously rules out

demotions from job 3 The third condition,

1(2)  3 (55)

rules out promotions by more than one level. This inequality requires that even if a worker

succeeds at the highest prior at which job 1 is assigned in the first period, then the resulting

prior 1(2) is still below the static cutoff for job 3 3.

Under these restrictions, the conditions defining the dynamic cutoff 2 are1(2) =2(2),

where 1(2) equals

(1− )(2 1) +  [(2 1)(1(2) 2) + (1− (2 1))(1(2) 1)] (56)

and 2(2) = (2 2). To understand 1(2), note that under the plan associated with (56),

in period 1 the worker works at job 1 at prior 2. After a success, the prior is updated to

1(2) and (55) implies that job 2 is optimal at that prior.

The only subtlety is the argument for the job assignment after a failure in job 1 at 2. After
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a failure, the prior is updated to 1(2) and I argue that the first no demotion condition in

(54) implies that the worker is then assigned to job 1. By way of contradiction, suppose instead

that the worker is assigned to job 2. But this would imply that a worker who starts in job 1 at

2 works in job 2 in the second period regardless of success or failure. In turn, this would imply

that there is no value to more information at 2, so 2 = 2, which is inconsistent with the first

no demotion condition. To understand 2(2), note first that since job 1 is more informative

than job 2, 2(2) ≤ 1(2), which by (55) implies that after a success, job 2 is optimal.

Next, note that after a failure in job 2, the prior is updated to 2(2). By the first inequality

in (54), job 2 is optimal.

The conditions determining the dynamic cutoff 3 are 2(3) = 3(3), where 2(3)

equals

(1− )(3 2) +  [(3 2)(2(3) 3) + (1− (3 2))(2(3) 2)] (57)

and 3(3) = (3 3). To understand 2(3), note that after success in job 2, the prior is

2(3) ≥ 3, so working at job 3 is optimal. After a failure in job 2, the prior is 2(3) and

the second no demotion condition in (54) implies that job 2 is optimal in the second period.

The reason is that if instead the worker were assigned to job 3, then there would be no value

to information at 3, so 3 = 3, which contradicts the no demotion condition.

Now consider the implications for wages: the successful workers receive wage increases and

the unsuccessful workers receive wage decreases. Thus, this example, though simple, implies

many of the patterns observed in the BGH data. Promotions are by only one step, wages

increase upon successful performance and promotion, no demotion occurs, but wage decreases

are possible.

Finally, the promotion and demotion rungs can be described. The demotion rungs are

trivial: no workers are demoted. There are two promotion rungs for workers assigned to job 1,

namely,

[0 2) = [0 (2 1)) ∪ [(2 1) 2)

where  = (2 1) is the prior such that a success in job 1 leads the prior to be updated to

the static cutoff for job 2, that is,  solves ( 1) = 2. All promoted workers, those with

priors in [(2 1) 2), receive wage increases. Notice that a worker with prior  ∈ [2 2) is
assigned to job 1 and paid ( 1), which is below the worker’s current expected output in job

2. Hence, when workers with such priors are promoted, their wages experience an extra jump

in wages. Likewise, there are two promotion rungs for workers assigned to job 2, namely,

[2 3) = [2 (3 2)) ∪ [(3 2) 3)

where  = (3 2) is the prior such that a success in job 2 leads the prior to be updated
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to the static cutoff for job 3, that is,  solves ( 2) = 3. For  ∈ [2 (3 2)), after a
success in job 2 a worker stays in job 2 and for  ∈ [(3 2) 3), after a success in job 2 a
worker is promoted to job 3. Finally, when workers with  ∈ [3 3) are promoted, their wages
experience an extra jump.

6 Human Capital Acquisition

The existing framework is promising in accounting for many features of observed job assignments

and wages. One dimension of the data the model may not capture is that individual wages on

average increase with time in the labor market. In the current framework, two workers with

the same prior have the same wage regardless of their experience, measured by the number of

periods both have been in the labor market. This feature can be easily remedied by allowing

for human capital acquisition. I argue that adding human capital accumulation leads to only

minor modifications in the existing analysis and can bring the model more in line with the data.

