Linear Quadratic Approximation and Value Function Iteration: A Comparison

Público
Creator Series Issue number
  • 415
Date Created
  • 1989-09
Abstract
  • This article studies the accuracy of two versions of Kydland and Prescott's (1980, 1982) procedure for approximating optimal decision rules in problems in which the objective fails to be quadratic and the constraints fail to be linear. The analysis is carried out using a version of the Brock-Mirman (1972) model of optimal economic growth. Although the model is not linear quadratic, its solution can nevertheless be computed with arbitrary accuracy using a variant of existing value-function iteration procedures. I find the Kydland-Prescott approximate decision rules are very similar to those implied by value-function iteration.

Subject (JEL) Palabra Clave Related information Alternative title
  • Solving a particular growth model by linear quadratic approximation and value function iteration / Lawrence J. Christiano.
  • Linear-quadratic approximation and value-function iteration : a comparison / Lawrence J. Christiano.
Date Modified
  • 08/30/2019
Corporate Author
  • Federal Reserve Bank of Minneapolis. Research Department
Publisher
  • Federal Reserve Bank of Minneapolis
Resource type DOI
License

Relaciones

En Collection:
Última modificación

Contenido Descargable

Descargar PDF

Zipped Files

Download a zip file that contains all the files in this work.

Elementos