The simplest way to do so is to suppose it depends only on experience . Suppose first that

experience just adds a positive constant to output at any job, so that now expected output is

given by

(  ) = ( ) +  (58)

with  ≥ 0. Then, it should be clear that the earlier assignment rules are unchanged and

that the earlier expressions for wages are simply augmented by . That is, human capital

acquisition adds a drift term to wages and has no other effect. Specifically, let the human

capital economy be the earlier economy with (  ) in (58) replacing ( ). It is easiest

to state the characterization result for the general setup.

Proposition 7. The optimal assignment rule in the human capital economy solves (16) and

hence coincides with that of the general economy. Equilibrium wages in the human capital

economy are given by

(  ) = ( ) +  (59)

where ( ) is given by (15).

Proof: The proof that the assignment rules for the two economies coincide follows immediately

from the observation that the objective function for the planning problem in the human capital

economy is the sum of the objective function for that problem in the original economy plus

terms that are independent of the allocations of workers to jobs and firms. Hence, the two

solutions coincide. The proof that wages are given by (59) follows from the observation that

the zero profit condition implies the analog of (14). Thus, (59) follows using the same logic

that was used to derive (15).
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Here, I have considered the simplest case in which human capital is produced and used in

the same way in all jobs. Of course, once I allow human capital to be differentially acquired in

some jobs and differentially productive in other jobs, the job assignment rule in the economy

with information and human capital acquisition must be dynamically designed to balance both.

Hence, it will differ from the job assignment rules considered here in the obvious ways.

7 Conclusion

In this paper, I have integrated and extended two leading approaches to the analysis of careers

within and across firms, so as to generate job and wage paths that resemble those observed in

the data. In particular, workers commonly advance through the hierarchy of jobs of a firm and

turn over between firms in pursuit of better matches of their skills to jobs and firms. By doing

so, they earn higher wages but repeatedly face the possibility of failing and experiencing wage

decreases.

I have characterized equilibrium assignment and wages in this integrated framework and

linked the predictions of the model to existing empirical work. The results I derived apply

to differing degrees of generality of ability across jobs and firms, ranging from firm specific to

occupation specific to completely general across jobs and firms. Versions of the model seem

promising to qualitatively explain a broad set of empirical findings about job and wage mobility

in firms and in the labor market.

A Appendix

Here, I present omitted details and arguments.

A.1 An Overlapping Generations Interpretation

Consider an overlapping generations structure similar to that in Blanchard (1985). Each worker

alive in period  faces a constant probability of dying of 1 −  with  ∈ (0 1). At time  the
probability of being alive at + is thus . In each period, a measure of agents are born with a

distribution of priors (1). The measure of such agents
R
() is normalized to 1−. By the

law of large numbers, the measure of any given cohort of workers will decline deterministically

with time at rate 1−. Using  to denote the measure in period  of a cohort born in period

, we have  = (1− )−. Thus, the measure of the total population of workers at time 
is  =

P

=−∞, which is constant and equal to 1.

Following Blanchard (1985), I also assume the existence of perfect annuity markets. Firms

in these markets make annuity payments to workers when they are alive and inherit the wealth

of these workers when they die. I also assume the existence of complete markets for insurance
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against the idiosyncratic risk of success or failure in a job. Since there is no aggregate uncer-

tainty in this economy, the combination of annuity markets and insurance markets renders the

problem of a consumer deterministic.

At birth, workers differ only in their initial prior 1. Hence, workers’ consumption paths

will be indexed by their initial priors. Let ̃ denote a worker’s discount factor ignoring the

possibility of death. Then, the workers’s effective discount factor is  = ̃. A worker born at

time  with initial prior 1 has utility given by

(1− )

∞X
=

−((1))

where (1) is the consumption of a worker of cohort  in period  and the period utility

function ((1)) is a strictly concave function of (1). (Of course, over time the worker’s

prior will be updated as before, so 1 is just an index for the initial prior and does not represent

the time  prior given the worker’s history of successes and failures.)

Consider a stationary equilibrium for this economy. In a stationary equilibrium, the in-

tertemporal price of goods will be constant in calendar time. In particular, the price of goods

at time  in units of goods at time  will be 1− with  = 1 for the standard reasons. The
budget constraint of a worker in this stationary equilibrium can be written as

∞X
=

− =(1)

where (1) is the expected present discounted value of wages using the market interest rate

. The worker’s problem conveniently divides into two parts: an intertemporal consumption

problem and a job choice problem. The optimal path of consumption satisfies

−0()
0()

=
1

− 

which, in this stationary equilibrium with  = 1, reduces to 0((1)) = 0((1)) so that
workers smooth their consumption. The job choice problem is to choose a sequence of jobs so

as to maximize the present discounted value of wages(1), where these wages are discounted

at the market rate  = 1. That is, the job choice problem reduces to that in (11).

Hence, I have shown that the job assignment problem solved in the body of the paper

also solves the job assignment problem in an overlapping generations economy with risk-averse

workers and complete markets.

A.2 Omitted Proof

Proof of Corollary 2: For (i) suppose that a worker in job  at prior  ∈ [ +1) experiences
a success, so the new prior is () ≥ . If ()  +1 then the worker stays in job , since

output at each job is monotone in the prior, and the wage increases from ( ) to (() ).

If () ≥ +1, the worker is promoted to job +1 and the new wage is (() +1). That

this wage is greater than ( ) follows by monotonicity, which implies (() ) ≥ ( ),
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and by the single-crossing property, which implies that (  + 1)  ( ) if   . The

proof of (ii) is symmetric. Result (iii) immediately follows from monotonicity and single-

crossing. For (iv), I formalize the statement that conditional on current wages, wage increases

are positively serially dependent as

Pr (+2 − +1  0|+1 −   0 ) ≥ Pr (+2 − +1  0|)  (60)

By the fact that wages increase from any period  to  + 1 only if a success occurs, an event

denoted by  = , and that by (29) wages are increasing in the prior, (60) can be rewritten as

Pr (+1 = | =  ) ≥ Pr (+1 = |)  (61)

Since the left side of (61) equals Pr(+1 = |()), the result follows since the probability of

success increases in the prior. Next, note that (v) means that, given +2 = 00  0   = ,

and the fact that the worker is assigned to job  at  and receives the wage , the following

inequality holds

Pr(+2 = 00  +1|+1 = 0   ) ≥ Pr (+2 = 00  +1|+1 =  )  (62)

Here, I restrict attention to wages  such that the probabilities in (62) are well defined, that is,

wages at job  in  associated with priors such that the probability of promotion to job +1  
is positive. Let  denote a prior consistent with  and job  in this sense. The conditioning

statement on the left side of (62), that a promotion occurred at + 1 starting from some prior

 in , implies that +1 = () by (1). The event that +2 = 00  +1 = 0 requires that
a success also occurred in  + 1 at job +1 so that +2 = (+1) with (+1) ≥ +2 

+1 ≥ +1. Then, either both sides of (62) are zero or two successes from  lead the prior to

be +2 = (()) ≥ +2, in which case the result clearly holds, since the statement can

be rewritten Pr(+1 = |()) = Pr (+1 = | =  ) ≥ Pr (+1 = |).
As for (vi), note that for a promotion to occur from  to  + 1 in period + 1,  must be

such that () ≥ +1  . As  approaches , the difference ()− becomes arbitrarily
small. Hence, promotions from  to  + 1 occur only at  just below +1 leading to ()

just above +1. Since wages equal expected output by (14), by the definition of +1 it follows

that as  approaches , wage changes become arbitrarily small upon promotion. At level  the

wages range from ( ) = ( ) to (just below) (+1 +1) = (+1 +1). Since it is

possible to adjust  and  to keep this range fixed while  is made closer to , the result

follows.
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Figure 1. Expected Output and Benchmark Assignment Rule 
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Figure 2. Update when Job k is More Informative than Job k ′ 
 
  

 ( , )L kP p ′θ  

 ( , )L kP p θ  
 ( , )L kP p ′θ  

 ( , )H kP p ′θ  

 ( , )H kP p θ  

p

Note: The posteriors ( , )L kP p θ  and ( , )H kP p θ  under the more informative job are a mean-
preserving spread of the posteriors ( , )L kP p ′θ  and ( , )H kP p ′θ  under the less informative job.  

 ( , )H kP p ′θ   ( , )H kP p θ   ( , )L kP p θ   0 1

 1 



Figure 3. Heterogeneous Priors and Promotions 
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Figure 4. Promotion and Demotion Rungs 
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Figure 5. Multi-Step Promotions 
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Figure 6. Information Benefits of Jobs: Job k More Informative Than Job k′ 
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Figure 7. Assignments in the Entry Job Economy 
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Figure 8. The Entry Job Economy 
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Figure 9. Assignments in the Top Job Economy 
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Figure 10. A Two-Period Example 
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